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Abstract 

The optimal premium control in a non-life insurance business is determined using 

dynamic programming techniques. The optimality is measured in terms of solvency 

and a sufficient smoothing of the premium and the surplus variations in time. 
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1. Introduction 

It was argued by Martin-LBf [1983] and Gray [1984] that the engineering control 

methods with their feedback mechanism could be helpful to control insurance 

systems. 

Martin-Ltif proposed a linear feedback control for Pt in year t (t ~ 1) of the 

following form : 

(1) 

where v and w are positive constants and Gt-1 and Xt stand for respectively the 

surplus at the end of year t-1 and the claim in year t. The expected claim for 

year t is estimated by a linear function of the claims in previous years. The 

coefficients v and w are then determined heuristically by examining the stabi­

lity of the resulting premiums and surplusses of the considered portfolio. 

In this paper we will use the dynamic programming technique to prove that the 

optimal premium control is very similar to (1) in case the criterion expresses 

the demand for equity, solvency and a sufficient smoothing of the premium and 

surplus variations in time. 

We will determine the coefficients v and w that belong to this optimal premium 

control, together with the supplemental term that has to be added to the right 

hand side in (1). This term depends on the expected claims in future years, as 

can be expected by the nature of the dynamic programming technique. 

In the next section we will explain the model that is used in section 3 to 

derive the optimal control law. In the last section we give some numerical 

examples to illustrate the method. 
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2. Model. 

We consider a model that is close to the model given by Martin-L~f [1983) to 

describe a branch of a non-life insurance business. 

Suppose that the premium Pt is received at the beginning of year t to cover the 

operating expenses Dt and the expenses for the claims St that incur in year t. 

The claims incurred during a particular year are not always determined in the 

same year but often with a delay of several years. To define the surplus at the 

end of year t, one estimates the remaining costs for the claims of that year. 

The difference between the estimated costs and the actual costs for claims in 

preceding years is called the runoff-profit At. The investment earnings are 

denoted by It. 

The total outflow in year t will be denoted by Xt and is defined by 

Xt = St + Dt - It - At ( 2) 

We assume that expenses are made in the middle of the year so that the surplus 

Gt at the end of year t is given by : 

Gt = R Gt-~ + R Pt - R• Xt ( 3) 

where R = 1 + i stands for the interest factor. 

We will assume that we can obtain a reliable estimate for E[Xt], t=1, .. T, where 

T stands for the planning horizon. This may seem a strong assumption, but if one 

has some evidence that the assumed trend not longer holds, one can easily insert 

the new estimates in the model and calculate the optimal premium from that 

period on. 

We want to determine the premiums in the successive years l, ... T in such a way 

that the following requirements are satisfied : 

* the accumulated surplus Gt must be sufficient to make the ruin probability as 

small as prescribed 

* the surplusses and the premiums should not deviate too much from prescribed 

values. 

These criteria can be expressed mathematically as follows 

minimize 
{Pt} 

T 
E { k 

t=l 
( 4) 

where ~t is fixed by the premium level wanted in year t and the Pt are prescri­

bed by ruin theory. 
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This provides us with a linear-quadratic control model that can be solved by 

control theory and which possesses some interesting properties. 

For a summary of that part of control theory that we will use in our derivation, 

see the appendix. For a detailed overview we refer to Chow [1975]. 

Our model can be written in the form : 

1 
[ R J Pc + [ 

0 

J + [ R~ 
and the objective function is the conditional expectation of 

T 
E l 

t=1 

given Ga. 

With the appropriate matrix definitions, 

Yc =A Yc-~ + C Pc + be + Ut 

( 5) can be written as 

0 

(EXt - Xc) J 

where the Ut denote random vectors with zero mean, and ( 6) equals 

T 
E [ l (Yc 

t=1 
- ac)T K (yt - ac) ] . 

3. Results 

( 5) 

( 6) 

(7) 

( 8) 

As is explained in the appendix, the optimal control can be expressed recur­

sively starting from the last period T. 

In some situations, these recursions reach a steady state fort smaller than a 

certain value. 

We will derive this steady state for our problem and proof that this steady 

state control can be applied from now on up to a certain time. 

For the years immediately preceding T, the optimal control must be derived using 

the equations given in the appendix. 

It will appear from the numerical examples in section 4 that this steady state 

solution can be applied for the greatest part of the T years. 



Lemma. 

The solutions to the following system of matrix equations 

M -(CT H C)-~ CT H A 

H K + (A + c M)T H (A + C M) 

with c, A and K defined by ( 5) ' ( 6) • ( 7) and ( 8) • 

are given by 

H = [ ~ 
1 

and 
1 + R2 h 

[ 0 RZ h ) M - -

where h is a solution to 

0. 

Proof : 

From (10) it follows that H is a symmetric matrix. If we set 

H 

we will find, after some straightforward calculations that 

and M 

For A + C M we get 

0 
A+CM=[

0 

0 

- N-~ (R h2 + RZ h3) 

R - N-~ (R2 h2 + R3 h3) 

such that (10) becomes 

5 

( 9) 

(10) 

( 11) 

(12) 

( 13) 

(14) 

(15) 

(16) 

(17) 

from which h~. h2 and h3 can be determined. Inserting these values in (14) and 

(15) provides us with (12). 

The steady state solution for the premium control exists if the characteristic 

roots of A + C M ) are smaller than 1 in absolute value. Form (16) we know 

that this is satisfied if lsi < 1 or 

h-+-~;-hl < 1. 
(18) 
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For realistic values of R their exists exactly one solution to (13) that satis­

fies (18). For some interest rates between 0 and 0.1 this solution, together 

with the value of the characteristic root in (18), is given in table 1. 

Table 1 

R h R/(l+R2 h) 

-----------------------------
1.000 1. 618034 0.38197 
1.005 1.620786 0.38111 
1 010 1.623515 0.38025 
1.015 1.626220 0.37939 
1.020 1. 628903 0.37852 
1.025 1. 631562 0. 37765 
1. 030 1. 634198 0.37678 
1. 035 1.636812 0.37590 
1.040 1.639403 0.37502 
1. 045 1.641972 0.37414 
1.050 1.644518 0.37326 
1.055 1. 64 7042 0.37237 
1.060 1. 649544 0.37148 
1.065 1.652025 0.37059 
1.070 1.654484 0.36970 
1.075 1.656921 0.36881 
1.080 1.659337 0.36792 
1.085 1. 661732 0.36702 
1.090 1.664105 0.36613 
1.095 1. 666458 0.36523 
1.100 1.668790 0.36433 

Now we are able to derive the steady state premium control. 

Theorem. 

The steady state premium control is given by 

1 

1 + R2 h 

where dt is defined recursively by 

R2 h 

with the initial condition 

dT [3T 

R 

and his determined as the solution to (13), satisfying (18). 

(19) 

(20) 



Proof : 

From the appendix it follows that the steady state solution is given by 

where M is given by (12) and gt by 

gt =- (CT H C)- 1 CT (H be - ht)• 

The he in (22) are determined by the following recursion 

he = K ac + (A + C M)T (ht+1 - H bt+1) 

with the initial condition 

The matrix H in (22) and (23) was given in (11). 

Straightforward calculations provide us with 

J 
where dt is given by (20). 

Calculating (22) yields then 

1 
gc =- [ ~t + R312 h EXt+ R de ]. 

N 

where N was defined in (14). 
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(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

The premium control given by (19) and (20) clearly is a linear feedback control 

of a form similar to the one that was given in (1), namely a decreasing function 

of the surplus and an increasing function of the expected claim. 

The recursion relation (20) can be solved explicitly to give 

T-t 
de = ~t + ~ s~- 1 { s ~t+~ + r ~t+~ + h R112 s EXc+~ } 

i=1 

where r and s were defined in (17) and are equal to 

R2 h R 
r = -------- and s = --------. 

(27) 

(28) 
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The following special case can be useful to cope with inflation in the model 

If <Xt - k ext-~ ex~ = ex) , 

f3t - k f3t-~ f3~ = f3) ' (29) 

and EXt = k EXt-~ (EX:~.. = J.L) 

(27) becomes 

dT kT-~ f3 

1 - (k S)T-t (30) 
------------. 

1 - k s 

If jk sj < 1 and the considered period is very large, the term (k s)T-t is 

negligible for t sufficiently small. 

In case k = 1, we get a steady state premium control with constant coefficients. 

It is intuitively clear that for constant claim amounts in the successive years 

(Xt = J.L, t ~ 1) the premium should be given by R-~ J.L and that no reserve should 

be built up in this case. This assertion is formally stated and proved in the 

following corollary which gives a first indication that the model provides us 

with useful results 

Corollary. 

If Go = 0, EXt = Xt = J.L, ex = R-~ J.L, f3 = 0 and the period T is suffi­

ciently large then the steady state solution is given by : 

Gt = 0 and Pt = R-~ J.L (t ~ 1). 

Proof : 

From (30) we get 

J.L o. 
1 - s 

The premium control (19) becomes then 

R312 h J.L + R-:t../2 J.L 

Pt = - R s h Gt-:t.. + ------------------
1 + R2 h 

which is equal to 

Pt - R2 s h Gt-:t.. + R-~ f.L· 

The result is then obtained with the help of (3). 

(31) 

(32) 
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4. Example. 

In this section we will illustrate the premium control by means of a numerical 

example. 

We suppose further that at = 1100, ~t = 750 and EXt = 1000 for t ~ 1. 

With a value 1.05 for R, we can derive from table 1 that h 1. 644518. 

After some calculations we get that the steady state premium is given by 

Pt = - 0.645 Gt-1 + 1419.041. ( 3 3) 

To investigate how long this steady state control can be applied if the time 

horizon is for instance 50 years, we computed the optimal premium control with 

the equations (A3), (A4)and (AS) in the appendix. In table 2 we expose the Pt 

fort= 50,49, .. 35. For the previous years the premium is also given by (33). 

Table 2 

t Pt 

---------------------------------------------------
50 - 0.524376 G4,.. + 1409.479 
49 - 0.626953 G4a + 1542.303 
48 - 0.642054 G47 + 1483.915 
47 - 0.644174 G46 + 1445.881 
46 - 0.644470 G4s + 1429.424 
45 - 0.644511 G44 + 1422.968 
44 - 0.644517 G43 + 1420.514 
43 - 0.644518 G42 + 1419.593 
42 - 0.644518 G41 + 1419.248 
41 - 0.644518 G4o + 1419.119 
40 - 0.644518 G3,.. + 1419.071 
39 - 0.644518 G3a + 1419.053 
38 - 0.644518 G37 + 1419.046 
37 - 0.644518 G36 + 1419.043 
36 - 0.644518 G3s + 1419.043 
35 - 0.644518 G34 + 1419.042 

So it is clear that the steady state control can be applied fort= 1, ... 43 and 

that the optimal premium control does not change drastically during the last few 

years. 

Following Martin-LBf [1983] we consider the case of constant claims : Xt = 1000, 

t ~ 1. The premiums and the surplusses for this case are visualized in the 

figure with and initial surplus of zero. As can be seen in this picture, the 

premiums and the surplusses converge very rapidly to the constant premium 

940.549 and a constant surplus of 742.405. 



10 

This premium is lower than the expected claim because the interest that is 

received on the surplus and on the premiums provide us with a premium reduction 

each year. 

Remark that with our method the premiums and the surplusses converge much faster 

than with the method that was proposed by Martin-L~f [1975]. 
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APPENDIX 

Given a linear model 

(Al) 

where Yt is a vector of dependent variables and lagged control variables, Pt is 

the control variable, A and C are given constant matrices, bt is a constant 

vector and the Ut denotes a random vector with zero mean and finite second 

moments that is independent of Yt-1• 

Assume further that the following quadratic loss function is given 

w 
T 
~ (yt- at)T K (yt- at) ]. 

t=l 
(A2) 

The problem consists in choosing P1, P2, ... PT to minimize the conditional 

expectation E(W], given the initial condition Yo. 
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The solution is given by 

Pt Mt Yt-1 + gt (A3) 

with Mt -(CT Ht C)-"- (CT Ht A) 

gt -(CT Ht C)-"- CT (Ht bt - he) (A4) 

Ht-"- K + (A + c Mt)T Ht (A + C Mt) 

ht-1 K at-"- + (A + c Mt)T (ht - Htbt). 

and the initial conditions 

(AS) 

The solution may reach a steady state for t smaller than a certain value, thus 

satisfying 

M 

H 

-(CT H C)-"- (CT H A) 

K + (A + c M) T H (A + c M) . 

(A6) 

(A7) 

This steady state will exist if and only if all the characteristic roots of (A + 

C M) are smaller than 1 in absolute value. 

Remark that even if a steady state is reached, ge and ht will change in time 

when at and bt vary in time. 
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