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Abstract

The optimal premium control in a non-life insurance business is determined using
dynamic programming techniques. The optimality is measured in terms of solvency

and a sufficient smoothing of the premium and the surplus variations in time.
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1. Introduction

It was argued by Martin-L8f [1983] and Gray [1984] that the engineering control
methods with their feedback mechanism could be helpful to control insurance
systems.

Martin-L8f proposed a linear feedback control for P. in year t (t 2 1) of the
following form :

Pe = v E[Xe] - W G (1)
where v and w are positive constants and Ge-a and X. stand for respectively the
surplus at the end of year t-1 and the claim in year t. The expected claim for
year t is estimated by a linear function of the claims in previous years. The
coefficients v and w are then determined heuristically by examining the stabi-
lity of the resulting premiums and surplusses of the considered portfolio.

In this paper we will use the dynamic programming technique to prove that the
optimal premium control is very similar to (1) in case the criterion expresses
the demand for equity, solvency and a sufficient smoothing of the premium and
surplus variations in time.

We will determine the coefficients v and w that belong to this optimal premium
control, together with the supplemental term that has to be added to the right
hand side in (1). This term depends on the expected claims in future years, as

can be expected by the nature of the dynamic programming technique.

In the next section we will explain the model that is used in section 3 to
derive the optimal control 1law. In the last section we give some numerical

examples to illustrate the method.



2. Model.

We consider a model that is close to the model given by Martin-Lof [1983] to
describe a branch of a non-life insurance business.
Suppose that the premium P. is received at the beginning of year t to cover the
operating expenses D. and the expenses for the claims S. that incur in year t.
The claims incurred during a particular year are not always determined in the
same year but often with a delay of several years. To define the surplus at the
end of year t, one estimates the remaining costs for the claims of that year.
The difference between the estimated costs and the actual costs for claims in
preceding years is called the runoff-profit A.. The investment earnings are
denoted by I..
The total outflow in year t will be denoted by X« and is defined by

Xe = S¢ + De - I - Ac (2)
We assume that expenses are made in the middle of the year so that the surplus
G at the end of year t is given by

Ge = R Ge.z + R Pe - R® X, (3)

where R = 1 + i stands for the interest factor.

We will assume that we can obtain a reliable estimate for E[X.], t=1,..T, where
T stands for the planning horizon. This may seem a strong assumption, but if one
has some evidence that the assumed trend not longer holds, one can easily insert

the new estimates in the model and calculate the optimal premium from that

period on.

We want to determine the premiums in the successive years 1,...T in such a way
that the following requirements are satisfied :
* the accumulated surplus G. must be sufficient to make the ruin probability as

small as prescribed

* the surplusses and the premiums should not deviate too much from prescribed

values.
These criteria can be expressed mathematically as follows :

T T

minimize E { £ (Pe - @c)? + % (Ge - Be)? )} (4)
{Pe} t=1 t=1

where a. is fixed by the premium level wanted in year t and the f. are prescri-

bed by ruin theory.



This provides wus with a linear-quadratic control model that can be solved by
control theory and which possesses some interesting properties.
For a summary of that part of control theory that we will use in our derivation,

see the appendix. For a detailed overview we refer to Chow [1975].

Our model can be written in the form :

P. 00 Pe s 1 o 0 :
S I e I I I I I U I U B

Ge-a

and the objective function is the conditional expectation of

T Pe T P .
A I L I L B e B (®)

given Go.

With the appropriate matrix definitions, (5) can be written as
Ye = A Je-z + C P + be + ue (7)

where the u. denote random vectors with zero mean, and (6) equals

T
E [ Z (ye - @a)T K (ye - a¢) IB (8)
t=1

3. Results

As is explained in the appendix, the optimal control can be expressed recur-
sively starting from the last period T.

In some situations, these recursions reach a steady state for t smaller than a
certain value.

We will derive this steady state for our problem and proof that this steady
state control can be applied from now on up to a certain time.

For the years immediately preceding T, the optimal control must be derived using
the equations given in the appendix.

It will appear from the numerical examples in section 4 that this steady state

solution can be applied for the greatest part of the T years.



Lemma .
The solutions to the following system of matrix equations
M= -(CT HC)">*CT™ HA (9)
H=K+ (A+CMTH (A + CM) (10)
with C, A and K defined by (5), (6), (7) and (8),
are given by
1 0
H = [ | (11)
0 h
1
and M = - ceoaaon- [ 0O R2 h ] (12)
1 +R%2h
where h is a solution to
h®* R« + 2 h2 (R2 - R*) + h (1 - 3 R2) - 1 = 0. (13)
Proof

From (10) it follows that H is a symmetric matrix. If we set

hy ha
| ]
hz ha

we will find, after some straightforward calculations that
CTHC = hl + 2 R h2 + R2 h3 = N (14)
and M= - N-* [ 0 R hz + R?2 ha ]. (15)

For A + C M we get

0 - N-* (R h + R?2 hj) 0 r
A+CM-= [ ] = [ ] (16)
0 R - N-* (R?2 h + R® ha) 0 s
such that (10) becomes
h, h2 1 0
[ =1 ] a7
hz has 0 1+ r2hy +2r s hz + s2 ha

from which h., h and ha can be determined. Inserting these values in (14) and

(15) provides us with (12).

The steady state solution for the premium contreol exists if the characteristic
roots of ( A 4+ C M) are smaller than 1 in absolute value. Form (16) we know

that this is satisfied if |s| < 1 or

< 1. (18)




For realistic wvalues of R their exists exactly one solution to (13) that satis-
fies (18). For some interest rates between 0 and 0.1 this solution, together

with the value of the characteristic root in (18), is given in table 1.

Table 1 :

R h R/ (1+R2h)
1.000 1.618034 0.38197
1.005 1.620786 0.38111
1 010 1.623515 0.38025
1.015 1.626220 0.37939
1.020 1.628903 0.37852
1.025 1.631562 0.37765
1.030 1.634198 0.37678
1.035 1.636812 0.37590
1.040 1.639403 0.37502
1.045 1.641972 0.37414
1.050 1.644518 0.37326
1.055 1.647042 0.37237
1.060 1.649544 0.37148
1.065 1.652025 0.37059
1.070 1.654484 0.36970
1.075 1.656921 0.36881
1.080 1.659337 0.36792
1.085 1.661732 0.36702
1.090 1.664105 0.36613
1.095 1.666458 0.36523
1.100 1.668790 0.36433

Now we are able to derive the steady state premium control.

Theorem.
The steady state premium control is given by
P = memmeee- ( - R h Ge_s + R®/2 h EX. + ac + R de ) (19)
where d. is defined recursively by

dz—_ = Bt . e ———— s Y LT (dr_+1 + h R* E-xt+1)!
1 + R2h 1 + R2h (20)

with the initial condition

de = B’r

and h is determined as the solution to (13), satisfying (18).



Proof
From the appendix it follows that the steady state solution is given by
Pe_a
Po= M | |+ e (21)
Ge-a
where M is given by (12) and g. by
ge = - (CT H C)-* C* (H be - h.). (22)
The he in (22) are determined by the following recursion :
he = Kae + (A + C M)T (hesas -~ H besa) (23)
with the initial condition
hr = K az. (24)
The matrix H in (22) and (23) was given in (11).

Straightforward calculations provide us with

e

he = | | (25)
de

where d. is given by (20).

Calculating (22) yields then

[ @ + R®/2 h EX. + R d. ]. (26)

=z

e =

where N was defined in (14).

The premium control given by (19) and (20) clearly is a linear feedback control
of a form similar to the one that was given in (1), namely a decreasing function

of the surplus and an increasing function of the expected claim.

The recursion relation (20) can be solved explicitly to give

de =
T B'I.‘ (27)
T-t
de = Be + 2 st-* { s Br_+1 + r ae+s + h R2/2 5 EX 4y }
where r and s were defined in (17) and are equal to
Rz h R
L = —mcmm—me and § T cmmmmemm—, (28)



The following special case can be useful to cope with inflation in the model
If Qe K Geea (2 = ),

Be kK Beea ( Ba B, (29)
and EXe = k EXeoq (EXy = )

]
i

(27) becomes
dT = kT-2 B

1 - (k s5)T-= (30)
de = k==* B + k® { SB+ra+ hR¥ s p } --oecwocuca- .

If |k s] < 1 and the considered period is very large, the term (k s)T-® is
negligible for t sufficiently small.

In case k = 1, we get a steady state premium control with constant coefficients.

It is intuitively clear that for constant claim amounts in the successive years
(Xe = u, t 2 1) the premium should be given by R-* u and that no reserve should
be built wup in this case. This assertion is formally stated and proved in the
following corollary which gives a first indication that the model provides us

with useful results

Corollary.
If Go =0, EX. =X =, ¢« = R*™ pu, B =20 and the period T is suffi-
ciently large then the steady state solution is given by

Ge = 0 and P. = R~ . (t 2 1).

Proof

From (30) we get

W (31)
de = { + rR"* + h R* § } -wuua = 0.
l -5
The premium control (19) becomes then
R3/2 h u + R-2/2
Po = -RshGe.qa # —ocomomcoccmcanans (32)
1 +R>h
which is equal to
Pc = - R2 s h Ge.x + R™™ p,

The result is then obtained with the help of (3).



4. Example.

In this section we will illustrate the premium control by means of a numerical
example.
We suppose further that a« = 1100, B = 750 and EXe = 1000 for t 2 1.
With a value 1.05 for R, we can derive from table 1 that h = 1.644518.
After some calculations we get that the steady state premium is given by

Pe = - 0.645 Ge-a + 1419.041. (33)
To investigate how long this steady state control can be applied if the time
horizon is for instance 50 years, we computed the optimal premium control with
the equations (A3), (A4)and (AS5) in the appendix. In table 2 we expose the P.

for t = 50,49,..35. For the previous years the premium is also given by (33).

Table 2 :
t Pe
50 - 0.524376 Gas + 1409.479
49 - 0.626953 Gas + 1542.303
48 - 0.642054 G47 + 1483.915
47 - 0.644174 Gas + 1445.881
46 ~ 0.644470 Gas + 1429.424
45 - 0.644511 Gaa + 1422,968
44 - 0.644517 Gaa + 1420.514
43 - 0.644518 G,z + 1419.593
42 - 0.644518 Gax + 1419.248
41 - 0.644518 Gao + 1419.119
40 - 0.644518 Gas + 1419.071
39 - 0.644518 Gas + 1419.053
38 - 0.644518 Ga> + 1419.046
37 - 0.644518 Gas + 1419.043
36 - 0.644518 Gas + 1419.043
35 - 0.644518 Gssa + 1419.042
So it 1is clear that the steady state control can be applied for t = 1,...43 and

that the optimal premium control does not change drastically during the last few
years.

Following Martin-L8f {1983] we consider the case of constant claims : X. = 1000,
t 2 1. The premiums and the surplusses for this case are visualized in the
figure with and initial surplus of =zero. As can be seen in this picture, the
premiums and the surplusses converge very rapidly to the constant premium

940,549 and a constant surplus of 742.405.
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This premium is lower than the expected claim because the interest that is
received on the surplus and on the premiums provide us with a premium reduction
each year.

Remark that with our method the premiums and the surplusses converge much faster

than with the method that was proposed by Martin-L8f [19757].
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Figure : constant claims, initial surplus 0

APPENDIX
Given a linear model
Ye = A Yeoa + C Pe + be + ue (A1)
where y. 1is a vector of dependent variables and lagged control variables, P. is
the control wvariable, A and C are given constant matrices, b. is a constant
vector and the u. denotes a random vector with zero mean and finite second

moments that is independent of ye.a.

Assume further that the following quadratic loss function is given :

W=

. (ye - ac)T K (ye - 8e) . (A2)

1

It 43

The problem consists in choosing P., Pz,...Pr to minimize the conditional

expectation E[W], given the initial condition yo.



11

The solution is given by

Pe = Me Ye-2a t+ B« (A3)
with M. = -(C® He C)~* (CT He A)
ge = ~(CT He C)-* CT (He be - he) (A4)

Heea =K + (A + C Mc)T He (A + C M)

heoa = K @aeea + (A + C Me)T (he - Hebe).
and the initial conditions

Hr = K

hr = K acz. (AS)

The solution may reach a steady state for t smaller than a certain value, thus

satisfying
M= -(CT H C)-1 (CT H 4A) (A6)
H=K+ (A+CMTH (A +CM). (A7)

This steady state will exist if and only if all the characteristic roots of (A +
C M) are smaller than 1 in absolute value.
Remark that even if a steady state is reached, g. and h. will change in time

when a. and b, vary in time.
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