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Exact calculations in the individual risk model are possible, but are very time consuming. 
Therefore, a number of recursive methods for approximate computation of the aggregate 
claims distribution and stop-loss premiums have been developed. 
In the present paper a general class of such approximation methods is considered, contain­
ing the higher order approximations suggested by Kornya, Hipp and De Pril. In this way, 
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Some new theoretical error bounds are derived, giving a quantitative measure of the accu­
racy of the approximations. 
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1. Introduction 

Consider a random variableS representing the aggregate claims of an insurance portfolio 
in a certain reference period. Suppose that S has a finite mean, that the probability of no 
claims is strictly positive and that the individual claim amounts are positive and integer 
multiples of some convenient monetary unit, so that one can consider S as being defmed 
on the non-negative integers. 

Assume that an explicit expression for the probability generating function of S 
.. 

P(u) = LP(S)Us (1) 
s=O 

is available, but that the corresponding probabilities p(s) are not known. The problem 
under consideration is to calculate the probabilities p(s) numerically from the given 
expression P(u). 

In this paper the computation of the probabilities p(s) will be based on a recursive scheme. 
To set up this scheme, coefficients t(x) are introduced, which are defined by 

.. 
In P(u) = L,t(x)ux (2) 

x=O 

Note that the assumption p(O)>O implies that In P(u) is defmed in a neighbourhood of 
zero, so that (2) is meaningful. Equalities between functions of power series will often be 
considered in the sequel of the paper. They always have to be interpreted as holding in 
some non-trivial interval of convergence. 
Taking the derivative of both sides of (2) and equating the coefficients of the same power 
of u yields the following recursion for the probabilities p(s) 

{ 

p(O) = e'(OJ 

s p(s) = ~x t(x)p(s-x) 

(3.a) 

s = 1, 2, ... (3.b) 

In this way the problem of computing the probabilities p(s) is replaced by the problem of 
determining the appropriate coefficients t(x). At first sight, one might think that the 
problem has only been shifted. However, in some important applications it is possible to 
give an explicit expression for the t(x). 
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EXAMPLE 1. The compound Poisson model 

In the classical collective risk model S is a compound Poisson variable, i.e. 

P(u) = exp {A. [G(u)-1]} (4) 

with A. the Poisson parameter of the counting variable and G(u) the probability generating 
function of the individual claim amounts 

x=l 

In this case, one immediately has that 

{
t(O) =-A. 

t(x) =A. g(x) 
X= 1, 2, ... 

(5) 

(6.a) 

(6.b) 

Inserting these values for t(x) in (3) leads to the well-known recursive formula for 
compound Poisson distributions, see PANJER (1981). 

{ 

p(O) =e-A. 

sp(s)=A.~xg(x)p(s-x) s = 1, 2, ... 

(7.a) 

(7.b) 

EXAMPLE 2. The individual risk model 

Consider a portfolio of n independent policies, labelled from 1 to n. Let 0 < P; < 1 be the 

probability that policy i produces no claims in the reference period and q; = 1- P; be the 

probability that this policy leads to at least one positive claim. Further, denote by 
~ 

G;(u) = _2,g;(x) u"' i = 1, 2, ... , n (8) 
x=l 

the probability generating function of the total claim amount of policy i , given that this 
policy has at least one claim. The probability generating function of the aggregate 
claims S of the portfolio is then given by 

n 

P(u) = I1 [P; +q; G;(u)] (9) 
i=l 
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Now, ln P(u) can be expanded as 

lnP(u) = f[lnp; +ln[l+!li..G;(u)]J 
1=! P; 

so that it can be written in the form (2) , with coefficients t(x) given by 

(JO.a) 

i=l 

t(x) =I (-1)k+l f(!li..J*g;*Cx) 
.t=t k i=t P; 

X= 1, 2, ... , (JO.b) 

where g;•t (x) denotes the k-fold convolution of g; (x) . Insertion of the t(x) -values in 

(3) leads to an exact recursive formula for the evaluation of the aggregate claims distribu­
tion in the individual model. 

n 

p(O) = fiP; 
i=l 

(ll.a) 

s = 1, 2, ... (ll.b) 

This recursion was developed in two stages. The first stage is given in DE PRIL (1986), 
where the special case of the individual life model is considered. In this model each policy 
can only have one claim with a fixed amount. Then, the recursion ( 11) is simplified, since 
g;•t (x) = 8*c x with C; the amount at risk of policy i and 8a b the Kronecker symbol, i.e. .. . 
8a,a = 1 and 8a,b = 0 if a:;: b. Numerical computations by KUON, REICH and 

REIMERS (1987) indicate that although the recursion formula is a much more powerful 
tool than the technique of straightforward convolutions, still a lot of computer time is 
required to calculate the distribution of S for a real life insurance portfolio. 
The generalization to arbitrary positive claims is made in DE PRIL (1989). In this case 
the computation of the coefficients t(x) is even more time consuming than for the individ­
ual life model, especially if the number of policies is large and if the conditional claim 
amount distributions g;(x) are defined for more than a few values. 

The examples above show that the problem of computing the probabilities p(s) numeri­
cally is not always solved satisfactory by deriving an explicit expression for the coefficients 
t(x) . This will only be the case if the t(x) can easily be obtained, as in Example 1. 
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In case the t(x) are too difficult to work with, it is of interest to consider approximative 
methods. Following the ideas of DE PRIL ( 1988 and 1989), approximations f(s) of the 
probabilities p(s) are set up by replacing the exact coefficients t(x) in the recursion (3) by 
easy calculable values h(x) . 
For a given choice of the sequence {h(x): x = 0,1, ... } approximations 
f (s) of p(s) for s = 0, 1, ... , are thus determined by the recursion 

{ 

/(0) = eh<O> 

s f(s) = ~xh(x) f(s-x) s =I, 2, .... 

(12.a) 

(12.b) 

Remark that /(0) will always be positive, but for s = 1,2, ... the approximationsf(s) can 
be any value, positive or negative, depending on the choice of the coefficients h(x) . 

Clearly a minimal requirement is that this choice leads to a sequence {f(s): s = 0,1,2, ... } 
which has a generating function 

00 

F(u) = Lf(s) us (13) 
s=O 

with a strictly positive radius of convergence. In order for this to be true, it is assumed 
00 

that L,h(x) ux has a stricltly positive radius of convergence. In view of (12), this 
x=O 

implies that F(u) can be written as 

F(u) = exp (~h(x) u') 
For further reference, note that one also has 

00 

F' (u) = F(u)L,xh(x)ux-l 
x=l 

(14) 

(15) 

In actual applications more restrictive conditions will be imposed on the choice of the 
00 

sequence {h(x): x = 0, 1, ... } , which will guarantee e.g. that F(l) = L,J(s) and 
s=O 

00 

F' (1) = L,s f(s) are finite. 
s=l 

In the following sections the quality of different approximations f(s) will be discussed. 
This will be done by examining how these approximations perform with respect to the 
following two criteria, which should be satisfied simultaneously. 

i) The time needed for computing the approximated aggregate claims distribution 
and related quantities, such as stop-loss premiums, should be as short as possible. 

ii) The approximated values for the distribution function and stop-loss · premiums 
should be as close as possible to the exact values. 
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The important point is that these two conditions should be satisfied at the same time. 
Indeed, it is not difficult at all to construct approximations which perform very good for 
one of the two criteria, but very bad for the other. The objective is thus to fmd, for the 
individual model, simple approximations h(x) of t(x) which lead to good approximations 
f(s) of p(s). 

In Section 2 theoretical error bounds are derived which give a quantitative measure to 
assess the quality of f(s) as approximation of p(s). Section 3 shows how approximated 
stop-loss premiums can be calculated and gives bounds for the difference between the 
exact and approximated values. Applications of these results are given in Section 4, where 
the approximations proposed by KORNYA (1983), HIPP (1986) and DE PRIL (1988 and 
1989) are examined and compared. 

2. Error Bounds for the Aggregate Claims Distribution 

The following theorem gives an error bound for the difference between the probabilities 
p(s) and their approximated valuesf(s), corresponding with a given choice of the sequence 
{h(x):x = 0,1, ... }. 

THEOREM 1. If there exists a real number £ such that 
~ 

:2, lt(x)- h(x)! ~ £ 
x=O 

then the following error bound holds 
~ 

L !P(s)- f(s)! ~ e£ -1 
s=O 

Proof. In view of (2) and (14), F(u) can be written as 

F(u) = A(u) P(u) 

with 

A(u)= ~a(x)u' = exp[~[h(x)-l(x)]u'] 
Equating the coefficients of the same power of u in ( 18) gives 

s 

f(s)= :l',a(x)p(s-x) 
x=O 

(16) 

(17) 

(18) 

(19) 

s = 0,1, ... (20) 



from which it follows that 
00 00 s 

LIP(s)- /(s)l $11-a(O)I+ LLia(x)lp(s-x) 
s=O s=l x=l 

00 

::;; 11-a(O)I + :Lia(x)l 
x=l 

From ( 19) the following recursion for the a(x) can be obtained 

{ 

a(O) = ehCOl-ICOl 

x a(x) = ty[h(y) -t(y)] a(x- y) X= 1,2, .. . 

Now it is easy to prove by induction that 

ja(x~ ,; b(x) exp[t, jt(y)- h(y~J X= 0,1, ... 

with { b(x): x = 0, 1, ... } a compound Poisson probability function defined by 

b(O) = exp [-~jt(y)-h(y)j] 
X 

x b(x) = LY lt(y)-h(y)lb(x-y) 
y=l 

X= 1,2,.. . 

Using ( 16) and (23) one gets 

~ ja(x)j ,; [1-b(O)] exp[t, jt(y)-h(y~J 

and by (22.a) one has 

ll- a(O)I = jl- ehCOl-ICOll ::;; eiiCOl-hCOll_ 1 

Combining the inequalities (21), (24) and (25) proves the theorem. 

7. 

(21) 

(22.a) 

(22.b) 

(23) 

(24) 

(25) 

Q.E.D. 

From this theorem it is clear that only a choice of the sequence {h(x): x = 0,1, ... } that is 
close enough to the exact values {t(x): x = 0, 1, ... }, and thus gives rise to a small value of 
E , is of practical interest. 

In most applications one is not interested in the value of a single probability p(s), but in the 
cumulative probability Pr[S $s] with s = 0,1, .... Note that to simplify the notation only 
integers are considered, but a generalization to real s is straightforward. The value of 
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s 

Pr [S::;; s] will be calculated as Lf(x) and an error bound for the difference between 
x=O 

the exact and approximated value is given in the following corollary. 

COROLLARY 1. If ( 16) holds, then 

s 

Pr [S::;; s]- Lf(x) ::;; (e£ -1) Pr[S::;; s] ::;; e£ -1 s = 0,1, .... 
x=O 

Proof. For s = 0, (26) follows immediately from (20) and (25). 

In case s is a strictly positive integer, one gets from (20) 
s s y 

Pr[S::s;s]- _Lf(x) = [1-a(O)]Pr[S::s;s]- ,L_La(x)p(y-x) 
x=O y=l x=l 

and thus 

Prob [ S,; s]- t,t(x) ,; [11-a(O)I+ ~la(x)l] Pr[S,; s] 

from which by use of (24) and (25) the inequality (26) follows. 

(26) 

Q.E.D. 

Remark that the flrst upper bound given in (26) is not computable since Pr [S::s;s] is 
assumed to be unknown. However, this bound can be transformed into a computable 
bound as will be shown in Corollary 2. 

COROLLARY 2. If ( 16) holds with E < In 2, then 

s e£ 1 s 

Pr[S::;; s]- _L!(x) ::;; --=-e Lf(x) 
=0 2-e x=O 

s= 0,1, .... (27) 

Proof. By (26) one has 

s s s 

Pr[S::;;s]- Lf(x) ::;; (eE-l) Pr[S::s;s]- Lf(x) +(e£-l)Lf(x) 
x=O x=O x=O 

from which (27) follows. 
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To conclude this section consider the probability Pr[ S E 1] , with J a subset of the non­

negative integers. This probability will be calculated as Lf(s) and an error bound for the 
seJ 

approximation is derived in the following corollary. 

COROLLARY 3. If ( 16) holds, then 

(28) 

Proof. From Theorem 1, one immediately finds that 
~ ~ 

F(l) :;; LiP(S)- /(s)l+ LP(S) :;; e[ 
s=O s=O 

so that one has for any J 

2 Pr[S e J ]- Lf(s) 
seJ 

= Pr[Sel]- Lf(s) + 1-Pr[S~J]-F(l)+ Lf(s) 
seJ sEJ 

:;; Pr [S E J]- Lf(s) + Pr[S ~ J]- Lf(s) + 11- F(l)l 
seJ sEJ 

~ 

:;; LIP(s)- /(s)l +II- F(l)l 
s=O 

from which the first inequality follows by application of Theorem 1. 

Now, the second upper bound follows from the fact that 
~ ~ 

11- F(l)l = L[p(s)- /(s)] :;; LlP(S)- f(s)l :;; e[ -1 
s=O s=O 

Q.E.D. 
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3. Error Bounds for Stop-Loss Premiums 

The net stop-loss premium with retention t of the aggregate claims S will be denoted by 
TI(t) . Without loss of generality, t can be assumed to be a positive integer so that 

~ 

TI(t) = E[max(O,S-t)] = I, es-t) p(s) (29) 
s=t+l 

which can be transformed into 
t 

TI(t) = 2,(t-s)p(s)+E(S)-t (30) 
s=O 

In the sequel it will be assumed that the mean E(S) = TI(O) can be computed exactly and 
directly without knowing the aggregate claims distribution. This is the case in the 
individual model. 
Looking at (30), it seems obvious to approximate Il(t) by 

t 

.Ql(t)= 2,(t-s)f(s)+E(S)-t (31) 
s=O 

The approximated stop-loss premium .01 (t) can also be computed recursively by means of 
the scheme 

.01 (0) = E(S) (32.a) 

t 

.Ql(t+l) = .Ql(t)+I,/Cs)-1 t=O,l, ... 
s=O 

t = 1,2, ... (32.b) 

An error bound for the difference between the exact and the approximated value is given 
in the following theorem. 

THEOREM 2. If (16) holds, then 

t=O,l, ... (33) 

Proof. For t = 0 (33) is trivial. 

In case t is a strictly positive integer, one gets from (20), (30) and (31) 
t t s 

TI(t)-.Q1(t) = [1-a(O)]L(t-s)p(s)- L(t-s)La(x)p(s-x) 
s=O s=l x=l 



Taking absolute values gives 
t I I 

ITI(t) -01 (t)l ~ 11-a(O)I :L(t-s)p(s)+ :Lia(x)l L (t-s)p(s) 
s=O x=l s=O 

,; [11-a(Oll+ ~fa(x)f][n(t)+t-E(S)] 
and (33) follows from (24) and (25) 
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Q.E.D. 

The bound (33) is not useful in practice since the probabilities p(s) and hence fl(t) are 
assumed to be unknown. A computable bound is given in the following corolarry. 

COROLLARY 4. If ( 16) holds with E < ln 2, then 

t = 0,1, ... (34) 

Proof. The proof is based on the preceding theorem and is similar to the proof of 
Corollary 2. 

Q.E.D. 

Now, an alternative manner to compute an approximative stop-loss premium will be 
examined. In view of (29), it is natural to consider the approximation 

~ 

i12 (t) = :L<s-t)f(s) t = 0,1, ... (35) 
s=t+l 

which can be rewritten as 
t 

Q2(t) = L(t-s)j(s)+F' (1)-tF(1) (36) 
s=O 

It is clear that (35) and (36) are only meaningful if F(l) and F' (1) are finite. This will be 

the case in the applications considered in Section 4 where easy computable expressions for 
F(1) and F' (1) will be derived. 
The approximation 0 2 (t) can also be computed recursively by the formula 

112 (O) = F' (1) 

t 

i12(t+1) = i12(t)+ Lf(s)-F(1) t = 0,1, ... (37.a) 
s=O 

t = 1,2, ... (37.b) 



Remark that (31) and (36) give rise to the following relation 

0 2 (t)-01 (t) = F'(1)-E(S)+t[1-F(1)] 

12. 

(38) 

so that in general 0 2 (t) will differ from 0 1 (t) . Both definitions will coincide if the 
approximation is such that F(1)=1 and F' (1)=E(S). 

Next, the analogue of Theorem 2 is given for the approximation 0 2 (t) . 

THEOREM 3. If ( 16) holds and if there exists a real number c such that 
~ 

L,xlt(x)-h(x)l S c (39) 
x=l 

then 

t = 0,1, ... (40) 

Proof. From (20), (29) and (35) one obtains 
~ ~ s 

O(t)-Q2 (t) s [1-a(O)] L,Cs-t)p(s)- L,cs-t)_La(x)p(s-x) 
s=t+l s=t+l x=l 

so that 
~ ~ 

ID(t)-02 (t)l S 11-a(O)I O(t)+ ,Lia(x)l _L(s+x-t)p(s) 
x=l s=max(r+l-x,O) 

~ ~ ~ 

S 11-a(O)I O(t)+ ,Lia(x)l _L(s-t)p(s)+ ,Lxla(x)l 
x=l s=t+l x=l 

= [11- a(OJI + ~ ia<x >1] n(t) + ~xia<x >I 

Now, from (23) one has that 

~xja(x)j $ exp [~jt(y)-h(y)j] ~x b(x) 
(41) 

~ 

S eE,Lxlt(x)-h(x)l S BeE 
x=l 

which together with (24) and (25) proves the theorem. 
Q.E.D. 

The bound (40) can again be transformed into a computable bound. The result is given in 
the following corollary. 



COROLLARY 5. If(l6) and (39) hold with e<ln2, then 

ITI(t)- 02 (t)l :::; (ee -1)02 (t) + 8 ee 
2-ee 

13. 

(42) 

Further, remark that since TI(t):::; E(S) for every retention t, also the following bound is 
obtained from Theorem 3. 

COROLLARY 6. If (16) and (39) hold, then 

sup,TI(t)-02(t)l:::; (ee-l)E(S)+8ee 
t 

(43) 

Now, the question arises which of the approximations 0 1 (t) or 0 2 (t) should be used to 
approximate TI(t). To answer this question, consider the bounds h (t) and J; (t) for 
0 1 (t) and 0 2 (t) respectively, as given in the Theorems 2 and 3. 

h(t) = (ee -l)[TI(t)+t-E(S)] 

/ 2 (t) = (eE-l)TI(t)+8eE 

Clearly h (t) is an increasing function oft, while J; (t) is a decreasing function oft. It is 
easily seen that h (t) is smaller than / 2 (t) if and only if t < t* with 

8 
t* = E(S)+ (44) 

1-e-e 

So one fmds that for t < t * the smallest error bound is obtained by using 0 1 (t) , while for 
t > t * , 0 2 (t) gives rise to the smallest bound. In practical applications an approximation 

method will be chosen with small e and 8 , so that the critical value t * will be 
approximately equal to E(S). 

To conclude this section, consider the problem of calculating a stop-loss premium in case 
the reinsurer's liability is limited to a certain amount, say m- t with t the retention. The 
reinsurance risk premium TI(t,m) is then given by 

.. 
il(t,m) = :Lmin(s-t,m)p(s) = il(t)-il(t+m) (45) 

s=t+l 

Several approximations for TI(t,m) can be conceived. Since in most applications the 
retention twill be larger than E(S), the approximation O(t,m) of il(t,m) will be defmed 
in terms of 0 2(t) and 0 2 (t+m) by 

.. 
O.(t,m) = Imin(s-t,m) f(s) = 0 2(t)-!l2(t+m) (46) 

s=t+l 

Theorem 3 can be generalized, as is shown in Theorem 4. 



THEOREM 4. If (16) and (39) hold, then 

jn(t,m)-Q(t,m)l::; (ee-1)il(t,m)+8ee 

Proof. Proceeding as in the proof of Theorem 3, one obtains 

"" "" 
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(47) 

jil(t,m)-O(t,m)l ::; jl-a(O)j il(t,m)+ L,!a(x)l L,min(s+x-t,m) p(s) 
x=l s=max(t+l-x,O) 

since min (s + x - t, m) ::; x + min (s - t, m) , one has 

lll(t, m)-O(t,m ~ ,; [11- a(O)I + ~la(x)l] Il(t, m) + ~xla<x >I 

which together with (24), (25) and (41) proves the theorem. 
Q.E.D. 

Once again, (47) can be transformed into a computable bound, as is shown in the 
following corollary. 

COROLLARY 7. If (16) and (39) hold withE< ln 2, then 

jn(t,m)-Q(t,m)l ::; (ee -l)O(t,m)+8ee 
2-ee 

(48) 
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4. Applications 

The preceding general results permit to derive error bounds for the approximation meth­
ods for the individual model proposed by KORNY A (1983 ), HIPP (1986) and DE PRIL 
( 1988 and 1989). For these methods some partial results can already be found in the 
literature. An overview is given in Table 1. 

KORNYA HIPP DEPRIL 

THEOREM 1 KORNY A (1983) IllPP (1986) DE PRIT.. (1988 & 1989) 

or a related result lllPP (1986) DEPRIT.. (1988 & 1989) 
DE PRIT.. (1988 & 1989) HIPP & MICHEL (1990) 

THEOREM3 lllPP (1986) - -

Table 1. Overview of the Literature 

The following remarks can be made about the given references : 
i) The first bound for the difference between the exact probabilities and their 

approximated values has been obtained by KORNYA (1983) _and the discussants 
of that paper_ but this bound can be improved, see DE PRIL (1988 and 1989). 

ii) KORNYA (1983) and DE PRIL (1988) only consider the individual life model, 
while the other papers deal with the general case of an individual model with arbi­
trary claims. 

iii) The bounds for the Komya approximation in HIPP (1986, formulas (5) and (10)) 
contain an error. The correct bounds follow by application of the Theorems 1 and 
3 and the forthcoming Table 2. See also DE PRIL (1988 and 1989). 

iv) HIPP (1986) and HIPP and MICHEL (1990) also present some bounds in terms of 
concentration functions. Although interesting from a mathematical point of view, 
these bounds will not be discussed here since they are hard to compute in practical 
applications. See DE PRIL and DHAENE (1992) for further considerations. 

The objective of the present paper is to treat the different approximation methods in a 
general and unified way. Bounds for the different methods follow immediately from one 
single theorem. The new results mainly concern the error bounds for the stop-loss 
premiums (Theorems 2, 3 and 4). 

Now, the different approximations will be discussed in more detail. For convenience they 
will be treated in reversed chronological order. 
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Besides the notations introduced in Example 2, the symbol ~i will be used to denote the 
conditional expected claim amount of policy i, given that a claim occurs. 

00 

~; = L,x g;(x) i = 1,2, ... ,n (49) 
x=l 

Further, it will be assumed that for each policy i the claim probability qi is smaller than~ . 

4.1. The Approximations of DE PRIL 

From the assumption qi <1/2,i=1,2, .. . ,n, it follows that (qJpJk becomes smaller 

and smaller for increasing k. A natural way of approximating the coefficients t(x) is to 
restrict the summation over k in (JO.b) to a summation over all k-values smaller than or 
equal to r, with r some positive integer. Given r, the t(x) are thus approximated by 

n 

h(r)(O) = I,lnp; 
i=l 

min(r,x) ( 1)k+l n ( )* 
h<r>(x) = L - L !fl. g;* (x) 

k=I k i=I P; 

(50.a) 

X= 1,2, ... (50.b) 

In (50) a superscript (r) is added to the symbol h(x) in order to specify more explicitly the 
approximation under consideration. For the same reason, the notations f(s), 0 1 (t) , 

0 2 (t), O(t,m), E, 8, F(l) and F' (1) used in the preceding sections, will be altered in 
t<'>(s), 0/'>(t), 0/'>(t), o<r>(t,m), E(r), 8(r), p<rl(l) and F'<r> (1) respectively. In 
the sequel r will be called the order of the approximation. 
Inserting the h<'>(x) in (12) leads to a recursive scheme for computing the r -th order ap­
proximations t<'>(s). Itisimmediatelyclearthat t<'>(s)=p(s) forss;;r. 
The key quantities needed to compute the error bounds derived in the preceding sections 
are summarized in Table 2. The expressions for E(r) and 8 (r) follow immediately from 
(10) and (50). Expression for p<r>(l) and pdrl (1) can be obtained from the following 
lemma (in which the index (r) has been omitted). 
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LEMMA 1. If the sequence { h(x): x = 0, 1, ... } fulfils the condition 

"" 
Ix lh(x)l < oo (51) 
x=l 

"" "" 
then the series It(s) and Is f(s) are absolute convergent and have as sum respec-

s=O s=l 

tively 

(52) 

and 

"" 
F' (1) = F(1) Ix h(x) (53) 

x=l 

Proof. From (7) and (51) it follows that the quantities {d(s): s = 0,1, ... } defmed by the 
recursion 

s= 1,2, ... 
s 

s d(s) = Ixlh(x)l d(s-x) 
x=l 

can be considered as probabilities associated with a compound Poisson distributed random 
variable with finite mean. 

Using ( 12) it is easily shown by induction that 

lf(s~ ,; d(s) exp [~jh(x)l] 
"" "" 

so that It(s) and Is f(s) converge absolutely. 
s=O s=l 

Now, the expressions (52) and (53) follow from (14), (15) and Abel's limit theorem. 
Q.E.D. 

It is easy to verify that in case the h<r)(x) are defmed by (50), the condition (51) is satis­

fied. The corresponding values (52) and (53) for p<r)(l) and po<r) (1) are given in 

Table 2. 
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4.2. The Approximations of HIPP 

In order to define Hipp's approximations write In P(u) as 
n 

lnP(u) = ~)n[1+q;(G;(u)-1)] 
i=l 

This expansion is of the form (2) with coefficients t(x) given by 
~ n k 

t(O) = - LL !lL 
k=l i=l k 

(54.a) 

x=1,2, ... (54.b) 

Now, the approximations hCr)(x) are defmed by neglecting in (54) the terms in qt for 

k>r. 

(55.a) 

X= 1,2, ... (55.b) 

Inserting these coefficients in (12) leads to a recursive scheme for computing the r-th 
order approximations suggested by HIPP ( 1986). 
Error bounds can be derived by using the results of the previous sections and the values of 
E(r), 0 (r), p<r)(l) and p•<r) (1) given in Table 2. Finally, remark that one gets from (38) 

and Table 2 that n;r)(t) = .Q~)(t) and that limf<')(s) = p(s) . 
r-+~ 
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4.3. The Approximations of KORNYA 

In order to describe Kornya's method, remark that the coefficients t(x) defmed in (10) can 
also be written as 

t(O) = t(-1)*t(q;)* 
k=! k i=! k (56.a) 

t(x) = t (-1)*+
1 t(!f.J._)* g;**(x) 

*=I k i=! P; 
X= 1,2, ... (56.b) 

These coefficients are approximated by coefficients h<'l(x), obtained by neglecting in (56) 

the terms in(;,)' fork> r . 

(57.a) 

x=1,2, ... (57.b) 

The related values of E(r), 8 (r), p<rl (1) and F' <rl (1) are again given in Table 2. Remark 

also that the approximations are asymptotically correct: lim t<'l(s) = p(s) . 
r~~ 



KORNYA HIPP DEPRIL 

( )( r _1_ i (2qi y+l ( r 1 i P· q. _1_i Pi qi 
E (r) - Pi+ ' -' 

r+ 1 i=t Pi -qi Pi r+ 1 i=l Pi -qi r+ 1 i=t P; -qi Pi 

(f 1 n (2q.)'+l ( r ill; Pi !fJ_ -LJl; . iJli P; !li_ 8 (r) 
i=l P; -qi Pi 2 i=l Pi -qi i=l P; -qi Pi 

p<r)(1) 1 1 [ ' -1 k+l • ( )'] 
p(O)exp tt ( 1 ~ ;: 

p•(r) (1) t~+· + p, (- q·T] E (S) F''' (I) i ~. [ q, + p{ _!!;_ r J 
•=I P. •=I Pi 

-

Table 2. Key Values of Some Approximation Methods 

N 
;::> 
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4.4. Comparison of the Different Methods 

The following observations can be made about the approximation methods under consid­
eration. 

i) The three methods lead to asymptotically correct approximations. Moreover in 
De Pril's case the r-th order approximations are exact for the first r values. 

ii) Table 2 indicates that the approximations t<r> (s) of Kornya and Hipp are normed 
to 1 and that Hipp's approximations are the only ones that preserve the mean. 
However, remark that for each of the methods the approximations t<'>(s) can be 

negative for some values of s , so that these properties seem not to be so important 
after all. 

iii) From (50) and (57) it follows that the methods of Kornya and De Pril only differ 
by the choice of the starting value h<r> (0) . 

iv) The recursive formulas of Komya and De Pril require the same amount of comput­
ing time. Comparison of (55) with (50) or (57) shows that Hipp's method necessi­
tates more computational effort since the h<r> (x) contain an additional summation. 

v) The magnitude of the error bounds is determined by the values of E (r) and 8 (r) . 
From Table 2 it is clear that 

for E (r) : De Pril < Komya < Hipp ; 
for 8 (r) : De Pril = Komya < Hipp . 

By making a choice between these methods one should compare their accuracy and the 
computation effort they require. From the above comparison it follows that the 
approximations of De Pril minimize the theoretical error bounds and the computation 
effort at the same time. Therefore, this method seems to be the most suited for the practi­
cal computation of the aggregate claims distribution and stop-loss premiums. 

4.5. Compound Poisson Approximations 

n 

Let Ai with i = 1,2, ... ,n , denote positive real numbers and put A = LAi . Consider 
i=l 

the sequence { h(x) : x = 0, 1, ... } defined as 

{

h(O) = -A 

h(x) = ~Aj gJx) 

(58.a) 

X= 1,2, ... (58.b) 
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Insertion of these coefficients in ( 12) leads to the following approximations 
{/(s):s=0,1, ... } 

(59.a) 

s= 1,2, ... (59.b) 

From (7) it is clear that f(s) is the probability function of a compound Poisson distributed 
variable with Poisson parameter A and claim amount distribution 

1 n 

g(x) = - LAigi(x) 
A i=l 

(60) 

In this way, each choice of the parameters Ai leads to a compound Poisson approximation 
of the individual risk model. 

Remark that the choice Ai = qi I pi corresponds to the first order approximation of 
KORNYA (1983) and that the most common choice Ai = qi gives rise to the first order 
approximation of HIPP (1986). 

Error bounds for the general class of compound Poisson approximations defmed by (59) 
are considered in DE PRIL and DHAENE (1992). A comparison of these results with the 
ones obtained in the present paper for the first order approximations of Komya and Hipp 
reveals that the bounds given in DE PRIL and DHAENE (1992) are sharper. Unfortu­
nately, the method used there to derive error bounds is specific for compound Poisson 
distributions and can not be generalized to the general type of approximations considered 
here. If only a crude first order approximation for the distribution function or stop-loss 
premiums is required, one should refer to DE PRIL and DHAENE (1992). 
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