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Abstract

Exact calculations in the individual risk model are possible, but are very time consuming.
Therefore, a number of recursive methods for approximate computation of the aggregate
claims distribution and stop-loss premiums have been developed.

In the present paper a general class of such approximation methods is considered, contain-
ing the higher order approximations suggested by Kornya, Hipp and De Pril. In this way,
the treatment of the different methods is unified and extended to a more general setting.
Some new theoretical error bounds are derived, giving a quantitative measure of the accu-
racy of the approximations.
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1. Introduction

Consider a random variable S representing the aggregate claims of an insurance portfolio
in a certain reference period. Suppose that S has a finite mean, that the probability of no
claims is strictly positive and that the individual claim amounts are positive and integer
multiples of some convenient monetary unit, so that one can consider § as being defined
on the non-negative integers.

Assume that an explicit expression for the probability generating function of §

P(u)= Y, p(su’ (1)
s=0
is available, but that the corresponding probabilities p(s) are not known. The problem
under consideration is to calculate the probabilities p(s) numerically from the given
expression P(u).

In this paper the computation of the probabilities p(s) will be based on a recursive scheme.
To set up this scheme, coefficients #(x) are introduced, which are defined by

In P(u) =Y, t(x)u* (2)
x=0

Note that the assumption p(0)>0 implies that In P(¥) is defined in a neighbourhood of
zero, so that (2) is meaningful. Equalities between functions of power series will often be
considered in the sequel of the paper. They always have to be interpreted as holding in
some non-trivial interval of convergence.
Taking the derivative of both sides of (2) and equating the coefficients of the same power
of u yields the following recursion for the probabilities p(s)

p(0) = 2'® (3.a)

SP(S)=2xt(x)p(s—x) s=1,2,.. (3.b)

x=1

In this way the problem of computing the probabilities p(s) is replaced by the problem of
determining the appropriate coefficients #(x). At first sight, one might think that the
problem has only been shifted. However, in some important applications it is possible to
give an explicit expression for the #(x).



EXAMPLE 1. The compound Poisson model
In the classical collective risk model S is a compound Poisson variable, i.e.
P(u)=exp {A [Gw)-1]} (4)

with A the Poisson parameter of the counting variable and G(u) the probability generating
function of the individual claim amounts

Gu)= Zg(x)u" (5)
x=1
In this case, one immediately has that
{t(O) =-A (6.a)
x)=A g(x) x=1,2,.. (6.b)

Inserting these values for f(x) in (3) leads to the well-known recursive formula for
compound Poisson distributions, see PANJER (1981).

p(0)=e™ (7.a)

sp(s)=A Zs:x g(x) p(s=x) s=1,2, .. (7.b)

EXAMPLE 2. The individual risk model

Consider a portfolio of n independent policies, labelled from 1 ton. Let 0<p, <1 be the
probability that policy i produces no claims in the reference period and g, =1—p, be the
probability that this policy leads to at least one positive claim. Further, denote by

G.(w)=Y g(x)u i=1,2,...n (8)
x=]
the probability generating function of the total claim amount of policy i, given that this
policy has at least one claim. The probability generating function of the aggregate
claims S of the portfolio is then given by

n

Pw) =[] [p.+4 G.w)] (9)

i=l



Now, In P(u) can be expanded as

InP(u) = z":!:lnp +ln[1+p G(u)ﬂ

=1

k4l k
=Y np+Y Z( - (p) Glw)

i=1 i=l k=l

so that it can be written in the form (2), with coefficients #(x) given by

t(O) — iln p, (10(1)
i=]
X (_1\ktl n k _

) =2( 1) 2[&) ) x=1,2,.. , (10.b)
-k i=1 \ D;

where g/ *(x) denotes the k-fold convolution of g;(x) . Imsertion of the ¢(x)-values in
(3) leads to an exact recursive formula for the evaluation of the aggregate claims distribu-
tion in the individual model.

pO)=]]p (11.a)

i=1

k+1 n

-1
sp)=Yx Z( ) Z(p) 8" (0 pls=x) s=1,2,.. (11.b)

x=1 i=l

This recursion was developed in two stages. The first stage is given in DE PRIL (1986),
where the special case of the individual life model is considered. In this model each policy
can only have one claim with a fixed amount. Then, the recursion (17) is simplified, since
gt (x)=5 e, With ¢; the amount at risk of policy i and 8,, the Kronecker symbol, i.e.

8,,=1 and §,,=0 if a#b. Numerical computations by KUON, REICH and

REIMERS (1987) indicate that although the recursion formula is a much more powerful
tool than the technique of straightforward convolutions, still a lot of computer time is
required to calculate the distribution of § for a real life insurance portfolio.

The generalization to arbitrary positive claims is made in DE PRIL (1989). In this case
the computation of the coefficients #(x) is even more time consuming than for the individ-
ual life model, especially if the number of policies is large and if the conditional claim
amount distributions g,(x) are defined for more than a few values.

The examples above show that the problem of computing the probabilities p(s) numeri-
cally is not always solved satisfactory by deriving an explicit expression for the coefficients
#(x) . This will only be the case if the #(x) can easily be obtained, as in Example 1.



In case the #(x) are too difficult to work with, it is of interest to consider approximative
methods. Following the ideas of DE PRIL (1988 and 1989), approximations f(s) of the
probabilities p(s) are set up by replacing the exact coefficients #(x) in the recursion (3) by
easy calculable values A(x) .

For a given choice of the sequence {A(x):x=0,1,... } approximations
f(s) of p(s) for s =0,1,... , are thus determined by the recursion

f(0)=¢e" (12.a)

s f(s) =Y xh(x) f(s—x) s=1,2,.. . (12.b)

x=]

Remark that f(0) will always be positive, but for s=1,2,... the approximations f(s) can
be any value, positive or negative, depending on the choice of the coefficients A(x) .

Clearly a minimal requirement is that this choice leads to a sequence {f(s):s=0,1,2,...}
which has a generating function

Fu =Y fs)uw (13)

s=0

with a strictly positive radius of convergence. In order for this to be true, it is assumed

that Zh(x) u* has a stricltly positive radius of convergence. In view of (12), this

x=0
implies that F(«) can be written as
F(u)=exp (2 h(x) u") (14)
x=0

For further reference, note that one also has

F'(w= F(u)ixh(x)u"‘l (15)

x=1

In actual applications more restrictive conditions will be imposed on the choice of the

sequence {A(x):x=0,1,...}, which will guarantee e.g. that F(1)=2f(s) and

s=0

F'(h= isf(s) are finite.

s=1

In the following sections the quality of different approximations f(s) will be discussed.
This will be done by examining how these approximations perform with respect to the
following two criteria, which should be satisfied simultaneously.
i) The time needed for computing the approximated aggregate claims distribution
and related quantities, such as stop-loss premiums, should be as short as possible.
ii) The approximated values for the distribution function and stop-loss premiums
should be as close as possible to the exact values.



The important point is that these two conditions should be satisfied at the same time.
Indeed, it is not difficult at all to construct approximations which perform very good for
one of the two criteria, but very bad for the other. The objective is thus to find, for the
individual model, simple approximations A(x) of #(x) which lead to good approximations

S(s) of p(s).

In Section 2 theoretical error bounds are derived which give a quantitative measure to
assess the quality of f(s) as approximation of p(s). Section 3 shows how approximated
stop-loss premiums can be calculated and gives bounds for the difference between the
exact and approximated values. Applications of these results are given in Section 4, where
the approximations proposed by KORNYA (1983), HIPP (1986) and DE PRIL (1988 and
1989) are examined and compared.

2. Error Bounds for the Aggregate Claims Distribution

The following theorem gives an error bound for the difference between the probabilities
p(s) and their approximated values f{s), corresponding with a given choice of the sequence
{h(x):x=0,1,... }.

THEOREM 1. If there exists a real number € such that
Y |ty -h(x)| <e (16)
x=0

then the following error bound holds

i |p(s)=f(s)| € e -1 . (17)
s=0

Proof. In view of (2) and (14), F(u) can be written as

F(u)= A(u) P(w) (18)
with
A(u) = ia(x) u* = exp [i[h(x)—t(x)] u"] . (19)
x=0 x=0

Equating the coefficients of the same power of u in (18) gives

@)= ia(x) p(s—x) s=0,1,. (20)

x=0



from which it follows that

S Ips)- £ < 1-a@)|+ 3 3 Jatx)] ps—x)
s=0 s=1 x=l
w (21)
< J1-a(0)]+ Y Ja(x)|

x=1

From (19) the following recursion for the a(x) can be obtained

a(0) = "OO® (22.a)

xa(x)=2y[h(y)—t(y)] a(x—y) x=12,. . (22.b)

y=l

Now it is easy to prove by induction that

la(x)| < b(x) expl:z t) —h(y)l] x=01,. (23)
y=0
with {b(x):x=0,1,...} acompound Poisson probability function defined by

B(0) = exp [—ilt(y)—hml]

y=l

x b(x) = Xy |t(y)—h(y)| b(x—y) x=12,.

y=1

\

Using (16) and (23) one gets

i la(x)| < [1-5(0)] cxp[i |t(») —h( y)|]
x=]

y=0
< ef — OO (24)
and by (22.a) one has
1-a(0)] = J1-e"®| < -1 | (25)
Combining the inequalities (21), (24) and (25) proves the theorem. o
.E.D.

From this theorem it is clear that only a choice of the sequence {A(x):x=0,1,...} thatis
close enough to the exact values {7(x): x=0,1,...}, and thus gives rise to a small value of
€ , is of practical interest.

In most applications one is not interested in the value of a single probability p(s), but in the
cumulative probability Pr[S <s] with s =0,1,.... Note that to simplify the notation only
integer s are considered, but a generalization to real s is straightforward. The value of



Pr[S <s] will be calculated as Y, f(x) and an error bound for the difference between

x=0

the exact and approximated value is given in the following corollary.

COROLLARY 1. If (16) holds, then

< (-1 Pr[S<s] < & -1 s=0,1,.. . (26)

‘Pr [s<5]-3 F()

x=0

Proof. For s =0, (26) follows immediately from (20) and (25).

In case s is a strictly positive integer, one gets from (20)

PS <]~ f(x) = [1-a@)]Pr[S <5]- 3 3 a(x)p(y—x)

x=0 y=1 x=1

and thus

Prob [$ <] —i fx) < [|1 —a(0)|+ i|a(x)|] Pr[S < 5]

from which by use of (24) and (25) the inequality (26) follows.
Q.E.D.

Remark that the first upper bound given in (26) is not computable since Pr [S<s] is
assumed to be unknown. However, this bound can be transformed into a computable
bound as will be shown in Corollary 2.

COROLLARY 2. If (16) holds with € <In2, then

eE

—~1 &
T | 2™

x=0

< s=0,1,... . (27)

LIEERS WIS

Proof. By (26) one has

+(e =D ()

x=0

< (e —1)\Pr[S Ss]—if(x)

x=0

is<s-3 100

x=0

from which (27) follows.



To conclude this section consider the probability Pr[S € J] , with J a subset of the non-
negative integers. This probability will be calculated as Z f(s) and an error bound for the

sed

approximation is derived in the following corollary.

COROLLARY 3. If (16) holds, then

Pi[SeJ]-) f(s)

seJ

sup < l[e€—1+|1—F(1)|] <ef-1 . (28)
J 2

Proof. From Theorem 1, one immediately finds that

F) < Y |p)- £+ X p(s) < &

s=0 s=0

so that one has for any J

2

Pi{SeJ]-D f(s)

sed

+[1-PS e J]-F()+ . f(s)

sed

= [Pr[SeJ]-D F(s)

seJ

IA

+ +|1-F(D)

Pr[SeJ]-Y F(s)

seJ

PrSeJ]-) f(s)

set

ilP(S)—f(s)I +|1-F ()|

5s=0

IA

from which the first inequality follows by application of Theorem 1.

Now, the second upper bound follows from the fact that

< i|p(s)—f(s)| < e -1 .

s=0

S o)~ £(5)]

s=0

[1-FQ)| =

Q.E.D.
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3. Error Bounds for Stop-Loss Premiums

The net stop-loss premium with retention ¢ of the aggregate claims S will be denoted by
I1(¢) . Without loss of generality, ¢ can be assumed to be a positive integer so that

[1(#+) = E[max(0,5-1)] = i(s—t) p(s) (29)

s=1+1

which can be transformed into

(1) = Y, (t-5)p(s)+ E(S)—t (30)
s=0
In the sequel it will be assumed that the mean E(S) = II(0) can be computed exactly and
directly without knowing the aggregate claims distribution. This is the case in the
individual model.
Looking at (30), it seems obvious to approximate [1(¢) by

Q)= (t-5)f )+ E(S)~1 31)

s=0

The approximated stop-loss premium £, (¢) can also be computed recursively by means of
the scheme

Q,(0) = E(S) (32.a)
Q (1+1) = Ql(t)+if(s)-1 t=0,1,...
= 2Q,(1)-Q,(¢t-1)+ 1) t=12,. (32.b)

An error bound for the difference between the exact and the approximated value is given
in the following theorem.

THEOREM 2. If (16) holds, then

() -Q,(1)] < (e -D[T(1)+1-E(S)) t=0,1,... (33)

Proof. For t=0 (33)is trivial.

In case ¢ is a strictly positive integer, one gets from (20), (30) and (31)

MHN-Q @) = [1—a(0)]Z(r—s)ms)—Z(r—s)ia(x)p(s—x)

s=0 s=1 x=1
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Taking absolute values gives

N0 -2, < 1-a0) . t-)p(s)+ Y Ja@)] Y (t-5)p(s)

s=0 x=1 s=0

< [{1 —a(0)|+ i[a(x)l] [O@)+t-E(S)]

x=1

and (33) follows from (24) and (25)
Q.ED.

The bound (33) is not useful in practice since the probabilities p(s) and hence [1(¢) are
assumed to be unknown. A computable bound is given in the following corolarry.

COROLLARY 4. If (16) holds with € <In2, then

£

"’_‘e: [Q,(t)+1-E(S)] t=0,1,.. (34)

2

M) -Q, ()| <

Proof. The proof is based on the preceding theorem and is similar to the proof of

Corollary 2.
Q.ED.

Now, an alternative manner to compute an approximative stop-loss premium will be
examined. In view of (29), it is natural to consider the approximation

Q,(1) = i(s-t)f(s) t=0,1,... (35)
s=t+1

which can be rewritten as
Q,(1) = D,t-)f$)+F ()—tF(1) . (36)
s=0

It is clear that (35) and (36) are only meaningful if (1) and F' (1) are finite. This will be
the case in the applications considered in Section 4 where easy computable expressions for
F(1) and F' (1) will be derived.

The approximation 2, (¢) can also be computed recursively by the formula

Q,0) =F'()

Qz(t)+if(s)—F(1) t=0,1,... (37.a)

s=0

2Q,)-Q,t-D)+ (@) t=12,... (37.b)

Q,(t+1)
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Remark that (37) and (36) give rise to the following relation

Q,(~-Q, () = F'()-E®)+t[1-FD] , (38)
so that in general €,(¢) will differ from €,(z) . Both definitions will coincide if the
approximation is such that F(1)=1 and F' (1)=E(S).

Next, the analogue of Theorem 2 is given for the approximation €2, (¢) .

THEOREM 3. If (16) holds and if there exists a real number & such that

ixlt(x)—h(x)| <5 (39)

x=1

then
IT(1)-Q,(1)| < (e 1) () +3e’ t=0,1,... (40)

Proof. From (20), (29) and (35) one obtains
N0 -9,0 < [1-a0)] 3 s-0ps)- 3 (s a)p(s—x)
s=t+] s=t+] x=1
so that

M) -Q,@)| < [1-a(0) l'l(t)+i|a(x)| i(s+x—r)p(s)

x=1 s=max(t+1-x,0)

< |1-a(0)| )+ i|a(x)| i (s=1)p(s) +i x|a(x)|
x=1

s=t+1 x=1
- |:|1—a(0)|+i|a(x)|] M)+ xla(x)|
x=1 x=1

Now, from (23) one has that

S Hax)] < exp [ilr(y)—h@)l} 3 xb(x)
x=1

y=0 x=] (41)
< ) aft(x)—hx)| < def
x=1

which together with (24) and (25) proves the theorem.
Q.ED.

The bound (40) can again be transformed into a computable bound. The result is given in
the following corollary.
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COROLLARY 5. If (16) and (39) hold with € <In 2, then
e —1Q,(1)+08¢f

2-¢f
Further, remark that since I1(¢) < E(S) for every retention ¢, also the following bound is
obtained from Theorem 3.

IMnH-Q,@) < ( (42)

COROLLARY 6. If (16) and (39) hold, then
sup [[1(1) - Q, (¢)| < (e -1 E(S)+8¢° (43)

Now, the question arises which of the approximations () or Q,(¢) should be used to
approximate [I1(z). To answer this question, consider the bounds f,(¢) and f,(¢) for
Q,(¢) and L, (¢) respectively, as given in the Theorems 2 and 3.

fi@) = (e -D[I(@0)+1-E(S)]
L@ = (€ -DII)+d e
Clearly f,(¢) is an increasing function of ¢, while f,(¢) is a decreasing function of ¢. It is
easily seen that f, (¢) is smaller than f,(¢) if and only if # < ¢* with
)
1-e
So one finds that for ¢ <¢* the smallest error bound is obtained by using £, (¢) , while for
t>t*,Q,(t) gives rise to the smallest bound. In practical applications an approximation

method will be chosen with small € and &, so that the critical value ¢t* will be
approximately equal to E(S).

t* = E(S)+ (44)

-£

To conclude this section, consider the problem of calculating a stop-loss premium in case
the reinsurer's liability is limited to a certain amount, say m—¢ with ¢ the retention. The
reinsurance risk premium I1(z,m) is then given by

II(t,m) = imin(s—t,m)p(s) = [1(¢)-I1(t +m) (45)

s=t+]

Several approximations for Il(¢,m) can be conceived. Since in most applications the
retention ¢ will be larger than E(S), the approximation €2(z,m) of Il(z,m) will be defined
in terms of €, (¢) and Q, (z + m) by

Q(t,m) = imin(s—t,m)f(s) = Q,()-Q,(t+m) (46)

s=t+]

Theorem 3 can be generalized, as is shown in Theorem 4.
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THEOREM 4. If (16) and (39) hold, then
[1(t,m)-Q(t,m)| < (e =1) 1({t,m)+8 e (47)
Proof. Proceeding as in the proof of Theorem 3, one obtains
[(t,m)-Q(t,m)| < [1-a(0)|TI¢z,m)+ Y la(x)] Y, min(s+x—t,m) p(s)
x=1 s=max(t+1-x,0)
since min(s+ x—t,m) < x+min(s—¢,m), one has

|T1(z,m) — Q(t,m)| < lill—a(0)|+i|a(x)ljl H(t,m)+ix|a(x)|

x=1 x=1

which together with (24), (25) and (41) proves the theorem.
Q.E.D.

Once again, (47) can be transformed into a computable bound, as is shown in the
following corollary.

COROLLARY 7. If (16) and (39) hold with € <In 2, then

e —-1)Q@,m)+d e (48)
2-¢"

|T1¢t,m) - Q(t,m)| < (
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4. Applications

The preceding general results permit to derive error bounds for the approximation meth-
ods for the individual model proposed by KORNYA (1983), HIPP (1986) and DE PRIL
(1988 and 1989). For these methods some partial results can already be found in the
literature. An overview is given in Table 1.

KORNYA HIPP DE PRIL
THEOREM 1 KORNYA (1983) HIPP (1986) DE PRIL (1988 & 1989)
or a related result | HIPP (1986) DE PRIL (1988 & 1989)

DE PRIL (1988 & 1989) | HIPP & MICHEL (1990)

THEOREM 3 HIPP (1986) _ -

Table 1. Overview of the Literature

The following remarks can be made about the given references :

i) The first bound for the difference between the exact probabilities and their
approximated values has been obtained by KORNYA (1983) _ and the discussants
of that paper _ but this bound can be improved, see DE PRIL (1988 and 1989).

i) KORNYA (1983) and DE PRIL (1988) only consider the individual life model,
while the other papers deal with the general case of an individual model with arbi-
trary claims.

iii) The bounds for the Kornya approximation in HIPP (1986, formulas (5) and (10))
contain an error. The correct bounds follow by application of the Theorems 1 and
3 and the forthcoming Table 2. See also DE PRIL (1988 and 1989).

iv) HIPP (1986) and HIPP and MICHEL (1990) also present some bounds in terms of
concentration functions. Although interesting from a mathematical point of view,
these bounds will not be discussed here since they are hard to compute in practical
applications. See DE PRIL and DHAENE (1992) for further considerations.

The objective of the present paper is to treat the different approximation methods in a
general and unified way. Bounds for the different methods follow immediately from one
single theorem. The new results mainly concern the error bounds for the stop-loss
premiums (Theorems 2, 3 and 4).

Now, the different approximations will be discussed in more detail. For convenience they
will be treated in reversed chronological order.
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Besides the notations introduced in Example 2, the symbol [, will be used to denote the
conditional expected claim amount of policy i, given that a claim occurs.

W= 9 xg(x) i=1,2,...,n (49)
x=1

Further, it will be assumed that for each policy i the claim probability g, is smaller than 1% .

4.1. The Approximations of DE PRIL

From the assumption ¢, <1/2,i=1,2,...,n, it follows that (qi/pi)k becomes smaller
and smaller for increasing k. A natural way of approximating the coefficients #(x) is to
restrict the summation over £ in (1/0.b) to a summation over all k-values smaller than or
equal to r, with r some positive integer. Given r, the #(x) are thus approximated by

(r _ C
A" (0) = glnpi (50.a)
min(r,x) _1)k+1 n q, k .
h(r)(x) = _g_____ (_‘ gi"(x) _
2 2 x=12,.. (50.5)

In (50) a superscript (r) is added to the symbol A(x) in order to specify more explicitly the
approximation under consideration. For the same reason, the notations f(s), €2,(¢) ,
Q,(t) , Q(t,m) , & 8, F(1) and F'(1) used in the preceding sections, will be altered in
o), Q70 , Q00 , QV,m) ,er), (), FVQ1) and F'"” (1) respectively. In
the sequel » will be called the order of the approximation.

Inserting the A (x) in (12) leads to a recursive scheme for computing the r-th order ap-
proximations f(s) . It is immediately clear that £ (s)= p(s) fors<r .

The key quantities needed to compute the error bounds derived in the preceding sections
are summarized in Table 2. The expressions for €(r) and & (r) follow immediately from
(10) and (50). Expression for F (1) and F'® (1) can be obtained from the following
lemma (in which the index () has been omitted).
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LEMMA 1. If the sequence {A(x):x=0,1,...} fulfils the condition

Zj;x|h(x)l<oo : (51)
then the series i f(s) and is f(s) are absolute convergent and have as sum respec-
tively - -

FQ) = exp [ih(x)] (52)

=0
and

F'() = F(l)ix h(x) (53)

=1

Proof. From (7) and (51) it follows that the quantities {d(s):s=0,1,...} defined by the
recursion

d(0) = exp [—i|h(x)l}
x=1

s=12,...
sd(s) = Y xlh(x)| d(s—x)

x=]

can be considered as probabilities associated with a compound Poisson distributed random
variable with finite mean.

Using (12) it is easily shown by induction that

|7(s)| < d(s)exp [i|h(x)|]

x=0

so that 2 f(s) and Zs f(s) converge absolutely.

s=0 s=1

Now, the expressions (52) and (53) follow from (14), (15) and Abel's limit theorem.
Q.E.D.

It is easy to verify that in case the 4’ (x) are defined by (50), the condition (51) is satis-
fied. The corresponding values (52) and (53) for F”(1) and F'” (1) are given in
Table 2.
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4.2. The Approximations of HIPP

In order to define Hipp's approximations write In P(u) as

InP(u) = iln [1+4:(G,w) -]
i=l
k+1

-22( D G -1

i=l k=1
This expansion is of the form (2) with coefficients #(x) given by

10) = _22%

k=] i=l

I+
(= 3y D 1( )Zq, g x=12,.. (54.5)

k=1 I=1 i=1

(54.a)

Now, the approximations 4 (x) are defined by neglecting in (54) the terms in g} for
k>r.

h(0) = zzq (55.a)
k=1 =l

min(r,x) k )l+l n

) =Y, 2 Y qlg(x) x=12,... (55.b)

k=l U=l i=]

Inserting these coefficients in (/2) leads to a recursive scheme for computing the r-th
order approximations suggested by HIPP (1986).

Error bounds can be derived by using the results of the previous sections and the values of
g(r), 8(r), F(1) and F'” (1) given in Table 2. Finally, remark that one gets from (38)

and Table 2 that Q”(¢) = Q4 (¢) and that lim f(s) = p(s) .

r—oo



4.3. The Approximations of KORNYA

19.

In order to describe Kornya's method, remark that the coefficients #(x) defined in (10) can

also be written as

( o 1Nk n k
- $2L5(8)
4 k=1 i=]

x _1 k+l1 n . k .
1(x) = Z%Z[i) g (x) x=12,..
L k=1

i=] i

(56.a)

(56.b)

These coefficients are approximated by coefficients A" (x), obtained by neglecting in (56)

k
the terms in (i) fork>r.
Di

[ HENETTAY
#o = 3EE3(4)

k=1 i=]

1 '
min(r,x) r 1)kl n ) . = ]., 2,
D Z("‘) . x

i

h(r)(x) =

k=1 k i=l

i

(57.a)

(57.b)

The related values of &(r), 8(r), F*’(1) and F'® (1) are again given in Table 2. Remark

also that the approximations are asymptotically correct : lim f D(s)= p(s) .
r—yeo



KORNYA

HIPP

DE PRIL

)rﬂ

1 n (2 l.)r+1
2 q

r+l
1 < p; g; p; ;
—_— L —t || e 12
e rels (p’ pi—qi)(pi relE P r+1§‘p. ,-(p,)
n r+l 1 n (2q )r+1 r+l
Di |4 — [ _b
o Z,u. P —d, (Pi) 24 pi—q; EI,U. g (p,)
( 1)k+1 n k
FO) 1 1 p(0) exp 2 P 2(;.)
i=] i
r+l n
F'O) Su, [q +p,( Z) ] E (5) F(”(I)Zui[ +p,[—i
i=] 3 i=l

13

i

Table 2. Key Values of Some Approximation Methods

‘0T
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4.4. Comparison of the Different Methods

The following observations can be made about the approximation methods under consid-
eration.

i) The three methods lead to asymptotically correct approximations. Moreover in
De Pril's case the r-th order approximations are exact for the first r values.

ii) Table 2 indicates that the approximations f’(s) of Kornya and Hipp are normed
to 1 and that Hipp's approximations are the only ones that preserve the mean.
However, remark that for each of the methods the approximations f(s) can be
negative for some values of s, so that these properties seem not to be so important
after all.

iii) From (50) and (57) it follows that the methods of Kornya and De Pril only differ
by the choice of the starting value £ (0) .

iv) The recursive formulas of Kornya and De Pril require the same amount of comput-
ing time. Comparison of (55) with (50) or (57) shows that Hipp's method necessi-
tates more computational effort since the 2’ (x) contain an additional summation.

v) The magnitude of the error bounds is determined by the values of € (#) and & (r).
From Table 2 it is clear that

for € (r) : DePril < Kornya < Hipp;
for & (r): De Pril = Kornya < Hipp.

By making a choice between these methods one should compare their accuracy and the
computation effort they require. From the above comparison it follows that the
approximations of De Pril minimize the theoretical error bounds and the computation
effort at the same time. Therefore, this method seems to be the most suited for the practi-
cal computation of the aggregate claims distribution and stop-loss premiums.

4.5. Compound Poisson Approximations

Let A, with [=1,2,...,n, denote positive real numbers and put A = 27\‘. . Consider

i=l

the sequence {h(x):x=0,1,...} defined as
h(0) = —A (58.a)

h(x) = 2",7».- &(x) x=12,.. (58.b)

i=1
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Insertion of these coefficients in (/2) leads to the following approximations

{f(s):5=0,1,...}

fO) = ¢t (59.a)
$F) = 3 x P hg ) fs—n) s=12,.. (59.6)

x=] i=1

From (7) it is clear that f(s) is the probability function of a compound Poisson distributed
variable with Poisson parameter A and claim amount distribution

1 n

80 = 72 h&() (60)
i=1

In this way, each choice of the parameters A, leads to a compound Poisson approximation

of the individual risk model.

Remark that the choice A,=g,/p, corresponds to the first order approximation of
KORNYA (1983) and that the most common choice A, =g, gives rise to the first order
approximation of HIPP (1986).

Error bounds for the general class of compound Poisson approximations defined by (59)
are considered in DE PRIL and DHAENE (1992). A comparison of these results with the
ones obtained in the present paper for the first order approximations of Kornya and Hipp
reveals that the bounds given in DE PRIL and DHAENE (1992) are sharper. Unfortu-
nately, the method used there to derive error bounds is specific for compound Poisson
distributions and can not be generalized to the general type of approximations considered
here. If only a crude first order approximation for the distribution function or stop-loss
premiums is required, one should refer to DE PRIL and DHAENE (1992).
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