RECURSIONS FOR THE INDIVIDUAL MODEL

Jan Dhaene Martina Vandebroek!

K.U.Leuven, Belgium

Abstract: Recently, Waldmann considered an algorithm to compute the aggregate claims
distribution in the individual life model which is an efficient reformulation of the original

exact algorithm of De Pril.

In this paper we will show that in practice the approximations as proposed by De Pril are
still more efficient than the exact algorithm of Waldmann both in terms of the number of

computations required and of the memory occupied by intermediate results.

Furthermore we will generalize the algorithm of Waldmann to arbitrary claim amount distri-
butions. We will compare this algorithm with respect to efficiency with the algorithms that
were derived by De Pril for this model. It turns out that the approximations of De Pril are

most efficient for practical computations.
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1 Introduction

Consider a portfolio of independent policies and suppose that the probability of producing a
claim in a certain reference period, e.g. one year, and the associated claim amount distribu-
tion are given for each policy. During the past decade recursive computation of the aggregate
claims distribution of such a portfolio has frequently been dealt with in the actuarial litera-

ture.

The case where the individual claim amounts can only take 2 values, 0 and some strictly
positive value, has been called the individual life model because of its straightforward appli-
cation in life insurance. This model is considered in De Pril (1986) where a recursion for
exact computation of the aggregate claims distribution is derived. An efficient reformulation

of this algorithm is given in Waldmann (1993).

Exact recursive procedures for computing the aggregate claims distribution in the individual
model with arbitrary positive claim amounts —in the sequel referred to by the individual

model- are derived in De Pril (1989).

In the present paper, a new recursive scheme is proposed for exact computation of the ag-
gregate claims distribution in the individual model. Waldmann’s recursion for the individual

life model is found as a special case.

A comparison of the different exact procedures for the individual model reveals that the
one derived in this paper is to be preferred if the portfolio is not too heterogeneous and if
the number of arithmetical operations to be carried out and the data to be kept for further

computations are used as measures of efficiency.

In De Pril (1988, 1989) and Dhaene and De Pril (1994) recursive procedures are considered for
approximate computation of the aggregate claims distribution. In this paper, a comparison
is made between these approximate procedures and the exact procedure for the individual
model. It turns out that the r-th order approximations of De Pril will still perform best in

most practical situations.



Kaas (1993) states that several kinds of error have to be considered when computing the
aggregate claims distribution. A first type of error results from rounding the possible claim
amounts of the policies to some monetary unit, e.g. $ 1000. Computing the aggregate
claims distribution of this —possibly rounded— portfolio generates a second type of error if
this computation is done approximately (e.g. compound Poisson approximation, De Pril’s

r-th order approximation, ...).

Both types of error can be reduced at the cost of extra computing time. It is of course useless
to apply an algorithm that computes the distribution function exactly if the monetary unit is
large. On the other hand, higher order approximations of De Pril can be used if the monetary

unit can be chosen sufficiently small.

Bounds for the different types of error are helpful in fixing the monetary unit and choosing
between the algorithms for the rounded model. Bounds for the first type of error can be
found in Goovaerts, et al. (1990). Bounds for the second type of error are considered in De

Pril (1989) and Dhaene and De Pril (1994).

In this paper we will focus on the second type of error by starting from the rounded claim
amounts. The term ezxact algorithm should be interpreted as an algorithm that doesn’t
produce the second type of error, whereas an approximate algorithm stands for an approximate

computation of the aggregate claims distribution for the rounded model.

2 Model description

Consider a portfolio of n independent policies. This portfolio is divided into a number of
classes by gathering all policies with the same claim probability and the same conditional
claim amount distribution. The conditional claim amount distribution of a policy is the

distribution of the claim amounts given that a claim occurs.
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More formally, the class (i,7),i=1...a,j = 1...b contains all policies with claim probability
¢; and conditional claim distribution f;(x). It is assumed that for each j, 0 < ¢; < 1 and
that the claim amounts of the individual policies are integral multiples of some convenient

monetary unit so that for each i, fj(z) is defined for z = 1,2,...m;.
Further the following notation is used
e n;;: number of policies in class (4, j)

e n,: number of policies with the same claim probability

pj = 1 — g;: probability that a policy in class (7,j) produces no claim

M=%, 22:1 n;j m;: maximal amount of aggregate claims

The probability that the total amount of claims produced by the portfolio during the exposure
period equals s is denoted by p(s). It follows immediately that p(s) is the probability function

of a random variable with range 0,1,... M.

The individual life model can be obtained from the individual model considered above by

choosing fi(xz) = 0iz, ¢ = 1,2,...a where §;; = 1 if i = z and 0 otherwise.

3 Recursions for the individual life model

In Waldmann (1993) the following exact recursion scheme for computing the aggregate claims

distribution in the individual life model is proposed:



Theorem 1: (Waldmann)

For the individual life model the probabilities p(s) can be computed by

a b
p(0) = (pj)"™ (1)
i=1j=1
a b
sp(s) = ZZzn” tij(s) for s=1,2,...M (2)
i=1j=1

where the coefficients t;;(s) are given by

tij(s) Zf)—j(p(s—i) Cty(s—i) for s=1,2,... M 3)

and t;;(s) = 0 elsewhere.

Waldmann obtains his result by rearrangement of the recursive scheme of De Pril (1986) and
shows that this exact recursive scheme is more efficient than the original algorithm of De Pril
by comparing the number of arithmetic operations to be carried out and the number of data

to be kept at each stage of the iteration for both methods.

In order to reduce computing time, De Pril (1988) developed formulae to approximate the

exact probabilities p(s) if the claim probabilities ¢; are smaller than % The r-th order

approximations p(”)(s) suggested by him are computed recursively as follows:
Theorem 2: (De Pril)

For the individual life model the probabilities p(s) can be computed approximately by

p(0) = p(0) )
min(a,s) min(r,[ £])
sp(s) = S 3 alik) p(s — ki) for s=1,2,... M (5)
=1 k=1

where |z] denotes the greatest integer less than or equal to x and the coefficients a(i, k) are

given by

b N\ k
a(i k) = (1)1 ny (q_]> . (6)

j=1 Dj



This way, an infinite number of approximations is defined. From De Pril (1988) it follows
that increasing the order r will lead to better approximations. If » = M the recursion scheme

of Theorem 2 equals the exact recursive scheme proposed in De Pril (1986).

In Waldmann (1993) a comparison is made between the performance of the algorithm of
Theorem 1 and the algorithm of Theorem 2 for » = M. From theoretical error bounds for
the r-th order approximations, see De Pril (1989) and Dhaene and De Pril (1994), but also
from numerical examples, see Vandebroek and De Pril (1988), it follows that in practical
applications, a value of r equal to 3,4 or 5 will give almost exact results. A question that
naturally arises then is how the De Pril approximations, with r small, perform in comparison

with Waldmann’s exact recursion.

In order to answer this question, we will first focus on the number of arithmetical operations
to be carried out for computing the probabilities that the aggregate claims equal 1,2,...,s

with s large.

Waldmann (1993) considered only the number of arithmetical operations to be carried out
for one step of the iteration, i.e. for computing a single p(s)-value. In practice the insurer
will not be interested in a single probability but in the whole distribution function of the
aggregate claims. It is however not necessary to compute the probablities p(s) for very large

s-values, i.c. close to M, because these are too small to be distinguished from zero.

An algorithm to compute the distribution function up to a value s is said to be O(s™) if the

2 s3,...,s™ and on no higher order terms

number of multiplications required depends on s, s
in s. We will determine the order of the algorithms and compare the algorithms of equal
order in more detail. An advantage of tackling the problem this way is that the initial work

needed to start the algorithm can be neglected as it is independent of s.

For the algorithm in Theorem 1 the number of multiplications required to compute p(1), p(2),
.., p(s) is approximately equal to 2 a b s. Remark that in counting the number of multipli-
cations we have assumed that the quantities 7 n;; and Z—; are stored. Similarly, De Pril’s r-th

order method, with r small, requires approximately 2 a r s multiplications for computing

P (1), pM(2),...,p"(s).



Remark that we have not counted the number of multiplications needed to compute the
coefficients a(i, k), ¢ = 1...,a and k = 1...r, in De Pril’s method because this number is

independent of s and will therefore be negligible in our comparison.

Comparing these values reveals that the number of multiplications is lower for the r-th order

approximation method if
r <b. (7)

In practical situations, this inequality will be satisfied because an r-value of 3 or 5 will be
sufficient to achieve almost exact results and the number of different claim probabilities b will

typically be 20 or more.

From the reasoning above, it follows immediately that Waldmann’s exact recursion and De
Pril’s r-th order method are O(s). As the approximating algorithm gives exact results for

pM(1),...,p")(s) if r > s it is easy to prove that De Pril’s exact algorithm is O(s?).
The number of additions to be carried out for both methods leads to similar results.

Further, we will also compare the number of data to be kept for further computation. Using
Theorem 1 an array with a(a+1)% elements is required, see Waldmann (1993). Using Theorem
2 to compute the approximations p(") (1), p)(2),...,p")(s) all the a(i,k), i =1...,a, k =
1...r are needed. This means that a r numbers have to be stored. It follows that the r-th

order approximation will occupy less memory if
b
r< §(a +1). (8)

In practical situations, this inequality will again be satisfied.

We can conclude that although the exact iterative scheme for the individual life model, as
proposed by Waldmann (1993) is much more efficient than the one proposed by De Pril
(1986), the r-th order approximations of De Pril (1989) seem to perform better in many

practical situations.



4 Recursions for the individual model with arbitrary claim

amounts

4.1 A new recursive scheme

An exact recursion formula for computing the aggregate claims distribution in the individual

model with arbitrary positive claims is given in the following theorem
Theorem 3:

For the individual model the probabilities p(s) can be computed by

p(0) = HH(pj)n“

b
sp(s) = Zniﬁ vij(s) for s=1,2,...M
where the coefficients v;;(s) are given by

V(s _ijf% (2 p(s —x) —vij(s —x)) for s =1,2,... M
J x=1

and v;;(s) = 0 elsewhere.

Proof: The probability generating function of the aggregate claims is given by

S

M
P(u) = Y p(s)u

»
o

b

= JTI1®; + g Gi(w)™

i=1j5=1

S]

with G;(u) the generating function of the f;(x)

(10)

(11)

(14)



Putting u = 0 in (14) leads to (9). In order to prove (10), take the derivative of (13)
a b
P'(u) =" niVij(u) (15)
i=1j=1

where the auxiliary functions Vj;(u) are defined by

V;J(’UJ) = Z Uij(S + 1)US (16)
s=0

g; Gi(u) P(u)

pj+qj Gi(u) 17)

Taking the derivative of order (s — 1) and inserting u = 0 yields (10). The recursion formula
for the v;;(s) is obtained by differentiating the following expression (s — 1) times
q;
Vij(u) = p—], (Gi(u) P(u) = Gi(u) Vij(u)) (18)
j

and putting v = 0. This completes the proof. [

The iterative procedure of Waldmann (1993) for the individual life model can be obtained
from Theorem 3 with f;(x) = d;,. It then follows that the probabilities p(s) can be computed
by (10) with the v;;(s) given by

vi;(s) = 4 (ip(s—1i)—w(s—1)) for s=1,2,... M. (19)

pj

Now let t;(s) be defined by

tij(s) = vij(s)/i (20)

then (2) is obtained.

So, Theorem 3 is indeed a generalization of Waldmann’s recursive procedure for the individual
life model. Waldmann proved his result by rearranging the coefficients of De Pril’s exact
algorithm for the individual life model. For the general case of Theorem 3, it seems impossible
to obtain the recursion (10) by simple rearrangement of one of the exact algorithms for the

individual model considered in De Pril (1989).



Remark: Several authors propose to approximate the distribution of the aggregate claims

by a compound Poisson distribution with parameter
a b
i=1j=1

and claim amount distribution f(x) given by

a b g f
Fz) = 2i1 Ejzl/\nw q; fi(z) (22)

see e.g. Gerber (1984) or De Pril and Dhaene (1994).

Using Panjer’s recursion formula one finds that the approximated probabilities p®(s) can

here be computed by

prO) = (23)
a b
spP(s) = ZZ”U v;i(s) for s =1,2,... (24)
i=1j=1

where the coefficients v;;(s) are defined by

v;5(8) :qjgifi(a:) xpP(s—x) fors=1,2... (25)
=1

Remark the similarity between this approximate procedure and the exact procedure given in

Theorem 3.

Example 1: Consider a life coverage with double indemnity provision providing a death
benefit which is doubled when death is caused by an accident. The conditional claim amounts

distribution is then given by

0 elsewhere

10



so that the aggregate claims distribution can be computed by Theorem 3 with

vi;(s) = ;% (1—a)li p(s—1i) — (s — i)+ [2 @ p(s — 2i) —vi;(s — 2)]} (27)

This is a much simpler algorithm than the analogous one in De Pril (1989).

Example 2: Consider a portfolio consisting of n policies with identical claim probability
distributions. In this case there is only one class and as such the indices ¢ and j can be

omitted. It follows from Theorem 3 that

p(0) = p" (28)
sp(s) = no(s) (29)
with
o) = T30 () @ pls = @) —ols — ) (30)
=1
= gil:f@)wp(s—x) for s=1,2,... (31)
pz:l n
which yields
s p(s) = % Zf(:r) (n+1Dx—s) p(s—x) for s=1,2,... (32)
=1

This recursion, which is a special case of the recursion of Panjer (1981) for the compound

binomial distribution can also be found in De Pril (1985).

4.2 Comparison with other recursive schemes
In this paragraph we will compare the performance of the new exact algorithm given in
Theorem 3 with the performance of existing — exact and approximating— algorithms.

In De Pril (1989) the following recursion for computing the probabilities p(s) in the individual

model is proposed.

11



Theorem 4: (De Pril)

For the individual model the probabilities p(s) can be computed by

a

b
p(0) = JIIIw)"™ (33)
=1j=1
sp(s) = Zw:):
r=1

.

p(s—z) for s=1,2,... M (34)

where the coefficients w(x) are given by

a b

i=1j=1

with

wij(z) = = (x fi(zx ZfZ wyj(x — )) for x=1,2,...M (36)

pj
and w;;(z) = 0 elsewhere.

A nice property of this algorithm is the following: once the distribution function is computed
for the portfolio under consideration, it is easy to compute the distribution function of a

portfolio which consists of the same classes but where the number of policies n;; are different.

In order to compare the performance of both exact procedures, at first the number of mul-
tiplications to be carried out for computing p(1),p(2),...p(s) with s large will be estimated
for both methods.

The new procedure in Theorem 3 approximately leads to 2 b (a + > i ; m;) multiplications
for computing one probability p(s). So computing p(1),p(2),...p(s) takes approximately
2b (a+ Y71 m;) s multiplications.

On the other hand, the procedure in Theorem 4 leads to approximately 3 a b+b Y ¢ m; +s
multiplications for computing one probability p(s). Computing the probabilities p(1),. .., p(s)
needs then s (5+1) +b (3 a+ X.? 1 m;)s multiplications.

12



Comparing both numbers reveals that the algorithm in Theorem 3 performs better than the

algorithm in Theorem 4 if

s>2b(imifa)fl <>2bimi>. (37)
i=1

i=1

In order to interpret this result we have to consider the degree of heterogeneity of the classified
portfolio. We can get an idea of this degree by comparing b > ; m; with M. If the portfolio
is extremely homogeneous there is only one class and b Y7 ; m; << M. If the portfolio is
extremely heterogeneous the number of classes will be equal to the number of policies and

In practice, the degree of homogeneity of the portfolio will be somewhere between these two

extremes.

From (37) we can conclude that Theorem 3 is an efficient reformulation of De Pril’s Theorem 4
as to the number of multiplications to be carried out if the portfolio is not too heterogeneous.

In this case the new algorithm is O(s) whereas De Pril’s algorithm is O(s?).
For very heterogeneous portfolios De Pril’s method will have to be preferred.

Now the number of data-items to be kept for further iterations will be estimated for both pro-
cedures. Assume that the procedure of Theorem 3 is at stage s, this means that p(1),p(2), ...,
p(s — 1) have been computed. In order to compute p(s) the coefficients v;;(s — z) with
i=12...a,j =1,...band x = 1,...m; have to be kept. This means that b> 7 ; m;

numbers have to be stored for each step of the iteration.

To apply the procedure in Theorem 4 s (1 + a b) numbers have to be kept, i.e. all the coef-
ficients w;;(x), i =1,2,...a, j=1,...0,z=1,...5s and w(z) for z =1,2,...s. Comparing
both figures reveals that the new procedure will always perform better with respect to this

criterion.

We can conclude that in many cases the exact algorithm of Theorem 3 is more efficient than
the exact algorithm of De Pril given in Theorem 4, considerably reducing both the number

of arithmetical operations to be carried out and the number of data to be kept at each stage

13



of the iteration.

In order to reduce the considerable computing time that is required for the exact computa-

tions, De Pril (1989) proposed the following approximating algorithm which performs well if

the ¢; are smaller than %

14



Theorem 5: (De Pril)

For the individual model the probabilities p(s) can be computed approximately by

p©) = [TTI@)"™ (38)
1=1j=1
a min(r,s) min(s,kmi)
spM(s) = Z Z A(i Z aff () p(s—x) for s=1,2,...M  (39)
i=1 k=1 =k

where the coefficients A(i, k) are given by

A(Z k ( 1)k+1

Z nij (q_j> (40)

Dy

and f#*(x) denotes the k-fold convolution of f;(z).

Remark that the first order approximation can also be obtained from Theorem 3 by approx-

imating the v;;(s) defined in (11) by
1 T Z xfi(z) p(s — x) (41)
Pj .=

Remark further that the algorithm in Theorem 5 leads to the exact probabilities p(s) if
r > M, see De Pril (1989). We will compare the performance of this algorithm, with r small,

with the performance of the new algorithm of Theorem 3.
In order to compute p{") (1), p("(2),...p")(s) there are approximately
a
{3 ar+r (r—l—l)Z(mi—l)} s
i=1

multiplications required. In addition to this value there is some initial work needed to compute
the coefficients A(i, k) and the convolutions fi*(x) for i = 1,...a, k = 1,...7 and 2 =
1,...km; but these calculations depend on r and not on s and can therefore be neglected

here.

Comparison of the number of multiplications for the recursions of Theorem 3 and Theorem 5

15



reveals that both algorithms are O(s) if b > i ; m; << s. Theorem 5 is preferred to Theorem

3 (w.r.t. the number of multiplications) if

{3ar+r(r+1)2&:(mi—1)} 5<{2b(a—|— za:mz)} s. (42)

i=1 =1

This inequality can be transformed into

r(r+1) ar r(r+1)
> T @) <>T> (43)

which will be satisfied in practice.

Using Theorem 5 requires to keep all the A(i, k) and the fi*(z) fori =1,...a, k =1...7r

and x = 1...k m;. This means that an array of size ar + T(r—;l) >

a

& 1(m; — 1) is required to

keep these data.

Comparison of this number with the one obtained for the recursion in Theorem 3, reveals

that the r-th order method of De Pril is preferred if

a

ar+w2(mi—l)< by m, (44)
i=1 =1

This inequality can be transformed into

r(r+1) ar r(r+1)
o LI ) (>2) (45)

which is satisfied in most practical situations.

5 Conclusion

We showed that the original exact De Pril-algorithm for the individual model is O(s?) whereas
his r-th order approximations are O(s) if the portfolio is not too heterogeneous so that
these methods reduce the required computation time drastically in this case. We derived a

new exact algorithm for the individual model which is also O(s) if the portfolio is not too

16



heterogeneous. Furthermore, this algorithm contains the Waldmann (1993) recursion for the

individual life model as a special case.

Criteria were derived for choosing the optimal O(s)-algorithm, where optimality is measured
by counting the number of multiplications required for computing the distribution function

and by looking at the size of the array of the data to be kept.

The choice of the algorithm used in practical situations depends of course on the accuracy
required, the computer capacity available, the size of the portfolio, ... and is as such very
dependent on the situation considered. Nevertheless, the optimality criteria indicate that
in a lot of practical situations, an r-th order approximation (with r small) will have to be

preferred.
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