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Abstract

A well-known approximation of the aggregate claims distribution in the individual risk theory
model with mutually independent individual risks is the compound Poisson approximation. In
this paper, we relax the assumption of independency and show that the same compound Poisson
approximation will still perform well under certain circumstances.
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1 Introduction

Consider a portfolio consisting of n risks labelled from 1 to n. Risk i produces a claim amount
X, during a certain reference period. The aggregate claims of the portfolio during the reference
period is denoted by
S" =X, + X, +.+X, (1.1)
The distribution function of $” is denoted by F™*:
Find (S) — Pr(Sind < S)
As in Bowers et al.(1986, chapter 2) we represent each X as

X =1V (i=1,2,...n) (1.2)

where 7, is a Bernoulli random variable which equals 1 if risk i produces at least one claim
during the reference period, Pr (1, =1) =g, =1 - Pr (/, = 0), and V; is the total claim amount
produced by risk 1. In the sequel we will assume that 7, equals 0 if /; equals O and that V; is
positive if /; equals 1. The total number of policies producing claims is denoted by I and is given
by

I=1+1,+.+1I, (1.3)
Usually the following assumption is made concerning the risks X, :

assumption (A): The individual risks X, are mutually independent.

A well-known approximation of the distribution of $” under this assumption, is the compound
Poisson approximation, i.e. F™ is approximated by F< with

F¥(s)= Z Pr(K =n) F™(s) (s=0,1,...) (1.4)

n=0

where K is a Poisson distributed random variable with parameter A given by
A= Z q, (1.5)
i=1

and F(s) is the distribution given by



F(s)= %Zn:qur(Vi <s|f, =1) (1.6)

i=1

In order to be able to state results for the error related to this approximation, we introduce the
following distance between the distributions F, and F, of random variables X and Y

d(Fy,F,)=sup,[Pr(X € J)-Pr(Y € J)| = % [laF (s) - aF, (s)|

(1.7)
where the supremum is taken over all events J.
Remark that, apart from a constant factor, d(.,.) is the total variation distance.
Gerber (1984) proved that, under assumption (A), the following result holds
d(F" ,F*)<> g} (1.8)

i=1

Michel (1987) proved that if the conditional claim amounts V,|/, =1 all have the same
distribution and if assumption (A) holds, that

in C 1 .
d(F d,FP)SIqu (1.9)

i=1
which is an improvement of Gerber’s bound if 4 > 1.

In this paper we will further work within the framework of Michel’s “quasi-homogeneous”
portfolio but without assuming the mutual independence of the risks involved.

We will use a result of Chen (1975) to show that in certain cases the compound Poisson
approximation as defined in (1.4) will still be usable for approximating a portfolio of mutually
dependent risks.

2 The Chen-Stein method

From now on, we will relax the independency assumption (A) and consider the following
assumption concerning the dependency of the risks X, (i =1,2,...,n).

assumption (B): The conditional claim amounts V,-|[,- =1 are mutually independent.
However, the indicators I, are not assumed to be mutually independent.



Every risk X, can be described by its indicator and by its conditional claim amount. Assumption

(B) states that the dependency between the individual risks is caused by the dependency between
the indicators.

For a portfolio of insurances which provide a fixed amount in case a claim occurs, the conditional
claim amounts are deterministic so that assumption (B) holds in this case. For a portfolio of
insurances which compensate the loss incurred after a claim, it will often be the occurrences of
claims that will be more or less strongly dependent, while the dependency of the conditional
claim amounts will be much weaker. Hence, in this case assumption (B) will often offer a first
attempt to describe the dependency between the risks.

In the sequel, we will consider a portfolio which is quasi-homogeneous in the sense that the
conditional claim amounts VI.|I . =1 all have the same distribution F, say. We will consider the

compound Poisson approximation F defined by (1.4) and (1.5) for the distribution F™ of this
portfolio.

The following lemma is an extension of a result of Michel (1987) who proved it if assumption
(A) holds.

Lemma 1

Let F™ be the aggregate claims distribution of a portfolio for which assumption (B) holds and
where all the conditional claim amounts have the same distribution F. Then the distance between

F" and F defined by (1.4) is bounded by
d(Fmd,FCP) < d(F},FK)

where F, is the distribution of the number of claims I defined in (1.3) and F, is the distribution

of a Poisson distributed random variable with parameter A given by (1.5).
Proof:
Let S be a random variable with distribution F° then we have that

Pr(S™ € J)—Pr(S?” e J)

=Y Pr(S™ e J,I=k) =) Pre(S” € J,K =k)
k=0 k=0

< Zn:[Pr(S"”d eJ,I=k)-Pr(S" e J,K= k)]

k=0

Note that under assumption (B) we have for any possible outcome of k of I
Pr(S™ & J|I = k) = Pr(S”" € J|K = k)



so that

Pr(S™ e J)—Pr(S” € J) < Z (Pr(I = k) - Pr(K = k)).Pr(S” € J|K = k)

k=0
Now let J, = {k € {0,1,...,n}|Pr(I = k) > Pr(K = k)}
then we find

Pr(S™ € J)—=Pr(S” e J) < Z(Pr(] =k)—Pr(K =k))

kelJ,

<sup,(Pr({ € J)-Pr(K € J))
The desired result then follows from
d(F™ ,F) =sup [Pr(s™ & J)=Pr(S” € J)| = sup, (Pr(S™ & .J) = Pr(S” € J))

Q.E.D.

For each Bernoulli random variable 7,(i=1,2,...,n) we now define the set of dependence
B, < {1,2,...,n} such that
I, is independent of I, ifand only if j ¢ B, (=1,2,...,n)

1

Further, define

b= a4, )

i=1 jeB;

b, = Z Y E(I) (2.2)

i=1 i#jeB,
The following result can be found in Chen (1975).
Lemma 2

Using the same notation and assumptions as in Lemma 1 we have that
l—e™*

d(FlﬁFK)S(b1+b2) ﬂ,




A more general version of this result appears in Arratia et al. (1990). They refer to this approach
as the Chen-Stein method and present several applications of it. One of such applications is the
study of longest repetitive patterns in random sequences, see e.g. Waterman (1995). In the
following theorem we show that the Chen-Stein method can also be useful in individual risk
theory.

Theorem 1

Let F™ be the aggregate claims distribution under assumption (B). If all the conditional claim
amounts have the same distribution F, then the distance between F™ and F defined in (1.4) is
bounded by

-1

d(F™ F)< (b, +b2)l_Te

where A, b and b, are defined by (1.5), (2.1) and (2.2) respectively.

Proof:
The proof follows immediately from Lemma 1 and Lemma 2.
Q.E.D.

The bound presented in Theorem 1 will work best for dealing with local dependence,
corresponding to situations in which the sets of dependence B, have only a few elements so that

b, and b, are small. The approximations are useful only if second moments are well behaved.

Remark that when the dependence structure is local, finding the Chen-Stein bounds involves the
same effort as computing first and second moments of the total number of claims.

Let us now look at the special case where assumption (A) holds. Then we find that

B, ={i}(i=1.2,...,n)and hence b, = qu , b, =0 so that we obtain from Theorem 1

i=1

_ n 1— -1
d(Fmd’FcP) < q12 e
P A

(2.3)

IfA <1 we find

d(Find ,FCP) < quz

i=1

which is a special case of Gerber’s (1984) more general result.



For A > 1 we find from (2.3)

in . l .
d(F d,FP)szqu

i=1

which is Michel’s (1987) bound.

3 Example

In order to demonstrate the usefulness of Theorem 1 for certain real life situations, we give the
following illustration.

Consider a portfolio consisting of (m+n) life insurances providing a death benefit. There are m
couples (wife and husband) in the portfolio and all death benefits are equal to 1 (which means
that in fact we are looking at the total number of deaths during the reference period). Then we
can write the aggregate claims as

s" = i(){i +X)+ Zn:X,.
i=1

i=m+1
We assume that all risks are mutually independent, except for the “coupled” risks. This means

that the only dependence that occurs is the dependence between the risks of a wife and her
husband.

The sets of dependence are then given by

B, = B ={i,i} (i=1,2,...,m)
B, = {i} (i=m+1,...,n)
and hence

ﬂ'=Z(qi +q;)+ Zqz'
i=1

i=m+1

bi=2.(a,+4)" + X4

i=1 i=m+1

b, =2) (q,.q; +cov(X,, X))

i=1

From Theorem 1 we find the following error bound for the (compound) Poisson approximation of
this portfolio.



A(F™ FT)< %{Z[(CI +q)) +2q,4; +2C°V(Xf’X;)] ’ iqf} o
i=1

i=m+1

We denote Michel’s upper bound (1.9), which is valid under the independence assumption (A) by
M:

M=%{i(c]3 +q; )+ iqf}

i=1 i=m+1

Hence, from (3.1) we find

d(F™ F)< M+ 2 (24,4 +cov( X,. X)) (3.2)
i=1

>

If we don’t have any information about cov(X X, ) then we can use the following upper bound

for this covariance:

cov(X;, X)) = Jq,(1-¢,)q,(1—- g, )corr(X,, X,) < \Jq.(1-q,)q,(1-q)

In order to establish the effect on the bound from introducing dependence in the portfolio, assume
that all claim probabilities are of the same order, let us say all are equal to q, then we find

A=(m+n)gq and M=gq
so that (3.2) becomes

d(Find’FcP)S M+ 2m

p [2q +(1-g)corr(X,, X)) (3.3)

which shows that increasing the relative number of couples or increasing the correlation
coéfficients will lead to an increased bound.

As a numerical illustration consider the case that g < 10 11 and
Pr(X, =1lX, =) =1]g

This means that

corr(X,, X)) =0,1—L—
I-¢q



Further, let m

= 0,05, which means that 10 % of the portfolio consists of couples.
m+n

Then we find from (3.3)
d(F™ ,F")<1.21q

which indicates that the bound is increased by + 20 % if 10 % of the portfolio consists of couples
with dependent risks and if the mortality rate of a person is increased by 10 %, given the
mortality of his spouse during the reference year.
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