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Abstract

Dhaene & De Pril (1994) gave some general bounds for errors caused by app-
lying an approximation to the De Pril transform of a probability distribution. In
this paper we further analyse such bounds. We prove results for several simple
situations and indicate how these results can be combined for more complex situa-
tions. As an illustration we apply the results to deduce approximations to the
convolution of a finite number of compound distributions whose counting distribu-
tions belong to a class consisting of the binomial, Poisson, and negative binomial

distributions, and we give error bounds for these approximations.
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1. Introduction

Let 7, denote the class of discrete probability densities on the non-negative
integers with a positive probability in zero. We define the De Pril transform ¢ fi of

JeP by the recursion

_ 1 w1 Al
05(d) = 7707 o/ (2) — B3] 0, (0)f (-9)} (2=0,1,...) (L1)
in this paper we shall interpret Ez.ia v, = 0 and Hz'.—lia, v = 1 when a>b.

By solving (1.1) with respect to f(z) we obtain

£ = 33,21 0p(1)f (z-9). (2=1,2,...) (1.2)

Conversely, we obtain (1.1) by solving (1.2) with respect to ¢ f(z). Thus we see
that when we know ¢ f and f(0), then we can evaluate frecursively by (1.2). On
the other hand, if f is known, then we can evaluate ¢ f recursively by (1.1).

As we need the value of f(0) to start the recursion (1.2), one might get the
impression that f is not uniquely determined by ¢ £ However, the uniqueness fol-
lows from the fact that f is the discrete density of a probability distribution, which

implies that
52, f(z) =1 (1.3)

Unfortunately, this condition is usually not convenient for starting the recursion
(1.2), and we therefore rather use the value of f(0) which would normally be

known.

The following theorem, which was first proved by De Pril (1989), indicates



the usefulness of De Pril transforms and the recursions (1.1) and (1.2).

Theorem 1.1. The De Pril transform of the convolution of a finite number of
discrete densities in P is the sum of the De Pril transforms of these discrete densiti-

€s.

From Theorem 1.1 we see that we can evaluate the convolution of a finite
number of discrete densities in Py by first finding the De Pril transform of each of
the densities, e.g. by using the recursion (1.1), then finding the De Pril transform
of the convolution by using Theorem 1.1, and finally finding the discrete density of
the convolution recursively by (1.2).

Unfortunately, this procedure can be rather time-consuming. Therefore De
Pril (1989) suggested an approximative algorithm that can be applied with less
resources, and he gave upper bounds for the approximation error. He also gave
similar bounds for other approximations to convolutions, introduced by Kornya
(1983) and Hipp (1986). The presentation of these approximations and the deduc-
tion of their error bounds were unified by Dhaene & De Pril (1993). They proved a
general result, showing how one from an error bound for the approximation to the
De Pril transform can deduce error bounds for the approximation to the discrete
density, and they gave similar results for approximations to the cumulative distri-
bution and the stop loss transform.

In the present paper we shall discuss some consequences of the general results
of Dhaene & De Pril (1994). We shall approximate probability distributions on the
non-negative integers by approximating their discrete densities. Thus we identify a
distribution by its discrete density, and for convenience we shall therefore mean its
discrete density when talking about a distribution.

As the approximations to the distributions are not necessarily distributions



themselves, we shall extend the notion of De Pril transforms to more general func-
tions. This is the topic of Section 2. In Section 3 we discuss the main results of
Dhaene & De Pril (1994). Section 4 is devoted to the classes %, studied by Sundt
(1992). In Sections 5, 6, and 7 we present results on approximations to respective-
ly convolutions, compound distributions, and infinitely divisible distributions.
Some of the results in Sections 4—7 may seem trivial and unnecessary as they con-
cern approximations in situations where we can apply exact methods without too
much effort. However, in the final Section 8 we shall show how these simple ele-
ments can be applied as building blocks in more complex situations where exact
methods would be very time-consuming. As an illustration, we apply the results to
deduce approximations to the convolution of a finite number of compound distribu-
tions whose counting distributions belong to a class consisting of the binomial,
Poisson, and negative binomial distributions, and we give error bounds for these
approximations. De Pril’s (1989) approximation appears as a special case by let-

ting the counting distributions be Bernoulli distributions.

2. De Pl transforms of functions

2A. Let ¥ denote the class of all functions fon the non-negative integers
with f(0)>0. Then ?,cF,. We extend the definition (1.1) of De Pril transforms to
functions fETO. We also introduce the classes 7 and F n of respectively all functions
on the non-negative integers and all functions on the positive integers and the cor-
responding classes ? and ? n restricted to (discrete densities of) probability distri-
butions.

We see that also for functions feF, we can evaluate f recursively by (1.2) if

we know ¢ b and f(0). However, as we do not any longer have the constraint (1.3),



the function f is no longer uniquely determined by ¢ i3 it is only determined up to
a multiplicative constant, that is, the set of all functions with De Pril transform ¢ i

is the set of functions cfwith a positive constant c.

2B. Instead of expressing their results in terms of De Pril transforms, Dhaene

& De Pril (1994) represented a function f(—:TO by the transform fi given by

¥¢(0) = 1n £(0)
Ve(2) = f;cﬁ)- (2=1,2,...)

Using the transform 3 i instead of ¢ i has the advantage that the term ¢ f(O) en-
sures that f is uniquely determined by ¢ i and some deductions look more tidy in
terms of this representation. On the other hand, recursions like (1.1) and (1.2)
look simpler in terms of De Pril transforms, and the use of this transform fits more

naturally into the framework discussed by Sundt (1992), to which we shall return
in Section 4.
2C. Letp I be the generating function of f, that is,

,Of(S) = 2;0 f(w)sw

If fETO, then p f is the probability generating function of the corresponding distribu-

tion. The transforms ¢ i and ¢ £ can be defined by the power series expansions

Uo(s) =In ps(s) = B0 Vp(a)s”  @4(s) = s&In pp(s) = 5,21 ¢4(@)s",



provided that these series have positive radiuses of convergence. This is always the

case when fE’PO.

3. Some general results on error bounds

3A. In this section we shall discuss some results from Dhaene & De Pril
(1994).

For f, geFy we define

8(£9) = 5,2, & lep(a)-p (9)] (5=0,1) (3.1)
5(f.9) = §(f9) + Iln ﬁ%}l

and, provided that these series converge,

1 .
v(9) =32, 2 o (a). (7=0,1)
We also introduce
pih) =% ,2, Jh(z) (7=0,1)

for functions he¥ for which these series converge. If h€?, then ,uo(h)=1 and pq (k) is
the mean of h. When we apply I/J( g) and /.LJ( g) in the sequel, we shall always silent-
ly assume that the associated series converge, that is, the results involving V](g)
and uj( g) are valid when the associated series converge.

We shall also need the quantities



e{hk) = 5,2 o| h(z)—K3)|. (5=0,1; h,keF)
Theorem 3.1. For fE'PO and gETO we have

eo(f9) < SUB9) 1. (3.2)

For feF we define

Fs(o) = zyio f(w). (2=0,1,...)

If fe?, then T f is the corresponding cumulative distribution.
Corollary 3.1. For fc?, and geFy we have

IT/(a)T (2)] < (dh9)_pyr JCK A9y, (2=0,1,...)
Corollary 3.2. For fE’PO, geFy, and Ac{0,1,...} we have

Zgen £ (D) = Bge g a0l <3 [ P09 — 1 1] < 00 -1,

The stop loss transform of the cumulative distribution T f with fe? is defined
by

Hf(z) = Ey=2+1 (y-2)f (), (2=0,1,...)

and it is natural to extend this definition to functions fe¥. Thus, if we approxi-

mate fe? with ge¥, we can approximate II f by IIg (provided that u(f), p(9) and



#1(g) converge). We introduce
n(p,q) = sup [IL(2)-11 (2)]. (p,q€7)
20 ’
Alternatively we can write Hg(:c) as
1(2) = B_g (s-)(u) + wy(0) —amg(9).  (a=0.1,...)
As feP, we obtain in particular
1

We have that ul( f) is the mean of the distribution, and in practice this could usual-

ly be easily found. Thus it is also natural to approximate II f by Hgf) given by
() :c—l
57(2) = B, (2-9)oy) + 1) — = (z=0,1,...)
Not surprisingly, the error bounds presented by Dhaene & De Pril (1994) indicate
that Hgf)(:c) gives a better approximation than Hg(:c) for low values of z whereas

Hg(:c) is best for high values of z.

Theorem 3.2. If fE?O and 9€% then

I (2)-11 (2)| < [DED) T (2) + 6, (£9)eDP9)  (o=0,1,..)
n(59) < [PB9) () + 6,(£9)e559). (3.3)



Theorem 3.3. For fE?O and gETO, we have
1,(@-T(@)| < (I (Do) (=01,.)

We see that the first upper bound in Corollary 3.1 depends on T’ f(z), which
will normally be unknown. Analogously, the bounds in Theorems 3.2 and 3.3 de-
pend on II f(z), which will normally be unknown. From the following lemma we

can construct computable bounds for these situations.

Lemma 3.1. If 0<c<1 and | a—b|<ca+d, then

b+d
| a—b] < £+ (3.4)

Proof. We have

la—b] < ¢ (|a=b] + b) + d
| a—b| (1—c) < ¢b + d,

from which we obtain (3.4). Q.E.D.
By application of Lemma 3.1 to the inequalities in Corollary 3.1 and Theo-
rems 3.2 and 3.3, we obtain the following bounds, which can also be found in

Dhaene & De Pril (1994).

Corollary 3.3. For fc?, and geF, with 6(f,9) < In 2 and z=0,1,... we have the

following bounds



8(/,9)_
ITp(T (o) ¢ grrai T (o)

(U911 (2) + 5. (£S5
T4 (2)-T1 (a)] < §_ea<f,g§ :

(M9 (g) + 8,(59)e™59)
n(f,9) < ;_65( T g}

8(f,9)_
1(2-11() < 2—(5(%} @)+, ()

The following result was also proved by Dhaene & De Pril (1994).

Theorem 3.4. If ge¥, such that Ele |<pg(:1:)| < o, then

7(9)
(@) = a0y * 11(0) = (9, (9).

3B. We see that in all the situations presented in the previous subsection,
the upper bounds for the approximation errors were increasing functions of 60( 59,
as well as 61( £,9), to the extent that this latter quantity appears in the bounds.
Thus we can replace these quantities by larger quantities in the upper bounds. In
the following sections we shall therefore deduce upper bounds for §,(f,g) and 6,(f9)

in various situations.

3C. The upper bounds in Theorems 3.1—3 and Corollary 3.1 depend on g only
through é(f,9) and 61( f,9). Furthermore, 60( f,9) and 61( f,9) depend on g only

through Py As Peg=%g for any positive constant c, we have

8(fcq) = 6(f9) + |1n Z‘ﬁ%l 6,(ficq) = é,(%9)-



—10—

This implies that the upper bounds mentioned above are minimised by choosing
c=f(0)/9¢(0). In other words, we improve the upper bounds by using the starting
value f(0) in the recursion (1.2) for the approximation.

This result seems to indicate a deficiency of the upper bounds in subsection
3A. For example, if g(0)=f(0) and ¢(z) is much smaller than f(z) for all >0, then
we could improve our approximation by multiplying ¢ by some constant greater
than one, but that would increase our upper bounds for the approximation errors.

In particular, Kornya’s (1983) approximation is equal to De Pril’s (1989)
approximation up to to a multiplicative constant. As De Pril’s approximation is

exact in zero, this approximation obtains the lowest upper bounds.

4. The classes '}Zk

4A. Sundt (1992) denoted by Rk[a,b] the distribution with discrete density
P, defined by the recursion

b
f(z) = Eyil [ay + Ey]f(z——y) (z=1,2,...) (4.1)

with a=(ay,...,ap), b=(by,..,b;), and f(z)=0 for all z<0. By 7%, he denoted the
class of all such distributions with fixed k and by 'R?c the class

of all distributions in '}Zk that cannot be represented by a lower order recursion in

the form (4.1). In particular, we see that 2 =7, and from (1.2) we see that in
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terms of De Pril transform, the distribution f7, is 7Zm[0,c] with ¢=¢ f(z')
(i=1,2,...).

For approximating the distribution Rk[a.,b], we want to apply a function 9€¥,
which also satisfies a recursion in the form (4.1). We shall say that a function in
Fq is in the form Rk[a,b] if it satisfies the recursion (4.1). Whereas a distribution
Rk[a,b] is uniquely determined by a and b, this is not the case with a function in
the form R k[a.,b]; like with the De Pril transform it is only determined up to a mul-
tiplicative constant.

The "if" part of the following theorem was proved by Sundt (1993) in the
special case fe?o.

Theorem 4.1. A function feF, is in the form Rk[a,b] if and only if its De Pril

transform satisfies the recursion

(,of(:):) =za + b + Eyil aygof(:):—y) (z=1,2,...) (4.2)

with a$=bm=0 for >k and gof(z)=0 for z<0.

Proof. Let fe?o be in the form Rk[a,b]. We shall prove (4.2) by induction.

For z=1, we obtain from (1.1)

‘Pf(l) = %:‘ a1+b17

that is, (4.2) holds for z=1.
Let us now assume that (4.2) holds for z=1,2,...,u-1. We shall show that
then (4.2) also holds for z=wv. Insertion of (4.1) and (4.2) in (1.1) gives



07 (0) = 157 [0 () =221 0 ()f (v-3)] =

7(%5 [Eyﬁl (va,+b,)f (1) - EZj lve, + b, + L az(pf(y—z)]f(v_y)] _
va,, + bv + mln )32;} a, [(v—z)f(v—z) — Eyv;} SOf('y—Z)f(v—y)] _

k
v, + b,u +X. achf(v—z),

that is, (4.2) holds for z=w.

By induction it follows that (4.2) holds for all z.

The converse implication follows from the fact that a function is determined
by its De Pril transform up to a multiplicative constant, and thus Theorem 4.1 is

proved. Q.E.D.

Theorem 4.2. If fE‘PO is in the form Rk[a,b] with Eiil |az-| < 1, and g€F, is
in the form Rk[c,d], then

koo k i
(1< 2. F I ela—c )b ~d | + [2:17:1 |az-cz|”z;1 o |<pg(.'1:)]]
FoT 1 —Z kl lal

(7=0,1) (4.3)

Proof. From Theorem 4.1 we have for j=0,1

869 = B2 7o @p o) =
2,2 & Idage) + bm d+ B F (a0 (o)-c o (o)) <
2 k) oot + 2.0 B E) ol opo)-n o) +

m k. 1 _
D1 Bye1 @ ey llofa-y)| =
®

k1 k —1
k m —1
Ey? l{zyl—cyl Sy ? lwg(z—ky)l < |
5,k elae b + 5 ol 5,0 (0 e o)) +



k 1 ko1
Syer ooyl By @0 leen)| =2 5 o el )+ d | +

k k o 1
from which we obtain (4.3). Q.E.D.

We shall look at some special cases of Theorem 4.2. First we observe that
when c=a, the last term in the numerator in (4.3) vanishes. Thus we obtain the

following corollary.

Corollary 4.1. Ifthe conditions of Theorem 4.2 are fulfilled with c=a, then

k-1
5 Yoy 20 |bd
1 =32 lag

(7=0,1)

If £ is large, then it might be interesting to use an approximation where we
replace a; and bz. with zero for r<ick, that is, we replace the recursion (4.1) with

the shorter recursion

b
g(g;) = Eyil [ay + :_l:ﬂ] g(z—y). (97:1:27"')
For such approximations we obtain the following corollary to Theorem 4.2.
Corollary 4.2. Ifthe conditions of Theorem 4.2 are fulfilled with

¢, = a_I(z7) d, = b I(z<r), (z=1,...,k)
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then

k F k o .
6J(f,9)S z=ril H—llmz-!_bz‘ + [2$= r+1 |az‘} [E:v=1 7’7—1|‘Pg("’5)l]

1 - %

z=1 | a$|
(=0,1) (4.4)

In the special case when a$=0 for all z>r, such approximations become parti-
cularly attractive as then the last term in the numerator of (4.4) vanishes. For

that case we obtain the following corollary.

Corollary 4.3. If the conditions of Corollary 4.2 are fulfilled with am=0 for
=r+1,...,k, then

koo g
X z’ |5 |
6](f;g) S z=r+1 z

- '
1 - )32:1 |a$|

(5=0,1) (4.5)

In particular, it might be interesting to approximate the De Pril transform of
f by approximating ¢ f(a;) with zero for z>r. In that case insertion in (3.1) gives
immediately that the weak inequality (4.5) hold with equality. Thus we can state
the following result.

Theorem 4.3. If fE?O, and gETO satisfies

(pg(z) = tpf(z)I(a:Sr), (z=1,2,...) (4.6)

then
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= _
6(59) =T, %1 & lep(@)l. (3=0,1) (4.7)
From Theorem 4.3 we see that if V](| f])<w, then 6]( f,9) will go to zero if we
let r go to infinity, that is, we can obtain any desired degree of accuracy by

choosing 7 sufficiently large.

4B. In the special case when the function gETO is in the form Rl[a, b], Theo-

rem 4.1 gives that
<pg(z) = (a,—{-b)az_l. (z=1,2,...) (4.8)
Sundt & Jewell (1981) proved the following theorem.

Theorem 4.4. The distribution Rl[a,b] is binomial if a<0, Poisson if a=0, and

negative binomial if a>0. In all these cases, we have a+b>0.

Let us now apply the truncation scheme of Theorem 4.3 to the distribution

R;[a,b]. Then we get the following result.
Theorem 4.5. If fis R [a,b] with
|a] <1 (4.9)

and g satisfies (4.6), then

5y(58) = (t) i
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(f,g)
o) = | 22 [m(1-lal) + 2,7, 21017 | < el
Proof. Insertion of (4.8) in (4.7) gives
89 = (a+8) %, o 1ol T, (7=0,1)

from which we obtain

6\(h) = (o4 B, W‘l - (o) 1217

§,(f>9)

_ ® 1 a+b ® —1 "1\

bp(f9) = (ar+?) Y13 o™ St i1 |al Tl
b 1
Gl = 2 (2,2, 2141~ Flm]
b r 1
|“+ [ln(l lal) + 2,7, 10 ]
This completes the proof of Theorem 4.5. Q.E.D.

We see that the bounds in Theorem 4.5 go to zero when r goes to infinity, and
thus we can obtain any desired degree of accuracy by choosing r sufficiently large.

Let us apply Theorem 4.5 to the three cases in Theorem 4.4.

i) Binomial.

f(2) = [i] (1) % (2=0,1..., £=1,2,...; 0<7<1)

Then
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pp(o) =—t [w—i%] g (z=1,2,...)

To satisfy (4.9) we have to assume that 1r<%. In that case we obtain

bp(fg) = ¢ [h‘ Il [1T7r7r] a:] 6(h9) = t 157 [ﬁ] )

ii) Poisson.

f@) = %,r,. e, (2=0,1,...; A>0) (4.10)
Then

a=0 b= A

<pf(a:) = A[(z=1). (z=1,2,...) (4.11)

As ¢ f(a:)=0 for all >1, the approximation is irrelevant.

iii) Negative binomial.

(o) = [0‘+;‘1](1_7r)%”’. (2=0,1,...; a>0; 0<r<l) (4.12)
Then

a=T b= (o-1)7

pp(z) = ar”. (z=1,2,...)

As | a|=7<1, we can apply Theorem 4.5, and we obtain
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r 1 z 7rr+1

§o(f9) = a 'ln(1—1r) +3 7T 6;(f9) = o =7
4C. Let us now discuss the possibility of extending Theorem 4.5 to the case
when f is Rk{a,b] with k<w. As pointed out by Sundt (1993), in that case Theorem
4.1 gives a homogeneous linear difference equation of order k£ with constant coeffici-

ents and k constraints. The solution of this equation is in the form

t
m U -1 T
(,af(:zz) =X, 1,21 € S (z=1,2,...)

with Euzl t, =k (cf. e.g. Henrici (1964, Corollary 6.8)). From Theorem 4.3 we

obtain

o(£9) = 2,7, ziﬁl eyl Bp g T 215 1% (5=0,1) (4.13)
The upper bound in (4.13) is finite if and only if |su| <1 for u=1,...,m, and in that
case we can in principle proceed like in Theorem 4.5. However, it seems that the
bound becomes rather weak unless £ is small. One should therefore reduce the
order of the recursion if the distribution does not belong to 'Il(l)c. Furthermore, a
distribution in ’IZ(])i7 can often be represented as a convolution of distributions satisfy-
ing recursions of lower order, as a compound distribution with counting distributi-
on in %, with [<k, or as a combination of these two cases. In the first case, we
should combine Theorems 4.5 and 5.3, in the second case Theorems 4.5 and 6.3,

and in the third case all three theorems.
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5. Convolutions

5A. When approximating m distributions fl""’ meWO by functions 9119 m€
TO, which are not necessarily distributions themselves, it is also natural to approxi-
mate the convolution f= *z’zl fi by g = *z’zl 95 To be able to do this, we have
to extend the concept of convolutions to functions. We define the convolution

hl"‘h2 of two functions hy,hq€F by

(hy*ho) () = zyﬁo hy (9)ho(z-9)- (2=0,1,...)
*
Like for distributions, we define I (z)=1I(z=0) for a function heZ.

The following well-known properties of convolutions of distributions in ? are

easily extended to functions in F:

hy*hg = ho*hy  (hy*hg)*hg = hy*(hy*hs)
hy*hy + hy*hy = (hy+hy)*hy.

For a function heF we introduce the function Ac¥ defined by
h(z) = z h(z). (z=0,1,...)

With this notation we can reformulate the relation (1.2) between a function F7,y

and its De Pril transform as
#‘Pf*f- (5.1)

This relation determines the De Pril transform uniquely. We also immediately see
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that

uo(ﬁ)=u1(h). (5.2)
Lemma 5.1. For hl,h2ef, we have

By TRy = By hy + by *hy:

Proof. For any non-negative integer z we have

FrTg(s) = 5 (hy*hy)(2) = 2.5, T by (Who(5-) = 2, % [+ (5-4)]hy (3)hof5-3) =
2, %0 oy (hoo-3) +hy (WFg(5-3)] = (By*hy)(z) + (hy*Tp)(2)

which proves the lemma. Q.E.D.
Theorem 5.1. If hy,h,€F such that ”’O(lhil )<w for i=1,2, then

po(hy*hg) = pg(hy g (hy).

If in addition p,l( | hil V<o for i=1,2, then

iy (hy*ho) = pig(hy )iy (hg) + 1y (R ().

If hy and hy are nom-negative, then we can drop the conditions on p ](hi) (i=1,2;

=0,1).

Proof. The first part of the theorem is proved by Dhaene & Sundt (1994).
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If py (| h;])<w for i=1,2, then we obtain from Lemma 5.1, the first part of the

theorem, and (5.2)

Hy(hy*hy) = tg(RyTho) = po(Ry*hythy*ho) = po(Ry*ho) + mglhy *he) =
l‘o(ﬁl—)ﬂo(hz) + ﬂo(hl)ﬂo(h;) = lf'l(hl)ﬂ'o(hg) + ﬂo(hl)ﬂl(hQ),

which proves the second part of the theorem.

This completes the proof of Theorem 5.1. Q.E.D.
We shall now extend Theorem 1.1 to De Pril transforms of functions in TO.

Theorem 5.2. The convolution of a finite number of functions in Fyisa functi-
on in TO, and its De Pril transform is the sum of the De Pril transforms of these

functions.

Proof. Let gl,ggefo. Then

9 99 = 9,799 + 91795 = (‘»0g1*91)*92 + 91*(9092*92) =
* * * * — * *
b4, (91%99) + %4, (91*95) (sogl+<pg2) (91*99);

which implies that ¢ 4 =¢ +¢ , that is, we have now proved that Theorem
999% 91 9%

5.2 holds for the convolution of two functions in Fo- The general case follows easily
by induction.

This completes the proof of Theorem 5.2. Q.E.D.

From Theorem 5.2 we see that we can evaluate the approximation g by first
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finding the De Pril transform of each 9 then finding the De Pril transform of g by
by using Theorem 4.5, and finally finding g recursively by (1.2).

The following theorem can be used together with the results in subsection 3A

to find error bounds for the approximation g.
Theorem 5.3. With f€7, and g€F, (i=1,...,m), we have

m m m
60k =1 To*izq 99) $ Bizp 0(fp9))

61(*2'721 fo*ily 9) €3 6139, (7=0,1)

and, if .2, lep(@)| <,

VJ(*izl 99 =25, v(9)- (7=0,1)
Proof. For 7=0,1, we have

B2 el 0) = 8,21 o(a (a)] =
o 1 o i
AN R [‘sz-(”’)_"”gi(”’)] I <2 80 o |<sz,(z)-90gz_(z)

201821 |oglepy(a)| = 5L 64000

Furthermore,

7{0)
i) = bg(h0) + [in Bf] < 2.2y dytsye) + 70| =
10 1£0)
221 &Upe) + |51 gyl € % [‘50(12"99 + I 1) } =30 8(fy9)-
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s 2, |(pf(z)| < o, then for 7=0,1,

m _woo 1 _woo Flam _
vikizg 9) =% o o) =%, 7B ‘f’gi(”’) =
m o 31 _wm
Bim1 Bm1 @ 0 (2) = Bimy V()

This completes the proof of Theorem 5.3. Q.E.D.

Theorem 5.3 shows that if we have upper bounds for the approximation error
for the De Pril transform of each of the elements in the convolution, then we can
easily find upper bounds for the approximation error for the De Pril transform of

the convolution.

5B. By using the bounds of Theorem 5.3 in the bounds of Theorems 3.1 and

3.2, we obtain

DY 'ml 6(fi’gi) 1

e(fig) <e T (5.3)
o™ §f.9.) ] 5. 6(f.9)
= ) =1 )
n(f9) < [e =1 -1 [EZ'T:nl F’Il(fz)] + Ei;nl 51(]%’92')6 Z v (5.4)
The following theorem gives alternative bounds for ¢,(f,g) and 7(f9).
Theorem 5.4. For fz-E'P and g€F (i=1,...,m), we have
m m m m
EO(*izl fi’*i=1 gi) $h.y ?j:)i+1 ﬂo(lgjl )] fo(fz'agi) <
f')g' ]
Eizl [HjZT?-i-l ﬂo(lgjl )] [e - 1]. (5'5)
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If £,9.€7, (i=1,...,m), then

m m m
ki1 fyki=1 99 € Bimy Mpgy) €

z [[j(f,-,gi) - 1] () + 61(];’92-)66(]%,92.)].

(5.6)

Proof. The first inequality in (5.5) and the first inequality in (5.6) were
proved by Dhaene & Sundt (1994), and the remaining inequalities follow by inserti-
on of the upper bounds of Theorems 3.1 and 3.2.

This completes the proof of Theorem 5.4. Q.E.D.
One somewhat disappointing aspect of (5.5) is that the bounds are not in
general invariant against permutations of the pairs ( fi’ gz-) (i=1,...,m).

We shall look at some special cases of Theorem 5.4.

Corollary 5.1. For fe?o, geF ., and m a positive integer, we have

- m -, m
AT 0 ¢ o (i) GnlaD

m* Tty (el
€ g <
TN e () ¢ mlU9)) (g1 9D)=1)

If in addition ge?P,, then
2™ g™ < ma(hg) < m [[ DB () + 6,500 59)].

Corollary 5.2. For f€7, and g.€F, with ‘U’O(Igil )<1 (i=1,...,m), we have
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[eé(fi’gi) - 1] .

m m m m
col*i=1 fokim1 9) € Bizy So(fp9) € Tizy (5.7)
The following theorem shows that under certain conditions Theorem 5.4 gives

sharper bounds than (5.3) and (5.4).

Theorem 5.5. The bounds in (5.7) and (5.6) are sharper than the bounds in
(5.3) and (5.4).

Proof. As

o (M0 [[90) ] L2 P

=1 =1

?

we see that the bounds in (5.7) are sharper than the bound in (5.3). Furthermore,

8p0) )

Eirznl He o —1] /’l'l(fi) + 51(fi’gi)e o)
8fp9) ] 8(f.g

z)izl [[e -1 [E,Zl ”1(f.,.)] + 51(12'791')6 ’ Z] <
£, 8f,a) ] ,
[e =1 "M% Lzzf__’_’l #1(fz.):| + Ez‘zl 51(fz-,gz-) e

6(fz"gi)] ¢

which shows that the bounds in (5.6) are sharper than the bound in (5.4).

This completes the proof of Theorem 5.5. Q.E.D.

6. Compound distributions

6A. In this section we shall discuss approximations to compound
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distributions with counting distribution in 7’0 and severity distribution in 7 4

Inspired by Gurland (1957), we shall denote the compound distribution with

counting distribution pE?O and severity distribution he? " by pVh, that is,
T n*
(wvh)(2) = 2, %) s(mh™ (3), (2=0,1,...)

and we extend this definition of the function pVh to the case when P, and heF "
As

(pvR)(0) = p(0), (6.1)

we see that pVheTO when pETO.

To find a relation between the De Pril transforms of pvh and p, the following

lemma will be useful.

Lemma 6.1. For heF, we have

(m=1,2,...,m; n=1,2,...)
Proof. We shall first prove the lemma in the special case m=1, that is,

A" = nFrR(L)* (n=1,2,...) (6.2)

by induction.

For n=1, (6.2) trivially holds.

Let us now assume that (6.2) holds for n=k. Then, by Lemma 5.1,
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YR Y L T S ) o GRS T LA Y
(k+1)F*RF

that is, (6.2) holds also for n=k+1, and by induction (6.2) holds for all integers n.

For positive integers m and n such that m<n, (6.2) gives

L

B xp(nmm)*

n
m

which proves the lemma. Q.E.D.

Sundt (1993) deduced the following relation between the De Pril transforms
of pVh and p in the case when pe?o and he? "

Theorem 6.1. If pETO and heF L then

Ppyp, (2) =2 7 —2-1-}—— hy*(fv)- (z=0,1,...) (6.3)

Proof. For z=0 (6.3) trivially holds.

For any positive integer z we have

() = 5, %, p(m)h™ (9) = 3 2 1% 2 =
5 y21 tpg(y)p( —:t/) ) = ° yf sog(y)p(n y) TR ) =
2,5 05 2 ) n, 2 ?(r)h(”‘y) (o-1) =
(y e
27;1 Ey-f-l ‘Ppy )F(r) Eniy p(n—y)h( u* (z—7) =
v, (9)
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Z}rfl zyﬁl 6 W _FF(T) (pVh)(z-1) = [ yil (pp—:(yy);f](r)(pvh)(z—r) =

[, "2

which by (5.1) implies that (6.3) holds for all positive integers z.
This completes the proof of Theorem 6.1. Q.E.D.

The following theorem can sometimes be applied together with Theorem 3.4

to calculate p(pVk) and py (pVh).

Theorem 6.2. Let peF satisfying » P —1 |<,0 (2)] < o and let hET satisfying
to(h)=1 and p;(|h|)<a. Then

vo(pvh) = vy(p) v1(pvh) = vy (p)p; (R).

Proof. For 7=0,1, we have

v (Vh) =22 Lo () = 2,0 I3 0 hy*(z)

z,2 fJ’_;i) thfk(z) 2,21 y’_lw (y)u(h)—l/(p)u(h)

from which the theorem follows. Q.E.D.

6B. One way to approximate a compound distribution, is to keep the severity
distribution, but approximate the counting distribution. The following theorem is

useful for finding bounds for the approximation errors of such approximations.

Theorem 6.3. Let pE’PO, qETO, and hE’P+. Then
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8o(pVh,qvh) < 8,(p,q) (6.4)
8,(pVh,qvh) < 8, (p,q)py () (6.5)
8(pVh,@vh) < 6(p,q)- (6.6)

Proof. By using Theorem 6.1 we obtain for =0,1

6(pvh wh)=5° Wwpvh(z)—quh(z)i =
z“m:y_l Lo (-0 () (3)] ¢

2172 e () w(y)lhf(z) Lo -0 )] 2,2, Y (2) =

y=ly :u—l y
2,2 yH| 2y (8),8) | 1(1) = E(p.us )

which proves (6.4) and (6.5). Formula (6.6) follows from (6.1) and (6.4).
This completes the proof of Theorem 6.3. Q.E.D.

We see that if ul(h)<m and we let ¢ approach p in such a way that 50(p,q)
and 61(p,q) go to zero, then also 60(pvh,qvh) and 51(pvh,th) will go to zero.

The following theorem is obtained by application of Theorems 3.1, 3.2, 3.4,
6.2, and 6.3.

Theorem 6.4. If pe'PO, ge¥, and he?P w then

eO(pVh,qvh) < e&(p,q) -1
n(ovhgvh) < [P D-1) (9) + 6,(9,0) 5P D] ().

5C. Whereas we in subsection 6B discussed approximating compound distri-
butions by approximating the counting distribution and keeping the severity distri-

bution unchanged, we shall now consider the case when we approximate the severi-
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ty distribution and keep the counting distribution unchanged. For this situation

Dhaene & Sundt (1994) proved the following theorem.

Theorem 6.5. For peF and h,k€7+ with py(| h|)<1 and po(| k| )<1, we have
eo(PVh.pVE) < (11 )eO(h,k).
If in addition h,keP 4 then
M(pVh,pVE) < (1] )(h,R).

6D. We shall briefly mention two classes of approximations that can be con-
venient both for the counting distribution and the severity distribution in a com-

pound distribution; for further details we refer to Dhaene & Sundt (1994).

For fe? we define the approximation f () for a positive integer r by
1(e) = f () asr). (2=0,1,2,..)
For this approximation we have

i) =11 4(1)
1) = (s = 1O (5(0) = (o (7)) = )0 1)

We see that unless T’ f(r)=1, the approximation f () will not be a distributi-
on as p,O( f (T))<u0( f)=1. To obtain a proper distribution, we can apply the modifi-
ed approximation f () defined by
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f(z) (z=0,1,...,r1)
¥ (r)(z) = 1—I‘f(r—1) (z=7)

0. (z=r+1,7+2,...)
We obtain
(51 = e (570 + Hlar () (5=0,1)

705 ) = 1,

and notice that

TALPIN) (5=0,1)
n(53 ) < o).

7. Infinitely divisible distributions

TA. A probability distribution f&7? is called infinitely divisible if there for each
*
positive integer m exists a distribution fme? such that f= f:"n . Let 7® be the class
of infinitely divisible distributions in ?, and let ?8=?On?m. We see that if fe??,
then fme?ca’ for all integers m.
The following characterisation of distributions in 77 was given by Katti

0
(1967) and, in terms of De Pril transforms, by Sundt (1994).

Theorem 7.1. A distribution in 7’0 is infinitely divisible if and only if its De

Pril transform is non-negative.

Let T‘S denote the class of functions in TO with a non-negative De Pril trans-
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form. When approximating a distribution in ’PB’, we shall often apply an approxi-
mation in T(I)’ This is in particular the case with the truncation scheme of Theorem
4.3. The following lemma, which follows easily from (1.2) by induction, implies
that such approximations will give a non-negative approximation to the distributi-

on.
Lemma 7.1. All functions in %) are non-negative.

The following theorem gives upper bounds for approximation errors related to

approximations to infinitely divisible distributions.

Theorem 7.2. Let fE’Pg and gefc(‘)’. If uy(9)<1, then

14 (9)

eo(f:9) < I 4y (9T &£9) < &(%9)- (7.1)
Ing’P(S, then

éo(f9) < §(£,9) (7.2)
n(f,9) < 6,(f9)- (7.3)

Proof. As fe?), for each positive integer m there exists a distribution f_e7y
*
such that f= fz . From Theorem 1.1 follows that ¢ i =%<p - Correspondingly we
m

1

m 1 * . .
define gmefg by gm(0)=g(0)m and wgmz—rﬁtpg. Then g= gz . We easily obtain

fob) =5 60 6(fp0) = o5 81(59) (7.4)
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1
#o(9,) = ()™ (7.5)

Let us now assume that ge?‘(')’. Then also gme?“’, and from Corollary 5.1 and
(7.4) we obtain

l& 1, l& f —1—5 i
olhg) Lm ( g)“1] () < [e’" ( g)—l] mh + & (fg)e™ 5o

By letting m go to infinity we obtain (7.2) and (7.3).
We now assume that /Lo(g)<1. From (7.5) we see that also /Lo(gm)< 1, and
from Corollary 5.1 and (7.4) we obtain

- L&,
i ¢ A0 [ 409

l—uo(g)m

Letting m go to infinity gives (7.1).

This completes the proof of Theorem 7.2. Q.E.D.

We easily see that the bounds in (7.1)—(7.3) are sharper than the bounds in
(3.2) and (3.3).

7B. If we approximate ]%7’8 by using the truncation scheme of Theorem 4.3,

then the De Pril transform of the approximation g will satisfy the inequalities

0< 0 (2) < py(a). (=1,2,... (7.6)
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More generally, let gef‘(’; be an approximation to f that satisfies the inequali-
ties (7.6) and

0 < g(0) < £(0). (7.7)

Then, by using induction on the recursion (1.2), we obtain that

0< ¢g(z) < f(2). (z=0,1,...) (7.8)

This again implies that for z=0,1,...,

0<T () ST r(a) (7.9)
0 < (2) < T(2) (7.10)
0¢ Hgf)(x) <T1(2) (7.11)

In particular, (7.9) gives that

0 < uo(9) < () = 1,

and thus Theorem 7.2 applies for the present approximation g.

If gis defined by (4.6) and ¢(0)=f(0), then we have the nice relation

8(h9) = v = (). (3=0,1)

If the inequalities in both (7.6) and (7.7) go the opposite way, then we also
obtain the opposite inequalities in (7.8)—(7.11).
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7C. For a proof of the following characterisation of infinitely divisible distri-

butions, we refer to Feller (1968, Section XI.2).
Theorem 7.3. A distribution in 'PO 18 infinitely divisible if and only if it can be

expressed as a compound Poisson distribution with severity distribution on the posi-

tive integers.

Theorem 7.3 implies that if fe?%, then there exists a distribution heP + such
that f=pVh with

p(n) = %rn e (n=0,1,...) (7.12)

and A determined by (6.1) and (7.12), that is,

A= |In f(0)|. (7.13)
Insertion of (4.11) in (6.3) gives

0(2) = BAM(2), (e=1,2,..).

from which we obtain

h(z) = ﬂzii). (z=1,2,...) (7.14)

Lemma 7.2. Let geF,, and let p be the Poisson distribution given by (7.12).

Then g can be represented as vk with
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(n) = g—g%%p(n). (n=0,1.2,...)
v ,(2)

He) = 45—

(2=1,2,...) (7.15)

Proof. As qis equal to p up to a multiplicative constant, (pq= tpp, and appli-
cation of Theorem 6.1 and (4.11) gives for z=0,1,2,...

: Py v, (1)

tpqvk(z) =z Ey 1 —% ¥ (z)==z Eyil _% ky*(z) = zMk(z) = (pg(:l:).

Thus ¢Vk is equal to to g up to a multiplicative constant, and as (gvk)(0)=¢(0)=
¢(0), we see that gvk=g. Q.E.D.

Theorem 7.4. If fe?8 and geF,, then

6(£,9) = Ae (LF). (7=0,1)

with A given by (7.13), h by (7.14), and k by (7.15).
Proof. For 7=0,1, we obtain

559 = 5,21 7 os@-p D] = A 22, JIMa)Ka)| = Ae(hB).  QED.
By combining Theorems 7.2 and 7.4 we obtain the following corollary.

Corollary 7.1. Let fe?8 and gefg, and let X be given by (7.13), h by (7.14), and
k by (7.15). Ifuo(g)<1, then
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1-4(9)
(o) < Tln_?to('g'ﬂ [ In ﬁ%}l + 2eg(B)] < [1n B8 + ae(n ). (7.16)
Ifge?g, then
(i) < [1n S + xeg() 1(£9) < Aey(hB) (7.17)

Let us consider Corollary 7.1 in the special case when g(0)=/(0). In that case
our approximation boils down to approximating f=pVh by g=pVk. We see that the
bounds in (7.17) and the weak bound in (7.16) are the same as the bounds obtained

in Theorem 6.5.

We see that approximating f by g given by ¢(0)=f(0) and
0 #) = op(DI(ar) (2=1,2,.)
is equivalent with approximating s by h(r) as defined in subsection 6D. Approxi-

mating h by %(r) becomes equivalent with approximating f by ¢ given by ¢(0)=
f(0) and

<pf(:1:) (z=1,2,...,7r-1)
v (2) =1 ¢s(r) + r8)(£9) (z=r) (7.18)
I 0. (z=r+l,742,...)

As the approximation ¢ is obtained by replacing all severities greater than r

with r, we obtain the inequalities

' (2)>T (z I (z) <10 (). (z=1,2,...
,z]( ) f( ) g(-"’) f( ) )
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An alternative way to modify the approximation ¢ so that the resulting app-

roximation to f becomes a probability distribution, is to rescale g, that is, apply

the approximation

(¥ %24

1
ﬂo(g) g

We have (,o~=<pg and
g

6(£9) = 8(f9) (7=0,1)
6(£9) = 8(%9) —1n pg(9).

8. Applications

8A. In the preceding sections we have presented results about bounds for
approximation errors in several simple situations. These results are building blocks
that can be applied together in more complex situations.

For instance, let us consider a situation where we want to approximate the
convolution f of m distributions fl""’ fm‘ It is assumed that for each 1, fi is a com-
pound distribution inhi with p Z-E?O and th? "

We approximate f by for each 7 approximating p; by a function qz.EZFO obtain-

ed by truncating (pp _at some positive integer r, that is,
i

7 (z) = (:1;)](9;51‘) ((L‘=1,2,...; i=1,2,...,m)
qi D;

with qz(0)=pi(0). Hence, we approximate f by g = *izl g; with gz:quhi'
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From Theorem 4.3 we obtain that

6(pp4) =

1 . .
5,07 |<p (fv)l (i=1,2,...,m; 5=0,1)

and from Theorem 6.3

5(]2';91') = 50(]%:91') < 60(pi’qi) = 6(pi’qi) 61(fi’gi) < 51(Pi;qi)ﬂ1(hi)-
(i=1,2,...,m)

Application of Theorem 5.3 gives

8(£,9) < 2;21 §(fi’gi) < Ei;nl 6(172':‘12')
51(f:9) < 22'21 61(fz"gi) < Eizl 51(Pz':qz')ﬂ1(hi)-

(8.1)

(8.2)

(8.3)
(8.4)

Combining these bounds with the results in subsection 3A gives error bounds for

the approximation g to f and the corresponding approximations to I f and IT f

To evaluate g, we can for each i evaluate p. recursively by (1.1). From The-

1
orem 6.1 we obtain

e #p (y)

9; y=1 'y

Application of Theorem 5.2 gives

@, (y)

— i (),

m m r
‘Pg(x) =X, ‘sz_(z) Ez—l Ey__

q
o, () =z% 2, — hf(z)=z2yfl hyk(z) (z=1,2,..; i=1,2,...,

m)
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from which we can finally evaluate g recursively by (1.2), starting with
m m

9(0) = f(0) = I._4 fZ(O) =1L PZ(O)-

8B. Let us now make the additional assumption that pl,...,pmeﬁa. Then the
De Pril transforms of these discrete densities become non-negative, and thus we can
drop the absolute value sign in (8.1).

As a compound distribution is infinitely divisible if its counting distribution is
infinitely divisible, fl""’ me?(I))’ and as a convolution of infinitely divisible distribu-
tions is infinitely divisible, ]%?‘8. It is easily shown that in the present case the
weak inequalities in (8.2)—8.4) become equalities.

From the discussion in subsection 7B follows that
0< gfz) < pf2), (2=0,1,...; i=1,...,m)

from which we obtain

0< gz.(:z:) < fz(:z:) (z=0,1,...; i=1,...,m)
This gives
0 of2) < £(3), (2=0,1,...)

from which we in particular obtain

tolg) < mof) = 1.
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Hence Theorem 7.2 gives
Eo(fa!]) < &(£9)-

To obtain bounds for approximations to stop loss premiums from Theorem
7.2, we have to modify the approximation g so that it becomes a probability distri-
bution. One way to do this, is to for each ¢ modify q; 80 that it becomes a probabi-

lity distribution, e.g. by using the modification given by (7.18).

8C. Instead of the assumption of infinite divisibility, we now assume that for

each 4, p.is R [a,b] with |a;| <1. From (4.8) we obtain that

gapi(z) = (az-+bz-)aaz-:_1. (z=1,2,...) (8.5)

From Theorem 4.5 we obtain

a+b, a+b; la;|"
1Tt r 1 T 11 1
forgn) = | =g [m- e + 2.0 3 1)) | < ar ey )
Iai|r
51(pz"qi) = (az-+bz-) FW. (8.7)

By insertion of (8.5)—(8.7) in the expressions of subsection 8A, we obtain

y—1

av
<pg(z) = inZI (a;+b,) Ey—_r-l ; h:g*(z) (2=1,2,...)

T
1 m ‘ail
$rt Zi=1 () 1o a

(8.8)

a+b.
Lt [1n(1—|az.|) +x 1 |ai|z]

m
8f9) < 2,74 “i -




a|”
61(f)g) < Eizl (a'z""bz‘) Fl_%rﬂl(hi)' (8.9)

We see that the upper bounds in (8.8) and (8.9) go to zero when r goes to

infinity. Thus we can obtain any desired degree of accuracy by choosing r suffici-

ently large.

8D. De Pril (1989) considered the exact and approximate evaluation of the
convolution f of m distributions fl"‘" f mE'PO. For each 7 he represented fz as a

compound Bernoulli distribution with counting distribution p; given by
pf1) =1-p[0) = 7, = 1-f(0)

and severity distribution th? + given by

filz
h{z) = zﬂz'). (z=1,2,...)

It is assumed that 7rz-<%.

As the Bernoulli distribution is in ’Ill, we can apply the results of the previous

subsection. We have

.- T.
1 1
aq. = — s——— b = 2 —
7 1—7rz- 7 1——7rz-
Y
_ rlam | M|y
tpg(:z:) =—z Ey:l 7 Ty [—7;2_—1} h% () (z=1,2,...)

1-7. T. z T. T r
m 1 r 1 1 1 m 7 7
§£9) € By lh‘ Tom,~ Ye=13 [1—7rz] ] <71 V=1 T, {1—7%] (8.10)
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r
T. T.
m 1 1
01(£9) < Ticy 17, [——1—7ri] y (hy). (8.11)

Together with the results in subsection 3A, the weak bound in (8.10) and the
bound in (8.11) give the bounds found by De Pril (1989) and Dhaene & De Pril
(1994).

As we have seen above, De Pril’s approximation can be considered as an app-
roximation to the convolution of compound Bernoulli distributions. More general-
ly, it can be considered as an approximation to the convolution of compound bi-
nomial distributions, as some of the distributions may be equal to each other. The
set-up in subsection 8C generalises the set-up of De Pril in the sense that we allow
some of the counting distributions to be negative binomial and Poisson as well as

binomial.

8E. Let us now consider the case when all the counting distributions are

negative binomial, that is, for i=1,...,m

a+n—1 o.
pz(n) = [ t n ](1_7ri) zw?. (n=0,1,...; @ >0; 0<7ri<1)
Then
a, =T, b, = (ai—l)wi
Insertion in (8.5) gives
o, () = a2 0, (2=1,2,...)
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and from Theorem 7.1 follows that p; is infinitely divisible. Hence the discussion of

subsection 8B applies. In particular we obtain

7Y
cpf(z) =1z 22‘21 o Eyil y_z hg*(z)
7Y
cpg(z) =z ’%'21 @, Eyil y_z h:‘zf*(z) (z=1,2,...)

AT+

_wm r 1 z 1 m 1
0hg) = Bimy oy |(=m) + By 375 S i1 % To7,

A
_ m ?
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