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1. Introduction 

Let 'P 0 denote the class of discrete probability densities on the non-negative 

integers with a positive probability in zero. We define the De Pril transform cpf of 

jE'P 0 by the recursion 

(x:=O,l, ... ) (1.1) 

in this paper we shall interpret E. b v. = 0 and IT . b v. = 1 when a> b. 
~=a ~ ~=a z 

By solving (1.1) with respect to f(x) we obtain 

(x:=1,2, ... ) (1.2) 

Conversely, we obtain (1.1) by solving (1.2) with respect to cpf(x). Thus we see 

that when we know cp1and f(O), then we can evaluate /recursively by (1.2). On 

the other hand, iff is known, then we can evaluate cpf recursively by (1.1) . 

As we need the value of f(O) to start the recursion (1.2), one might get the 

impression that f is not uniquely determined by cp !" However, the uniqueness fol­

lows from the fact that f is the discrete density of a probability distribution, which 

implies that 

(1.3) 

Unfortunately, this condition is usually not convenient for starting the recursion 

(1.2), and we therefore rather use the value of f(O) which would normally be 

known. 

The following theorem, which was first proved by De Pril (1989), indicates 
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the usefulness of De Pril transforms and the recursions (1.1) and (1.2) . 

Theorem 1.1. The De Pril transform of the convolution of a finite number of 

discrete densities in 1' is the sum of the De Pril transforms of these discrete densiti-

es. 

From Theorem 1.1 we see that we can evaluate the convolution of a finite 

number of discrete densities in 1' 0 by first finding the De Pril transform of each of 

the densities, e.g. by using the recursion (1.1), then finding the De Pril transform 

of the convolution by using Theorem 1.1, and finally finding the discrete density of 

the convolution recursively by (1.2). 

Unfortunately, this procedure can be rather time-consuming. Therefore De 

Pril (1989) suggested an approximative algorithm that can be applied with less 

resources, and he gave upper bounds for the approximation error. He also gave 

similar bounds for other approximations to convolutions, introduced by Kornya 

(1983) and Hipp (1986). The presentation of these approximations and the deduc­

tion of their error bounds were unified by Dhaene & De Pril (1993). They proved a 

general result, showing how one from an error bound for the approximation to the 

De Pril transform can deduce error bounds for the approximation to the discrete 

density, and they gave similar results for approximations to the cumulative distri­

bution and the stop loss transform. 

In the present paper we shall discuss some consequences of the general results 

of Dhaene & De Pril (1994). We shall approximate probability distributions on the 

non-negative integers by approximating their discrete densities. Thus we identify a 

distribution by its discrete density, and for convenience we shall therefore mean its 

discrete density when talking about a distribution. 

As the approximations to the distributions are not necessarily distributions 
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themselves, we shall extend the notion of De Pril transforms to more general func­

tions. This is the topic of Section 2. In Section 3 we discuss the main results of 

Dhaene & De Pril (1994). Section 4 is devoted to the classes 'lk studied by Sundt 

(1992). In Sections 5, 6, and 7 we present results on approximations to respective­

ly convolutions, compound distributions, and infinitely divisible distributions. 

Some of the results in Sections 4-7 may seem trivial and unnecessary as they con­

cern approximations in situations where we can apply exact methods without too 

much effort. However, in the final Section 8 we shall show how these simple ele­

ments can be applied as building blocks in more complex situations where exact 

methods would be very time-consuming. As an illustration, we apply the results to 

deduce approximations to the convolution of a finite number of compound distribu­

tions whose counting distributions belong to a class consisting of the binomial, 

Poisson, and negative binomial distributions, and we give error bounds for these 

approximations. De Pril's (1989) approximation appears as a special case by let­

ting the counting distributions be Bernoulli distributions. 

2. De Pril transforms of functions 

2A. Let 10 denote the class of all functions f on the non-negative integers 

with j(O)>O. Then 10c10. We extend the definition (1.1) of De Pril transforms to 

functions jE10. We also introduce the classes 1 and 1 +of respectively all functions 

on the non-negative integers and all functions on the positive integers and the cor­

responding classes 'P and 'P + restricted to (discrete densities of) probability distri­

butions. 

We see that also for functions jE10, we can evaluate f recursively by (1.2) if 

we know cpf and f(O) . However, as we do not any longer have the constraint (1.3), 
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the function f is no longer uniquely determined by cp f; it is only determined up to 

a multiplicative constant, that is, the set of all functions with De Pril transform cp f 

is the set of functions cfwith a positive constant c. 

2B. Instead of expressing their results in terms of De Pril transforms, Dhaene 

& De Pril (1994) represented a function jE'F0 by the transform 1/Jf given by 

(x=1,2, .. . ) 

Using the transform '1/Jf instead of cpf has the advantage that the term ¢1(o) en­

sures that f is uniquely determined by '1/J f, and some deductions look more tidy in 

terms of this representation. On the other hand, recursions like (1.1) and (1.2) 

look simpler in terms of De Pril transforms, and the use of this transform fits more 

naturally into the framework discussed by Sundt (1992), to which we shall return 

in Section 4. 

2C. Let p f be the generating function of j, that is, 

If jE'P 0, then p f is the probability generating function of the corresponding distribu­

tion. The transforms cp f and '1/J f can be defined by the power series expansions 



-5-

provided that these series have positive radiuses of convergence. This is always the 

case when jE'P0. 

3. Some general results on error bounds 

3A. In this section we shall discuss some results from Dhaene & De Pril 

(1994) . 

For J,gE1 0 we define 

(j=0,1) (3.1) 

and, provided that these series converge, 

(j=0,1) 

We also introduce 

Jt (h) = E ro 0 X'h(x) 
J x= 

(j=0,1) 

for functions hE1 for which these series converge. If hE'P, then tt0(h)=1 and tt1 (h) is 

the mean of h. When we apply v}g) and tt/9) in the sequel, we shall always silent­

ly assume that the associated series converge, that is, the results involving v}g) 

and Jt (g) are valid when the associated series converge. 
J 
We shall also need the quantities 
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E{h,k) = E roO :zlih(x)-fl\x)l. 
J x= 

(j=O,l; h,kE1) 

Theorem 3.1. For jE'P 0 and gE1 0 we have 

(3.2) 

For jE1 we define 

(x=O,l, ... ) 

If jE'P, then r f is the corresponding cumulative distribution. 

Corollary 3.1. For .{E'P0 and gE10 we have 

(x=O,l, ... ) 

Corollary 3.2. For jE'P0, gE10, and Ac{O,l, ... } we have 

The stop loss transform of the cumulative distribution r f with jE'P is defined 

by 

(x=O,l, ... ) 

and it is natural to extend this definition to functions jE1. Thus, if we approxi­

mate jE'P with gE1, we can approximate IT f by IT 
9 

(provided that J.tl (/), J.to(g) and 
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f..tl (g) converge) . We introduce 

TJ(p, q) = sup In ( x)-n ( x) j. 
x~O P q 

(p,qEr) 

Alternatively we can write nix) as 

As jE'P, we obtain in particular 

(x=O,l, ... ) 

We have that J.tl (f) is the mean of the distribution, and in practice this could usual­

ly be easily found. Thus it is also natural to approximate n f by n~f> given by 

(x=O,l, ... ) 

Not surprisingly, the error bounds presented by Dhaene & De Pril (1994) indicate 

that n~f>(x) gives a better approximation than nix) for low values of X whereas 

n ( x) is best for high values of x. 
g 

Theorem 3.2. If jE'P0 and gE1
0

, then 

jn
1

(x)-nix)l ~ [i(J,g)_l]n
1

(x) + 81(J,g)i(J,g) (x=O,l, ... ) 

TJ(j,g) ~ [e8(j,g)_l]J.tl(f) + 81(j,g)e8(j,g)_ (3.3) 
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Theorem 3.3. For /E'P 0 and gE1 0, we have 

(x:=0,1, ... ) 

We see that the first upper bound in Corollary 3.1 depends on r f(x), which 

will normally be unknown. Analogously, the bounds in Theorems 3.2 and 3.3 de­

pend on IIf(x), which will normally be unknown. From the following lemma we 

can construct computable bounds for these situations. 

Lemma 3.1. If O~c<1 and I a-bl ~ca+d, then 

I a-bl < cb+d. 
- 1-c 

Proof We have 

I a-b 1 ~ c ( 1 a-b 1 + b) + d 

I a-bl (1-c) ~ cb + d, 

from which we obtain (3.4). 

(3.4) 

Q.E.D. 

By application of Lemma 3.1 to the inequalities in Corollary 3.1 and Theo­

rems 3.2 and 3.3, we obtain the following bounds, which can also be found in 

Dhaene & De Pril (1994). 

Corollary 3.3. For /E'Po and gE10 with 8(j,g) < ln 2 and x:=0,1, ... we have the 

following bounds 
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The following result was also proved by Dhaene & De Pril {1994). 

Theorem 3.4. If gEJ0 such that E;_1 I ~Pix) I < m, then 

3B. We see that in all the situations presented in the previous subsection, 

the upper bounds for the approximation errors were increasing functions of 8o(f,g), 

as well as t\ (J,g), to the extent that this latter quantity appears in the bounds. 

Thus we can replace these quantities by larger quantities in the upper bounds. In 

the following sections we shall therefore deduce upper bounds for 80(/,g) and 81 (J,g) 

in various situations. 

3C. The upper bounds in Theorems 3.1-3 and Corollary 3.1 depend on g only 

through 8(/,g) and 81 (J,g). Furthermore, 80(J,g) and 81 (J,g) depend on g only 

through I{J • As I{J =I{J for any positive constant c, we have g cg g 

8(/,cg) = 8o(J,g) + lln c~f~11 
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This implies that the upper bounds mentioned above are minimised by choosing 

c=f(O)fg(O). In other words, we improve the upper bounds by using the starting 

value f(O) in the recursion (1.2) for the approximation. 

This result seems to indicate a deficiency of the upper bounds in subsection 

3A. For example, if g(O)=f(O) and g(x) is much smaller than f(x) for all x>O, then 

we could improve our approximation by multiplying g by some constant greater 

than one, but that would increase our upper bounds for the approximation errors. 

In particular, Kornya's (1983) approximation is equal to De Pril's (1989) 

approximation up to to a multiplicative constant. As De Pril's approximation is 

exact in zero, this approximation obtains the lowest upper bounds. 

4. The classes 'l k 

4A. Sundt (1992) denoted by R~a,b) the distribution with discrete density 

jE'P 0 defined by the recursion 

(X=1,2, ... ) (4.1) 

with a=(a1, ... ,ak), b=(bl' ... ,bk), and f(x)=O for all x<O. By 'lk he denoted the 

class of all such distributions with fixed k and by 'l~ the class 

of all distributions in 'lk that cannot be represented by a lower order recursion in 

the form (4.1). In particular, we see that 'lm =1'0, and from (1.2) we see that in 
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terms of De Pril transform, the distribution jE'P0 is 'Rro[O,c] with c~-cpf(i) 

(i=1,2, ... ). 

For approximating the distribution R~a,b], we want to apply a function gEJ0 

which also satisfies a recursion in the form ( 4.1). We shall say that a function in 

10 is in the form R~a,b] if it satisfies the recursion (4.1). Whereas a distribution 

RJa,b] is uniquely determined by a and b, this is not the case with a function in 

the form RJa,b]; like with the De Pril transform it is only determined up to a mul­

tiplicative constant. 

The "if'' part of the following theorem was proved by Sundt {1993) in the 

special case jE'P 0. 

Theorem 4.1. A function jEJ0 is in the form R~a,b] if and only if its De Pril 

transform satisfies the recursion 

{x=1,2, ... ) ( 4.2) 

Proof Let jEJ0 be in the form R~a,b]. We shall prove {4.2) by induction. 

For x=1, we obtain from (1.1) 

that is, ( 4.2) holds for x=l. 

Let us now assume that (4.2) holds for x=1,2, ... ,v-l. We shall show that 

then (4.2) also holds for x=v. Insertion of (4.1) and (4.2) in {1.1) gives 
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cpf(v) =fay [vf(v)- E;;-i cpf(y)f(v-y)] = 
-loJ [ Ey~ 1 ( vay +by)!( v-y)- E;i [yay+ by+ Ez!1 azcpf(y-z)]f( v-y)] = 

va + b + ~ EV:1
1 a [( v-z)f( v-z)- Ev-1

1 cpf(y-z)f( v-y)] = 
V V J\. u J Z- Z y= 

vav + bv + Ez k 1 azcpf( v-z), 

that is, ( 4.2) holds for X=V. 

By induction it follows that ( 4.2) holds for all x. 

The converse implication follows from the fact that a function is determined 

by its De Pril transform up to a multiplicative constant, and thus Theorem 4.1 is 

proved. Q.E.D. 

Theorem 4.2. If jE'P0 is in the form R~a,b] with Ei!1 I ail < 1, and gE10 is 

in the form R~c,d], then 

1 

E k I a -c I E w 
X=1 X X X=1 

I axl 
(j=0,1) 

Proof From Theorem 4.1 we have for j=0,1 

(4.3) 
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from which we obtain ( 4.3). Q.E.D. 

We shall look at some special cases of Theorem 4.2. First we observe that 

when c=a, the last term in the numerator in ( 4.3) vanishes. Thus we obtain the 

following corollary. 

Corollary 4.1. If the conditions of Theorem 4.2 are fulfilled with c=a, then 

E k xj-1 I b -d I 
O u, ) ( x=1 X X 

J ,g - 1 - E k I axl 
x=1 

(j=0,1) 

If k is large, then it might be interesting to use an approximation where we 

replace ai and bi with zero for r<i~k, that is, we replace the recursion ( 4.1) with 

the shorter recursion 

(x=1,2, ... ) 

For such approximations we obtain the following corollary to Theorem 4.2. 

Corollary 4.2. If the conditions of Theorem 4.2 are fulfilled with 

c = a li(x<r) 
X X -

(x=1, ... ,k) 
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then 

k 
+ Ex= r+1 

1 - E x=1 I axl 

E m 
X=1 

(j=0,1) ( 4.4) 

In the special case when ax 0 for all x>r, such approximations become parti­

cularly attractive as then the last term in the numerator of ( 4.4) vanishes. For 

that case we obtain the following corollary. 

Corollary 4.3. If the conditions of Corollary 4.2 are fulfilled with ax 0 for 

X=r+1, ... ,k, then 

(j=0,1) (4.5) 

In particular, it might be interesting to approximate the De Pril transform of 

f by approximating cpf(x) with zero for x>r. In that case insertion in (3.1) gives 

immediately that the weak inequality (4.5) hold with equality. Thus we can state 

the following result. 

Theorem 4.3. If jE'P 0, and gE1 0 satisfies 

(X=1,2, .. . ) (4.6) 

then 
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(j=O,l) (4.7) 

From Theorem 4.3 we see that if 11 (I Jl )<rn, then 8 (J,g) will go to zero if we 
J J 

let r go to infinity, that is, we can obtain any desired degree of accuracy by 

choosing r sufficiently large. 

4B. In the special case when the function gE10 is in the form R1[a,b], Theo­

rem 4.1 gives that 

(x=1,2, ... ) (4.8) 

Sundt & Jewell (1981) proved the following theorem. 

Theorem 4.4. The distribution R1[a,b] is binomial if a<O, Poisson if a=O, and 

negative binomial if a>O. In all these cases, we have a+b~O. 

Let us now apply the truncation scheme of Theorem 4.3 to the distribution 

R1[a,b]. Then we get the following result. 

Theorem 4.5. Iff is R1 [a, b] with 

I al <1 (4.9) 

and g satisfies ( 4.6), then 
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Proof Insertion of (4.8) in (4.7) gives 

(j=0,1) 

from which we obtain 

This completes the proof of Theorem 4.5. Q.E.D. 

We see that the bounds in Theorem 4.5 go to zero when r goes to infinity, and 

thus we can obtain any desired degree of accuracy by choosing r sufficiently large. 

Let us apply Theorem 4.5 to the three cases in Theorem 4.4. 

i) Binomial. 

Then 

7f a--­- 1-?r 

(x=O,l...,t; t=1,2, ... ; 0<?r<1) 

b = ( t+ 1) 1 ~?f 
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(X=1,2, ... ) 

To satisfy ( 4.9) we have to assume that 1r<~- In that case we obtain 

8 =t 7r ....!..._ [ J
r 

1 (J,g) 1 27r 1-?r . 

ii) Poisson. 

)..X-}.. 
f(x)=-;;:re . x. 

Then 

a=O 

(X=0,1, ... ; )..>0) 

(X=1,2, ... ) 

As cpf(x)=O for all x>1, the approximation is irrelevant. 

iii) Negative binomial. 

( 4.10) 

( 4.11) 

(X=0,1, ... ; a>O; 0<7r<1) (4.12) 

Then 

a= 7r b=(a-1)7r 

(X=1,2, ... ) 

As I al =7r<1, we can apply Theorem 4.5, and we obtain 
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r+1 
61 (J,g) = a f-?r . 

4C. Let us now discuss the possibility of extending Theorem 4.5 to the case 

when f is Rda,b] with k<rn. As pointed out by Sundt (1993), in that case Theorem 

4.1 gives a homogeneous linear difference equation of order k with constant coeffici­

ents and k constraints. The solution of this equation is in the form 

(x=1,2, ... ) 

with EU:1 tu = k (cf. e.g. Henrici (1964, Corollary 6.8)). From Theorem 4.3 we 

obtain 

t . 2 
6 fj, ) - E m E u I c I E rn x* v- I s I x J' ,g - u=1 V=1 uv x=r+1 u · (j=0,1) ( 4.13) 

The upper bound in ( 4.13) is finite if and only if I sui <1 for U=1, ... ,m, and in that 

case we can in principle proceed like in Theorem 4.5. However, it seems that the 

bound becomes rather weak unless k is small. One should therefore reduce the 

order of the recursion if the distribution does not belong to 1.~. Furthermore, a 

distribution in 1.~ can often be represented as a convolution of distributions satisfy­

ing recursions of lower order, as a compound distribution with counting distributi­

on in lz with l<k, or as a combination of these two cases. In the first case, we 

should combine Theorems 4.5 and 5.3, in the second case Theorems 4.5 and 6.3, 

and in the third case all three theorems. 
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5. Convolutions 

SA. When approximating m distributions J1, ... ,jmE'P0 by functions g1' .. . ,gmE 

J 0, which are not necessarily distributions themselves, it is also natural to approxi­

mate the convolution f= */!::.1 fi by g = *i:\ gi" To be able to do this, we have 

to extend the concept of convolutions to functions . We define the convolution 

h1 * h2 of two functions h1 ,h2EJ by 

{X=0,1, ... ) 

Like for distributions, we define h0*(x)=l(X=O) for a function hEJ. 

The following well-known properties of convolutions of distributions in 'P are 

easily extended to functions in J: 

h1*h2 = h2*h1 (h1*h2)*h3 = h1*(h2*h3) 

h1 *h3 + h2 *h3 = {h1 +h2)*h3. 

For a function hEJ we introduce the function liEJ defined by 

li(x) = x h(x). {X=0,1, ... ) 

With this notation we can reformulate the relation (1.2) between a function jEJ0 

and its De Pril transform as 

{5.1) 

This relation determines the De Pril transform uniquely. We also immediately see 



-20-

that 

(5.2) 

Proof For any non-negative integer x we have 

~(x) =X (h1 *h2)(x) =X Ey X O h1 (y)h2(x-y) = Ey X O [y+(x-y)]h1 (y)h2(x-y) = 
Ey x 0 [7i1(y)h2(x-y)+h1(y)n2(x-y)] = (7i!*h2)(x) + (h1*Ji2)(x), 

which proves the lemma. Q.E.D. 

If in addition J.£1 (I hi I )<ro for i=1,2, then 

If h1 and h2 are non-negative, then we can drop the conditions on J.£/ hi) ( i=1,2; 

j=O,l). 

Proof The first part of the theorem is proved by Dhaene & Sundt (1994). 
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If J.L1 (I hi! )<w for i=1,2, then we obtain from Lemma 5.1, the first part of the 

theorem, and (5.2) 

J.L1 (h1 *h2) = J.LoC"fLiTL2) = J.LoC7ti*h2+h1 *Ji2) = J.LoC7ti*h2) + J.Lo(h1 *Ji2) = 
J.Lo(7ti)J.Lo( h2) + J.Lo( h1 )J.LoCJi2) = J.L1 C h1 )J.Lo( h2) + J.Lo( h1 )J.L1 C h2), 

which proves the second part of the theorem. 

This completes the proof of Theorem 5.1. Q.E.D. 

We shall now extend Theorem 1.1 to De Pril transforms of functions in 1
0

. 

Theorem 5.2. The convolution of a finite number of functions in 10 is a functi­

on in 10, and its De Pril transform is the sum of the De Pril transforms of these 

functions. 

g1*g2 = g1*g2 + g1*g2 = (tpg *g1)*g2 + g1*(tpg *g2) = 
. 1 2 

tp g1 *(g1 *g2) + tp g2 *(gtg2) = ( tp g1 +tp g2)*(g1 *g2), 

which implies that tp * =tp +tp , that is, we have now proved that Theorem 
g1 g2 g1 g2 

5.2 holds for the convolution of two functions in 1 0" The general case follows easily 

by induction. 

This completes the proof of Theorem 5.2. Q.E.D. 

From Theorem 5.2 we see that we can evaluate the approximation g by first 
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finding the De Pril transform of each g., then finding the De Pril transform of g by 
t 

by using Theorem 4.5, and finally finding g recursively by (1.2). 

The following theorem can be used together with the results in subsection 3A 

to find error bounds for the approximation g. 

Theorem 5.3. With jiE'Po and giEJ0 (i=1, ... ,m), we have 

8(*i:\ fi,*/~1 gi) ~ ~i~~\ b'(fi,gi) 

8}*im1 fi,*/~1 gi) ~ ~im1 8}fi,gi) 

Proof For j=0,1, we have 

8}*im1 fi,*im1 gi) = ~;1 a/-11 cpf(x)-cpix)l = 

(j=0,1) 

(j=0,1) 

~; 1 xf-11 ~ i: 1 [ cp !/X )-cp g /X)] I ~ ~; 1 ~ i: 1 xf-11 cp fi (X )-cp g i X) I = 

~im1 ~;1 xf-11 cpf/x)-cpg/x) I = ~i:1 8}fi,g). 

Furthermore, 



-23-

If E;:1 I rpf(x) I < m, then for j=O,l, 

v{*.:!}:l g.)= E ml J-"lrp (x) = E ml :rJ-1 E.ml rp (x) = J '/,- '/, x= g x= 2- g . 
'/, 

E .m1 E m 1 J-"lrp (x) = E .:!}:1 v {g.) . 
2- x= g . 2- J ?, 

2 

This completes the proof of Theorem 5.3. Q.E.D. 

Theorem 5.3 shows that if we have upper bounds for the approximation error 

for the De Pril transform of each of the elements in the convolution, then we can 

easily find upper bounds for the approximation error for the De Pril transform of 

the convolution. 

5B. By using the bounds of Theorem 5.3 in the bounds of Theorems 3.1 and 

3.2, we obtain 

(5.3) 

(5.4) 

The following theorem gives alternative bounds for E0(j,g) and 'TJ(J,g) . 

Theorem 5.4. For f:E'P and g .E1 ( i=1, ... ,m), we have 
2 2 

(5.5) 
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(5.6) 

Proof The first inequality in (5.5) and the first inequality in (5.6) were 

proved by Dhaene & Sundt (1994), and the remaining inequalities follow by inserti­

on of the upper bounds of Theorems 3.1 and 3.2. 

This completes the proof of Theorem 5.4. Q.E.D. 

One somewhat disappointing aspect of (5.5) is that the bounds are not in 

general invariant against permutations of the pairs (fi,gi) ( i=1, ... , m). 

We shall look at some special cases of Theorem 5.4. 

Corollary 5.1. For jE'P0, gE10, and m a positive integer, we have 

1-JLo(lgl)m 1-JLo(lgl)m [ 8(J,g) J 
1-JLoCI 91) E o(f,g) ~ 1-JLoU 91) e , -1 

mE
0
(J,g) ~ m[e8(j,g)_1]. 

If in addition gE'P 0, then 
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(5.7) 

The following theorem shows that under certain conditions Theorem 5.4 gives 

sharper bounds than (5.3) and (5.4). 

Theorem 5.5. The bounds in (5.7) and (5.6) are sharper than the bounds in 

(5.3) and (5.4). 

Proof As 

[ 
6(f.,g .) J [ [ 6(f.,g .) J J E .m1 6(f.,g .) 

E .m e z z -1 < II .m e z z -1 +1 - 1 = e 't- z z - 1 
z=1 - z=1 ' 

we see that the bounds in (5.7) are sharper than the bound in (5.3). Furthermore, 

which shows that the bounds in (5.6) are sharper than the bound in (5.4). 

This completes the proof of Theorem 5.5. Q.E.D. 

6. Compound distributions 

6A. In this section we shall discuss approximations to compound 
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distributions with counting distribution in 'P 0 and severity distribution in 'P +. 

Inspired by Gurland (1957), we shall denote the compound distribution with 

counting distribution pE'P 0 and severity distribution hE'P + by pV h, that is, 

x n* 
(pVh)(x) = En=O p( n)h (x), (X=0,1, ... ) 

and we extend this definition of the function pV h to the case when pE1 0 and hE1 +. 

As 

(pVh)(O) = p(O), (6.1) 

we see that pVhE10 when pE10. 

To find a relation between the De Pril transforms of pV h and p, the following 

lemma will be useful. 

Lemma 6.1. For hE11 we have 

(m=1,2, ... ,n; n=1,2, ... ) 

Proof We shall first prove the lemma in the special case m=1, that is, 

hn* = n li*h(n-1)* (n=1,2, ... ) (6.2) 

by induction. 

For n=1, (6.2) trivially holds. 

Let us now assume that (6.2) holds for n=k. Then, by Lemma 5.1, 
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h(k+1)* = !i*hK+' + h*7 = !i*hK+' + h*(k !i*h(k-1)*) = !i*hK+' + k !i*hk* = 

( k+ 1 )!i* hK+'' 

that is, (6.2) holds also for n=k+1, and by induction (6.2) holds for all integers n. 

For positive integers m and n such that m~n, (6.2) gives 

which proves the lemma. Q.E.D. 

Sundt (1993) deduced the following relation between the De Pril transforms 

of pV h and p in the case when pE'P 0 and hE'P +. 

Theorem 6.1. IjpE10 and hE1 +'then 

X ({) (y) y* 
({JpVh (x) = x Ey=l 7 h (x). (x=0,1, ... ) (6.3) 

Proof For x=O (6.3) trivially holds. 

For any positive integer x we have 

X W X (({Jp*p)(n)W 
pVh(x) = En=l p(n)h (x) = En=1 n h (x) = 

X n ({Jp(y)p(n-y) W( ) _ X n ({Jp(y)p(n-y) (~* (n-y)*)( ) _ 
E 1E 1 h X -E lE 1 h h X-n= y= n n= y= y 

({) ( y) ----;;;F ( - )* 
E x ~ E x p(n-y) E x h11 (r)h n Y (x-r) = 

y=1 y n=y r=1 
({) ( y) ----;;;F ( - ) * 

E x E x _p_ h11 (r) E x p(n-y)h n Y (x-r) = 
r=1 y=l y n=y 

({) ( y) ----;;;F - * 
E x

1 
E .!:_

1 
~ h11 (r) Ex _

0
Y p(m)hm (x-r) = 

r= Y- Y m-
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cp(y)---;;-;;!' [ cp(y)----;;-;:!'] 
E xl E !:_1 _p_ hY (r) (pVh)(x-r) = E xl E ~l ~ hy (r)(pVh)(x-r) = 

r= Y- Y r= Y- Y 

[ [ Ey_:l cpp~y) 7] *(pVh)] (x), 

which by (5.1) implies that (6.3) holds for all positive integers x. 

This completes the proof of Theorem 6.1. Q.E.D. 

The following theorem can sometimes be applied together with Theorem 3.4 

to calculate 11-o(pVh) and 11-1 (pVh). 

Theorem 6.2. Let pE10 satisfying E;1 I cpp(x) I < w and let hE1 + satisfying 

J.L0(h)=l and 11-1 (I hi )<w. Then 

Proof For j=O,l, we have 

from which the theorem follows. Q.E.D. 

6B. One way to approximate a compound distribution, is to keep the severity 

distribution, but approximate the counting distribution. The following theorem is 

useful for finding bounds for the approximation errors of such approximations. 

Theorem 6.3. Let pE1'0, qE10, and hE'P +" Then 



80(pvh,qVh) ~ 80(p,q) 

81 (pVh,qVh) ~ 81 (p,q)f.t1 (h) 

8(pvh,qVh) ~ 8(p,q). 
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Proof By using Theorem 6.1 we obtain for j=0,1 

which proves (6.4) and {6.5). Formula {6.6) follows from {6.1) and {6.4). 

This completes the proof of Theorem 6.3. 

(6.4) 

(6.5) 

(6.6) 

Q.E.D. 

We see that if ~t1 {h)<ro and we let q approach p in such a way that 80(p,q) 

and 81(p,q) go to zero, then also 80(pVh,qVh) and 81(pVh,qVh) will go to zero. 

The following theorem is obtained by application of Theorems 3.1, 3.2, 3.4, 

6.2, and 6.3. 

Theorem 6.4. If pE1' 0' qE1 0, and hE1' +' then 

t
0
(pVh,qVh) ~ e8(p,q) -1 

'TJ(pVh,qVh) ~ [[e8(p,q)_1] ~t1 (p) + 8
1 
(p,q)e8(p,q)] ~t1 (h). 

5C. Whereas we in subsection 6B discussed approximating compound distri­

butions by approximating the counting distribution and keeping the severity distri­

bution unchanged, we shall now consider the case when we approximate the severi-
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ty distribution and keep the counting distribution unchanged. For this situation 

Dhaene & Sundt (1994) proved the following theorem. 

Theorem 6.5. For pE1 and hJ~E1 + with Jlo( I hi )<1 and Jlo( I kl )<1, we have 

If in addition h,kE'P +' then 

6D. We shall briefly mention two classes of approximations that can be con­

venient both for the counting distribution and the severity distribution in a com­

pound distribution; for further details we refer to Dhaene & Sundt (1994). 

For /E'P we define the approximation f ( r) for a positive integer r by 

f(r)(x) = f(x)I(~r). (X=0,1,2, ... ) 

For this approximation we have 

E
0
(f,J(r)) = 1-r 

1
(r) 

TJ(J,f(r)) = E1(J,f(r)) = rr1(o)-II f(r)(O) = Jl1(!J-Jl1(f(r)) = rr1(r)+r(1-r 1(r)). 

We see that unless r 1(r)=1, the approximation f(r) will not be a distributi­

on as lloU(r))<Jlo(fJ=l. To obtain a proper distribution, we can apply the modifi­

ed approximation 1 ( r) defined by 



We obtain 

t/!,](r)) = t/f,J(r)) + ~(1-rf(r)) 

rJ(J,j(r)) = IIf(r) 

and notice that 

E /J,J ( r)) ~ E /J,f( r)) 

n(J,j(r)) ~ n(J,f(r)). 

7. Infinitely divisible distributions 
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( X=O, 1, ... , r-1) 

(X=r) 

( X=r+ 1, r+2, •.. ) 

(j=0,1) 

(j=0,1) 

7 A. A probability distribution jE'P is called infinitely divisible if there for each 

* positive integer m exists a distribution fmE'P such that f= /;;, . Let JfD be the class 

of infinitely divisible distributions in 'P, and let 1Q=1'0n'JID. We see that if fEJfQ, 

then fmE'PQ for all integers m. 

The following characterisation of distributions in 1Q was given by Katti 

(1967) and, in terms of De Pril transforms, by Sundt (1994). 

Theorem 7.1. A distribution in 1'0 is infinitely divisible if and only if its De 

Pril transform is non-negative. 

Let 1{) denote the class of functions in 10 with a non-negative De Pril trans-
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form. When approximating a distribution in 1Q, we shall often apply an approxi­

mation in 1(). This is in particular the case with the truncation scheme of Theorem 

4.3. The following lemma, which follows easily from (1.2) by induction, implies 

that such approximations will give a non-negative approximation to the distributi-

on. 

Lemma 7.1. All functions in 1() are non-negative. 

The following theorem gives upper bounds for approximation errors related to 

approximations to infinitely divisible distributions . 

Theorem 7.2. Let !E'JIQ and gE1(). If Jlo(g)<1 1 then 

If gE1(y then 

t 0(f,g) ~ 8(/,g) 

7!(/,g) ~ 81 (J,g) . 

(7.1) 

(7.2) 

(7.3) 

Proof As fE'JfQ, for each positive integer m there exists a distribution fmE'JIQ 

such that f= /::.*. From Theorem 1.1 follows that cp 1 =.!..cpf . Correspondingly we 
m Jm m 

1 

define gmEJQ by gm(O)=g(O)m and cp
9
m =~cp9. Then g=g:* We easily obtain 

(7.4) 



1 

flo(gm) = flo(g)m. 
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(7.5) 

Let us now assume that 9E'PQ· Then also gmE'P(), and from Corollary 5.1 and 

(7.4) we obtain 

By letting m go to infinity we obtain (7.2) and (7.3). 

We now assume that J.Lo(g)<l. From (7.5) we see that also J.Lo(gm)<1, and 

from Corollary 5.1 and (7.4) we obtain 

( ) 
1-J.Lo(g) [ ~o(J,g) J 

Eo J,g ~ 1 e -1 . 

1-JJ-o(g)m 

Letting m go to infinity gives (7.1). 

This completes the proof of Theorem 7.2. Q.E.D. 

We easily see that the bounds in (7.1)-{7.3) are sharper than the bounds in 

(3.2) and (3.3) . 

7B. If we approximate !E'PQ by using the truncation scheme of Theorem 4.3, 

then the De Pril transform of the approximation g will satisfy the inequalities 

(x=1,2, ... ) (7.6) 



-34-

More generally, let gE1Q be an approximation to f that satisfies the inequali­

ties (7.6) and 

0 < g(O) ~ f(O). 

Then, by using induction on the recursion (1.2), we obtain that 

0 ~ g(x) ~ f(x). 

This again implies that for x:=O,l, ... , 

o ~ r ix) ~ r 1(x) 

0 ~ ITix) ~ ITJ(x) 

0 ~ n~!J(x) ~ rr1(x). 

In particular, (7.9) gives that 

(x:=O,l, ... ) 

and thus Theorem 7.2 applies for the present approximation g. 

If gis defined by (4.6) and g(O)=f(O), then we have the nice relation 

(j=O,l) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

If the inequalities in both (7.6) and (7.7) go the opposite way, then we also 

obtain the opposite inequalities in (7.8)-(7.11). 
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7C. For a proof of the following characterisation of infinitely divisible distri­

butions, we refer to Feller (1968, Section XI.2). 

Theorem 7.3. A distribution in 'P0 is infinitely divisible if and only if it can be 

expressed as a compound Poisson distribution with severity distribution on the posi-

tive integers. 

Theorem 7.3 implies that if /EJIQ, then there exists a distribution hE'P + such 

that f=pVh with 

)..n -A 
p( n) = -;;;-y e n. 

and A determined by (6.1) and (7.12), that is, 

A = lln f ( 0) I· 

Insertion of (4.11) in (6.3) gives 

cpf(x) = xAh(x), 

from which we obtain 

cp ti x) 
h(x) = . 

(n=0,1, ... ) (7.12) 

(7.13) 

(X=1,2, ... ). 

(X=1,2, ... ) (7.14) 

Lemma 7.2. Let gEJO' and let p be the Poisson distribution given by (7.12). 

Then g can be represented as qVk with 



q( n) = ~~~~ p( n). 

k\x) = cp~ix)_ 
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(n=0,1,2, ... ) 

(X=1,2, ... ) (7.15) 

Proof As q is equal to pup to a multiplicative constant, cp q cpp, and appli­

cation of Theorem 6.1 and (4.11) gives for X=0,1,2, ... 

Thus qVk is equal to to g up to a multiplicative constant, and as ( qVk)(O)=q(O)= 

g(O), we see that qVk=g. Q.E.D. 

Theorem 7.4. If !E'PQ and gE10, then 

(j=0,1) 

with A given by (7.13), h by (7.14), and k by (7.15). 

Proof For j=0,1, we obtain 

Q.E.D. 

By combining Theorems 7.2 and 7.4 we obtain the following corollary. 

Corollary 7.1. Let !E'PQ and gE1(), and let A be given by (7.13), h by (7.14), and 

k by (7.15). If tt0(g)<1, then 
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If gE1Q 1 then 

(7.17) 

Let us consider Corollary 7.1 in the special case when g(O)=f(O). In that case 

our approximation boils down to approximating f=pVh by g=pVk. We see that the 

bounds in (7.17) and the weak bound in (7.16) are the same as the bounds obtained 

in Theorem 6.5. 

We see that approximating f by g given by g(O)=f(O) and 

(x=1,2, ... ) 

is equivalent with approximating h by h( r) as defined in subsection 6D. Approxi­

mating h by h,( r) becomes equivalent with approximating f by g given by g(O)= 

f(O) and 

( x= 1 , 2 , . . . , r-1) 

(x=r) (7.18) 

(x=r+1, r+2, ... ) 

As the approximation g is obtained by replacing all severities greater than r 

with r, we obtain the inequalities 

(x=1,2, .. . ) 
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An alternative way to modify the approximation g so that the resulting app­

roximation to f becomes a probability distribution, is to rescale g, that is, apply 

the approximation 

We have cpN=cp and 
N g g 

6}!,~) = 6}J,g) 

6(!,~) = 6(j,g) -ln 110(g). 

8. Applications 

(j=O,l) 

SA. In the preceding sections we have presented results about bounds for 

approximation errors in several simple situations. These results are building blocks 

that can be applied together in more complex situations. 

For instance, let us consider a situation where we want to approximate the 

convolution f of m distributions j1' ... ,jm. It is assumed that for each i, fi is a com­

pound distribution piVhi with Pl'Po and hz-E'P +" 
We approximate f by for each i approximating p. by a function q .E'J0 obtain-z '/, 

ed by truncating cp at some positive integer r, that is, 
pi 

(x=1,2, ... ; i=1,2, ... ,m) 
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From Theorem 4.3 we obtain that 

( i=1,2, ... ,m; j=0,1) 

and from Theorem 6.3 

8(f.,g.) = o0(f.,g.) < o0(p.,q.) = 8(p.,q.) zz zz- zz zz 81(f,.,g.) < 81(p.,q.)Jt1(h.). z z - z 't 't 

( i=1,2, ... ,m) 

Application of Theorem 5.3 gives 

8(J,g) ~ ~i:\ 8Ui,gi) ~ ~i:1 8(Pi,qi) 

81(J,g) ~ ~im1 81(/i,gi) ~ ~im1 81(pi,qi)Jt1(hi). 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

Combining these bounds with the results in subsection 3A gives error bounds for 

the approximation g to f and the corresponding approximations to r f and II f. 

To evaluate g, we can for each i evaluate cpp. recursively by (1.1). From The­
z 

orem 6.1 we obtain 

(x=:1,2, ... ; i=1,2, ... ,m) 

Application of Theorem 5.2 gives 

cp ( y) 

( ) m ( ) m r Pi y*( ) cp X = ~ ·-1 cp X = X E ·-1 E -1 h. X) g 't- g . Z- Y- y z 
't 
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from which we can finally evaluate g recursively by {1.2), starting with 

8B. Let us now make the additional assumption that pl' ... ,pmE1Q. Then the 

De Pril transforms of these discrete densities become non-negative, and thus we can 

drop the absolute value sign in (8.1). 

As a compound distribution is infinitely divisible if its counting distribution is 

infinitely divisible, fl' ... ,jmE'PQ, and as a convolution of infinitely divisible distribu­

tions is infinitely divisible, fE'PQ. It is easily shown that in the present case the 

weak inequalities in (8.2)-{8.4) become equalities. 

From the discussion in subsection 7B follows that 

(X=O,l, ... ; i=l, ... ,m) 

from which we obtain 

(X=O,l, ... ; i=l, ... ,m) 

This gives 

0 ~ g(x) ~ f(x), (X=O,l, ... ) 

from which we in particular obtain 
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Hence Theorem 7.2 gives 

To obtain bounds for approximations to stop loss premiums from Theorem 

7.2, we have to modify the approximation g so that it becomes a probability distri­

bution. One way to do this, is to for each i modify qi so that it becomes a probabi­

lity distribution, e.g. by using the modification given by (7.18). 

8C. Instead of the assumption of infinite divisibility, we now assume that for 

each i, p . is R1[ a., b.] with I a ·I <1. From ( 4.8) we obtain that 
't 't 't 't 

cp (x) = ( a+b .)a~-1 . 
pi 't 't 't 

(X=1,2, ... ) (8.5) 

From Theorem 4.5 we obtain 

(8.6) 

(8.7) 

By insertion of {8.5)-(8. 7) in the expressions of subsection 8A, we obtain 

y-1 
a . y* 

cp (x) = xE -~1 (a+b-) E r 1 _z_h. (x) 
g 't- 't 't y= y 't 

(X=1,2, ... ) 



-42-

(8.9) 

We see that the upper bounds in (8.8) and (8.9) go to zero when r goes to 

infinity. Thus we can obtain any desired degree of accuracy by choosing r suffici­

ently large. 

8D. De Pril (1989) considered the exact and approximate evaluation of the 

convolution f of m distributions J1, .. . ,jmE'P0. For each i he represented fi as a 

compound Bernoulli distribution with counting distribution pi given by 

p{1) = 1- p{O) = 1f. = 1-.f{O) 
't 't 't 't 

and severity distribution h
2
-E.'P + given by 

.f.( x) 
h.(x) = -

2
-. 

't 1f. 
't 

It is assumed that 7ri<~. 

(X=1,2, ... ) 

As the Bernoulli distribution is in 'll' we can apply the results of the previous 

subsection. We have 

1f . 1f. 
't 't 

ai = -1-'Tf. bi = 2 1-1f . 
't 2 

rp (x) =- x E ~1 !. E .m1 [ 7r~1] y h'J( (x) (X=1,2, ... ) 
g Y- y <t- 7r i <t 

[ 
1-?r - 1 [7r · ]x] 1 1f. [7r · ]r 8(!, ) < E m 1 't E r 2 < E m 2 z 

,g - i=1 n 1-27ri- X=1 x 1-?ri - r+1 i=1 1-27ri l-7ri (8.10) 
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(8.11) 

Together with the results in subsection 3A, the weak bound in (8.10) and the 

bound in (8.11) give the bounds found by De Pril (1989) and Dhaene & De Pril 

(1994). 

As we have seen above, De Pril's approximation can be considered as an app-

roximation to the convolution of compound Bernoulli distributions. More general­

ly, it can be considered as an approximation to the convolution of compound bi­

nomial distributions, as some of the distributions may be equal to each other. The 

set-up in subsection 8C generalises the set-up of De Pril in the sense that we allow 

some of the counting distributions to be negative binomial and Poisson as well as 

binomial. 

8E. Let us now consider the case when all the counting distributions are 

negative binomial, that is, for i=1, ... ,m 

Then 

a.= 'lr· z z 

Insertion in (8.5) gives 

(x=1,2, ... ) 
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and from Theorem 7.1 follows that p. is infinitely divisible. Hence the discussion of z 

subsection 8B applies. In particular we obtain 

(x:=1,2, ... ) 
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