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Abstra
tThe present paper is devoted to the study of several notions of positive dependen
e amongrisks, namely asso
iation, linear positive quadrant dependen
e, positive orthant dependen
eand 
onditional in
reasingness in sequen
e. Various examples illustrate the usefulness ofthese notions in an a
tuarial 
ontext.Key words and phrases: dependen
e, risk theory, asso
iation, linear positive quadrant de-penden
e, positive orthant dependen
e, 
onditional in
reasingness in sequen
e



1 Introdu
tionThe study of the dependen
e among risks has be
ome one of the main topi
s in a
tuarials
ien
es nowadays. It has been re
ognized that the assumption of mutual independen
e ofrisks is often violated in insuran
e pra
ti
e. In many lines of business, the introdu
tion of
ommon sho
ks at the portfolio level is needed to represent the e�e
ts of 
atastrophes hittingseveral (or a large number of) poli
ies simultaneously, like earthquakes, tornados, epidemi
sand so on. Consequently, the risks in the individual model are 
ertainly not independentbut merely depend on ea
h other. The purpose of this paper is to examine some statisti
almodels des
ribing dependent risks, as well as to measure their 
onsequen
es.Let us brie
y spe
ify some notations. Hen
eforth, a non-negative random variableX witha �nite expe
tation is 
alled a risk. A multivariate riskX is a random ve
tor (X1; X2; : : : ; Xn)whose 
omponents X1; X2; : : : ; Xn are univariate risks and 
ovarian
es Cov[Xi; Xj℄ are �nitefor all i 6= j. All the fun
tions used in this paper are ta
itly assumed to be measurable.Finally, IR denotes the real line (�1;+1), IR+ the half positive real line [0;+1) and INthe set of the non-negative integers f0; 1; 2; : : :g.Several notions of positive dependen
e were introdu
ed in the literature to model the fa
tthat large values of one of the 
omponents of a multivariate risk X tend to be asso
iatedwith large values of the others. Some of these 
on
epts appear to be relevant in a
tuarials
ien
es. We brie
y review these notions in Se
tion 2. Introdu
ing these dependen
e notionswill enable us to generalize several results from Dhaene and Goovaerts (1996), Dhaene,Vanneste and Wolthuis (1996) and Wang and Dhaene (1998), where only the bivariate 
asewas 
onsidered.To begin with, we examine the notion of asso
iation in Subse
tion 2.1. The risksX1; X2; : : : ; Xn are said to be asso
iated (or equivalently the n-dimensional risk X is said topossess this property) whenCov [�1(X1; X2; � � � ; Xn); �2(X1; X2; � � � ; Xn)℄ � 0 (1.1)for all the non-de
reasing fun
tions �1 and �2 : IRn+ ! IR for whi
h the 
ovarian
es exist. Asingle risk X1 is asso
iated sin
e the inequalityCov[�1(X1); �2(X1)℄ � 0 (1.2)holds for any non-de
reasing fun
tions �1 and �2.Asso
iation has been �rst 
onsidered in a
tuarial s
ien
es by Norberg (1989) in the spe-
ial 
ase n = 2; this author used this notion in order to investigate some alternatives tothe independen
e assumption for multilife statuses in life insuran
e. Asso
iation has alsore
ently been used by Ribas and Alegre (1999) in order to model dependen
y relations inthe individual life model.In Subse
tion 2.2, we 
onsider a notion of dependen
e that is weaker than asso
iationand is de�ned with the aid of the positive quadrant dependen
e. As far as random 
ouplesare 
on
erned (n = 2), positive quadrant dependen
e (PQD, in short) has been extensivelyused in a
tuarial s
ien
es, e.g. by Dhaene and Goovaerts (1996) and Denuit, Lef�evre andMes�oui (1999). Let us re
all that two risks X1 and X2 are said to be PQD if the inequalityP [X1 > x1; X2 > x2℄ � P [X1 > x1℄P [X2 > x2℄ (1.3)1



holds for any reals x1; x2 2 IR+, or, equivalently, if the inequalityCov[�1(X1); �2(X2)℄ � 0 (1.4)holds for any non-de
reasing fun
tions �1 and �2 : IR+ ! IR; for a proof of the equivalen
eof (1.3) and (1.4), pro
eed as for Theorem 1 in Dhaene and Goovaerts (1996). Considering(1.3), the intuitive meaning of PQD is 
lear: if X1 and X2 are PQD then the probabilitythat they both assume \large" values is greater than if they were independent. Combining(1.1) and (1.4), it is easily seen that asso
iated risks X1 and X2 are PQD.Sin
e the inequalityP [X1 > x1; X1 > x2℄ = P [X1 > maxfx1; x2g℄ � P [X1 > x1℄P [X2 > x2℄obviously holds, we get (1.2) from (1.4).A dire
t multivariate (n � 3) extension of the PQD 
on
ept is known as the pairwisePQD: a n-dimensional risk X is said to be pairwise PQD if the 
omponents Xi and Xj ofX are PQD for all i 6= j. Subse
tion 2.2 is devoted to a less trivial extension of PQD, theso-
alled linear PQD (LPQD, in short). We prove inter alia that the sum of the 
omponentsof a LPQD risk X dominates the sum of the 
omponents of its independent version in thestop-loss sense.In Subse
tion 2.3, in addition to pairwise PQD and LPQD, we present a third general-ization of the bivariate PQD to higher dimensions, namely the positive orthant dependen
e(POD, in short). Whereas (1.3) 
ompares quadrant probabilities, POD uses the 
orrespond-ing orthant probabilities.In Subse
tion 2.4, we review the 
onditional in
reasingness in sequen
e (CIS, in short).The main interest of this te
hni
al 
ondition is that it is suÆ
ient to imply asso
iation aswell as LPQD and POD. Moreover, CIS is often easily veri�ed in risk models.Se
tion 3 is devoted to various appli
ations in a
tuarial s
ien
es. We �rst extend tothe multivariate 
ase the main results obtained by Dhaene, Vanneste and Wolthuis (1996)for the bidimensional situation. To be spe
i�
, we 
ompare the amounts of the net singlepremium relating to a joint-life or to a last-survivor annuity under the independen
e andthe POD assumptions. Then, we examine a very parti
ular dependen
e stru
ture, namely
omonotoni
ity. We show that a 
omonotoni
 risk possesses all the properties dis
ussed inSe
tion 2. We also investigate the family of 
ounting distributions introdu
ed by Ambagaspi-tiya (1998). Next, the additivity of stop-loss preserving premium 
al
ulation prin
iples isbrie
y dis
ussed. To end with, risk models similar to the one de�ned by Mar
eau, Cossette,Gaillardetz and Rioux (1999) are investigated.In the remainder, all the ve
tors are ta
itly assumed to be 
olumn ve
tors and the super-s
ript \prime" denotes the usual transposition. The random ve
torX? = (X?1 ; X?2 ; : : : ; X?n )represents an independent version of X = (X1; X2; : : : ; Xn), i.e. (i) the random variablesX?1 ; X?2 ; : : : ; X?n are mutually independent and (ii) for any i = 1; 2; : : : ; n, the random vari-ables Xi and X?i are identi
ally distributed. Given two random variables X and Y , X issaid to pre
ede Y in the sto
hasti
 dominan
e (resp. stop-loss order), written as X �st Y(resp. X �s` Y ) if E�(X) � E�(Y ) for all the non-de
reasing (resp. non-de
reasing and
onvex) fun
tions � for whi
h the expe
tations exist. The symbol \=d" means \is equallydistributed as". 2



2 Positive dependen
e notions2.1 Asso
iationIt is obvious that (1.1) models a situation where the 
omponents of X are positively depen-dent, but the intuitive meaning of asso
iation is not 
lear. However, impli
it in a 
on
lusionthat a set of risks is asso
iated is a wealth of inequalities, often of dire
t use in variousa
tuarial problems. Moreover, models re
ently introdu
ed to take into a

ount a possibledependen
e often generate asso
iated risks. This point will be 
onsidered in Se
tion 3.The following properties of asso
iation 
an be found in Esary, Pros
han and Walkup(1967).Property 2.1. Let X1; X2; : : : ; Xn be asso
iated risks. The following assertions hold true:(i) any subset Xi1 ; Xi2; : : : ; Xik of X1; X2; : : : ; Xn is asso
iated;(ii) Let Y1; Y2; : : : ; Yk be asso
iated random variables independent of the Xi's. Then X1, X2,: : : , Xn, Y1, Y2, : : : , Yk are asso
iated;(iii) If the measurable fun
tions  1;  2; : : : ;  k : IRn ! IR are non-de
reasing then therandom variables  1(X1; X2; � � � ; Xn),  2(X1; X2; � � � ; Xn), : : : ,  k(X1; X2; � � � ; Xn)are asso
iated.We will also often use the following result, whi
h straightly follows from (1.2) togetherwith Property 2.1 (ii).Property 2.2. X? is asso
iated.Many authors have questioned the relevan
e of the 
lassi
al Pearson 
orrelation 
oef-�
ient as a measure of dependen
e. See e.g. Embre
hts, M
Neil and Strauman (1999).Nevertheless, under several positive dependen
e notions, this measure is of great interest tothe pra
titioner, as shown in Property 2.3; for other results in that vein, see Denuit andDhaene (1999).Property 2.3. Suppose that the multivariate risk X is asso
iated. The Xk's are jointlyindependent if, and only if, Cov[Xi; Xj℄ = 0 for all i 6= j.This means that for an asso
iated multivariate riskX, investigating mutual independen
eturns out to investigate the 
ovarian
es. The varian
e-
ovarian
e matrix of an asso
iatedrisk X plays thus a 
entral role in the investigation of the dependen
y stru
ture of X. Aproof of Property 2.3 will be given in Se
tion 2.2 where a more general version of the relationbetween positive dependen
e notions and 
orrelations will be 
onsidered.2.2 Linear positive quadrant dependen
eNewman (1984) proposed the following extension of the bivariate PQD: let X be a mul-tivariate risk su
h that for any non-negative real 
onstants �1; �2; : : : and for any disjointA;B � f1; 2; : : : ; ng, Xi2A �iXi and Xi2B �iXi are PQD: (2.1)3



Then, X is said to be linearly PQD (LPQD, in short). Note that LPQD is essentially asymmetri
al 
ondition, in the sense that saying that (X1; X2; : : : ; Xn) is LPQD is equivalentto say that (X�(1); X�(2); : : : ; X�(n)) is LPQD, for any permutation � of f1; 2; : : : ; ng. With-out loss of generality, we may assume �i 2 [0; 1℄ for all i in (2.1). As a 
onsequen
e, (2.1)
an be interpreted as follows: for any two disjoint sets of risks A and B of the portfolio,both aggregate risks asso
iated with a quota share reinsuran
e treaty are PQD, i.e. theprobability that they both assume \large" values is greater than if they were independent.It 
an be shown that, given a multivariate risk X,X asso
iated) X LPQD) X pairwise PQD; (2.2)but the reverse is not ne
essarily true. The proof of the impli
ations in (2.2) is straightfor-ward.The following properties are easy to prove (
oming ba
k to the de�nition of PQD bymeans of 
orrelation order for (ii)).Property 2.4. Let X1; X2; : : : ; Xn be LPQD risks. The following assertions hold true:(i) any subset Xi1 ; Xi2; : : : ; Xik of X1; X2; : : : ; Xn is LPQD;(ii) Let Y1; Y2; : : : ; Yk be LPQD random variables independent of the Xi's. Then X1, X2,: : : , Xn, Y1, Y2, : : : , Yk are LPQD.By (2.2) together with Property 2.2, X? is LPQD. Remark that the 
ounterpart ofProperty 2.1 (iii) is not ne
essarily valid here.For X pairwise PQD, the 
ovarian
e stru
ture reveals a lot of information about thedependen
e of the 
omponents X1; X2; : : : ; Xn of X, as it was the 
ase for asso
iation. Thisis formally stated in the next result.Property 2.5. Suppose that the multivariate risk X is pairwise PQD. Then,(i) Cov[Xi; Xj℄ � 0 for all i 6= j;(ii) Given two disjoint subsets A and B of f1; 2; : : : ; ng, fXk; k 2 Ag and fXk; k 2 Bgare mutually independent if, and only if,Cov[Xi; Xj℄ = 0 for all i 2 A and j 2 B:Proof. Sin
e the 
ouples (Xi; Xj) are PQD for all i 6= j, (i) dire
tly follows from (1.4). Letus now prove (ii). Consider i 2 A and j 2 B, and assume that Cov[Xi; Xj℄ = 0. Let usre
all that Denuit, Lef�evre and Mes�oui (1999) have shown thatE[XiXj℄ = Z +1xi=0 Z +1xj=0 P [Xi > xi; Xj > xj℄dxidxj:Sin
e the 
ovarian
e between Xi and Xj equals 0, the latter formula yieldsZ +1xi=0 Z +1xj=0 fP [Xi > xi; Xj > xj℄� P [Xi > xi℄P [Xj > xj℄g dxidxj = 0:Now, the integrand f:g in the latter expression is non-negative for all xi and xj (sin
e (Xi; Xj)is PQD); this implies that P [Xi > xi; Xj > xj℄ = P [Xi > xi℄P [Xj > xj℄ for all xi; xj 2 IR+,so thatXi and Xj are mutually independent. The opposite 
on
lusion is straightforward.4



As a 
onsequen
e of Property 2.5 (ii) we have that for a pairwise PQD risk X, the
omponents X1; X2; : : : ; Xn are mutually independent if, and only if, Cov[Xi; Xj℄ = 0 for alli 6= j. Be
ause of (2.2) we have that the results of Property 2.5 a fortiori hold for LPQD orasso
iated risks X.Let us now prove the following result whi
h enhan
es the interest of LPQD in the studyof dependent risks. More pre
isely, it is known from Dhaene and Goovaerts (1996, Theorem2) that if the random 
ouple (X1; X2) is PQD then the sto
hasti
 inequalityX?1 +X?2 �s` X1 +X2holds; we provide hereafter a multivariate generalization of this result.Theorem 2.6. Let X be LPQD with marginal distribution fun
tions F1; F2; : : : ; Fn. Then,we haveX?1 +X?2 + : : :+X?n �s` X1 +X2 + : : :+Xn �s` F�11 (U) + F�12 (U) + : : :+ F�1n (U);where U denotes a random variable uniformly distributed on the unit interval [0; 1℄ and F�1iis the quantile fun
tion asso
iated to Fi, i.e.F�1i (p) = inffx 2 IRjFi(x) � pg; 0 < p < 1:Proof. The se
ond stop-loss inequality is true in general, for risks X1; X2; : : : ; Xn with dis-tribution fun
tion F1; F2; : : : ; Fn; see, e.g., Dhaene, Wang, Young and Goovaerts (1997). Letus prove the �rst stop-loss inequality. Without loss of generality, the random ve
tors X? andX may be 
onsidered independent. Now, pro
eed by indu
tion. First, X?1 �s` X1 triviallyholds. Now, assume thatX?1 +X?2 + � � �+X?k �s` X1 +X2 + � � �+Xkholds true for k = 1; 2; � � � ; n� 1. Then, by the 
losure of �s` under 
onvolution, the lattersto
hasti
 inequality yieldsX?1 +X?2 + � � �+X?n�1 +X?n �s` X1 +X2 + � � �+Xn�1 +X?n : (2.3)Now, sin
e X is LPQD, Xn and X1 +X2 + � � �+Xn�1 are positively quadrant dependent,we get X1 +X2 + � � �+Xn�1 +X?n �s` X1 +X2 + � � �+Xn�1 +Xn: (2.4)Combining (2.3) and (2.4) yields the announ
ed result by the transitivity property of�s`.Note that Theorem 2.6 a fortiori holds when X is asso
iated; see (2.2). It is worth men-tioning that the result in Theorem 2.6 holds under mu
h less restri
tive (non-symmetri
al)
onditions. Indeed, assuming that the random 
ouples (X1; X2), (X1 +X2; X3), (X1 +X2 +X3; X4), : : : , (X1 + X2 + : : : + Xn�1; Xn) are all PQD suÆ
es to prove the theorem. Thisnotion of positive dependen
e is used by Denuit, Dhaene, Lef�evre and Koutras (1999) todeal with dependen
e in the individual risk model.5



From the above result, on
e the marginal distributions of the Xi's are �xed, the bestpossible bounds in the �s`-sense on the aggregate 
laims X1 +X2+ : : :+Xn of LPQD risksare provided by X?1 + X?2 + : : : + X?n and F�11 (U) + F�12 (U) + : : : + F�1n (U). Therefore,any risk-averse de
ision-maker will prefer X?1 + X?2 + : : : + X?n over X1 + X2 + : : : + Xnwhen the risks X1; X2; � � � ; Xn are LPQD. This 
on
lusion holds both in Von Neumann andMorgenstern expe
ted utility theory, as well as in Yaari's dual theory of 
hoi
e under risk.For more details about the interpretation of �s` in de
ision theory, see e.g. Dhaene, Wang,Young and Goovaerts (1997).For LPQD risks, the safest dependen
e stru
ture is provided by mutual independen
e, for�xed marginals. When the risks are not known to be LPQD, the safest dependen
e stru
turedoes not always exist; see Dhaene and Denuit (1999) for more details.We �nally remark that it follows from Theorem 2.6 that making the assumption of mutualindependen
e between the 
omponents of a LPQD risk X leads to an underestimation of thestop-loss premiums. In terms of utility theory this means that the insurer in fa
t repla
esthe \real" aggregate 
laims by a \less risky" aggregate 
laims, whi
h is of 
ourse a dangerousstrategy.2.3 Positive orthant dependen
eA multivariate risk X is said to be positively lower orthant dependent (PLOD, in short)when the inequalityP [X1 � x1; X2 � x2; � � � ; Xn � xn℄ � nYi=1 P [Xi � xi℄ (2.5)holds for any x1; x2; : : : ; xn 2 IR; it is said to be positively upper orthant dependent (PUOD,in short) when the inequalityP [X1 > x1; X2 > x2; � � � ; Xn > xn℄ � nYi=1 P [Xi > xi℄ (2.6)holds for any x1; x2; : : : ; xn 2 IR. When (2.5) and (2.6) simultaneously hold, then X is saidto be positively orthant dependent (POD, in short). We have thatX asso
iated ) X POD;for a proof, see e.g. Esary et al. (1967, Theorem 5.1).Note that POD is a straight extension of the bivariate PQD to dimension n � 3 (bysubstituting orthants for bivariate quadrants). POD has an intuitive interpretation. Indeed,from (2.5) we see that the probability that all the 
omponents of X are \small" is greaterthan in the independent 
ase, while (2.6) means that the probability that all the 
omponentsare \large" is greater than in the independent 
ase. Note that (2.5) and (2.6) are in generalnot equivalent when n � 3.It 
an easily be shown that for random 
ouples (n = 2), the following equivalen
es holdtrue: X PQD, X POD, X LPQD:6



Of 
ourse, these equivalen
es no more hold in general for dimension n � 3. It is worth men-tioning that the inequalities (2.5) and (2.6) are usually referred to as the Sidak inequalities,or as the �rst order produ
t-type inequalities. A study of the a

ura
y of these inequalities
an be found e.g. in Glaz and Johnson (1984). These authors also proposed a method toexploit the dependen
e srtu
ture in order to get better bounds on orthant probabilities thanthose furnished by (2.5) and (2.6).From (2.5) and (2.6), it is easy to 
on
lude that when X is POD, the sto
hasti
 inequal-ities mini X?i �st mini Xi and maxi Xi �st maxi X?i (2.7)are valid. The latter result 
an be found e.g. in Ba

elli and Makowski (1989) and explainsthe usefulness of the POD notion in a variety of situations, sin
e it suggests a natural wayof generating 
omputable bounds for the maximum or the minimum of n POD risks.2.4 Conditional in
reasingness in sequen
eThe abstra
t 
hara
terization (1.1) of asso
iation is often diÆ
ult to deal with in a 
on
retestatisti
al model. Therefore, a stronger notion than asso
iation but better tra
table may beof interest. Conditional in
reasingness in sequen
e is su
h a 
on
ept of dependen
e.A random ve
tor X is said to be 
onditionally in
reasing in sequen
e (CIS, in short) if,for any i = 2; 3; : : : ; n, one of the equivalent following 
onditions hold:(i) P [Xi > xjX1 = x1; X2 = x2; : : : ; Xi�1 = xi�1℄ is non-de
reasing in x1; x2; : : : ; xi�1 in thesupport of the Xi's for all x;(ii) [XijX1 = x1; X2 = x2; : : : ; Xi�1 = xi�1℄ �st [XijX1 = y1; X2 = y2; : : : ; Xi�1 = yi�1℄ forany x1 � y1, x2 � y2, : : : , xi�1 � yi�1 in the support of the Xi's;(iii) E[�(Xi)jX1 = x1; X2 = x2; : : : ; Xi�1 = xi�1℄ is a non-de
reasing fun
tion of the vari-ables x1; x2; : : : ; xi�1 in the support of the Xi's for all the non-de
reasing fun
tions �for whi
h the expe
tations are de�ned.See Cohen and Sa
krowitz (1995) for further results.As mentioned above, a CIS multivariate risk X is asso
iated; for a proof, we refer theinterested reader e.g. to Joe (1997, Theorem 2.4 page 16). It is easily seen that X? is CIS.In an a
tuarial 
ontext, CIS may be generalized to weaker orderings than �st (in parti
-ular, the stop-loss order). We 
ould require, for instan
e, that for any i = 2; 3; : : : ; n,E[(Xi � x)+jX1 = x1; X2 = x2; : : : ; Xi�1 = xi�1℄to be non-de
reasing in x1; x2; : : : ; xi�1 in the support of the Xi's for all x, whi
h in turnboils down to[XijX1 = x1; X2 = x2; : : : ; Xi�1 = xi�1℄ �s` [XijX1 = y1; X2 = y2; : : : ; Xi�1 = yi�1℄for any x1 � y1, x2 � y2, : : : , xi�1 � yi�1 in the support of the Xi's. A study of thisdependen
e 
on
ept is deferred to a subsequent work.7



3 Appli
ations3.1 Multiple life statusesConsider the statuses (x1), (x2), : : : , (xn) with remaining lifetimes T(x1), T(x2), : : : , T(xn),respe
tively. The joint life status (x1; x2; : : : ; xn) exists as long as all individual statusesexist. This status has remaining lifetimeT(x1;x2;::: ;xn) = min�T(x1); T(x2); : : : ; T(xn)	 :The last survivor status (x1; x2; : : : ; xn) exists as long as at least one of the individual statusis alive. Its remaining lifetime is given byT(x1;x2;::: ;xn) = max�T(x1); T(x2); : : : ; T(xn)	 :Let us now assume that T = (T(x1); T(x2); : : : ; T(xn)) is POD. Let us also introdu
e thefollowing straightforward notations:T?(x1;x2;::: ;xn) = min�T?(x1); T?(x2); : : : ; T?(xn)	 and T?(x1;x2;::: ;xn) = max�T?(x1); T?(x2); : : : ; T?(xn)	 :From (2.7), it follows thatT?(x1;x2;::: ;xn) �st T(x1;x2;::: ;xn) and T(x1;x2;::: ;xn) �st T?(x1;x2;::: ;xn)whi
h in turn implies that�a?(x1;x2;::: ;xn) �st �a(x1;x2;::: ;xn) and �a(x1;x2;::: ;xn) �st �a?(x1;x2;::: ;xn);where the supers
ript \?" is used to indi
ate that the annuity is based on T?(x1;x2;::: ;xn) orT?(x1;x2;::: ;xn). This means that for POD remaining lifetimes, the independen
e assumption(while leaving the marginal distribution fun
tions un
hanged) leads to an underestimationof the net single premium (and reserves) of a joint life annuity. The opposite 
on
lusionholds for the last survivor annuity. Similar 
on
lusions 
an be drawn for endowment andwhole life insuran
es. These results extend those in Dhaene, Vanneste and Wolthuis (1996),where only the bivariate 
ase is 
onsidered.3.2 Comonotoni
 risksThe risks X1; X2; � � � ; Xn with marginal distribution fun
tions F1, F2, : : : , Fn are said to bemutually 
omonotoni
 when(X1; X2; : : : ; Xn) =d (F�11 (U); F�12 (U); : : : ; F�1n (U));with U uniformly distributed over the unit interval [0; 1℄. A
tuarial appli
ations of the notionof 
omonotoni
ity 
an be found e.g. in Goovaerts, Dhaene and De S
hepper (1999).Su
h an extreme multivariate risk X ful�lls all the positive dependen
e notions examinedabove. Firstly, a mutually 
omonotoni
 risk is ne
essarily asso
iated, from Property 2.1(iii)8



together with the fa
t that U is asso
iated by (1.2). A dire
t 
he
k of this assertion is asfollows: it suÆ
es to note that, given any non-de
reasing fun
tions �1 and �2 : IRn ! IR, wehave that Cov[�(X); �2(X)℄ = Cov[ 1(U);  2(U)℄;where  i(u) = �i(F�11 (u); F�12 (u); : : : ; F�1n (u)); i = 1; 2:It is straightforward that  1 and  2 are both non-de
reasing. The latter 
ovarian
e is thennon-negative in virtue of (1.2).A 
omonotoni
 risk X is even CIS. Indeed, for any non-de
reasing fun
tion �, we �ndE[�(Xi)jX1 = x1; X2 = x2; : : : ; Xi�1 = xi�1℄= E[�(F�1i (U))jF�11 (U) = x1; F�12 (U) = x2; : : : ; F�1i�1(U) = xi�1℄= E[�(F�1i (U))jFj(xj � 0) � U � Fj(xj) for j = 1; 2; : : : ; i� 1℄whi
h is 
learly non-de
reasing in x1, x2, : : : , xi�1.Finally, we prove (dire
tly) that a 
omonotoni
 risk is also POD. Indeed, we have thatP [X1 � x1; X2 � x2; : : : ; Xn � xn℄ = min fF1(x1); F2(x2); : : : ; Fn(xn)g � nYi=1 Fi(xi)andP [X1 > x1; X2 > x2; : : : ; Xn > xn℄ = min fP [X1 > x1℄; P [X2 > x2℄; : : : ; P [Xn > xn℄g� nYi=1 P [Xi > xi℄:3.3 Ambagaspityia's 
lass of 
ounting distributionsAmbagaspitiya (1998) proposed a new family of dis
rete multivariate distributions represent-ing the number of 
laims in di�erent 
lasses of business. To be spe
i�
, the n-dimensionalrandom ve
tor N is given as0BBB� N1N2...Nn
1CCCA = 0BBB� a11 a12 � � � a1ka21 a22 � � � a2k... ... . . . ...an1 an2 � � � ank

1CCCA0BBB� M1M2...Mk
1CCCA ;where aij 2 IN for all i and j, and M is a random ve
tor valued in INk with independent
omponents. Su
h a random ve
tor N is asso
iated sin
e given any non-de
reasing fun
tions�1 and �2 : IRn ! IR, there exist two non-de
reasing fun
tions  1 and  2 : IRk ! IR su
hthat Cov[�1(N); �2(N)℄ = Cov[ 1(M);  2(M)℄:The latter 
ovarian
e is non-negative sin
e M has independent 
omponents, whi
h impliesthat M is asso
iated. 9



A possible generalization of Ambagaspitiya's 
lass of multivariate distributions is as fol-lows: let M be de�ned as above, and 
onsider N with ith 
omponent Ni of the formNi = 'i(M1;M2; : : : ;Mk), i = 1; 2; : : : ; n, where the fun
tions 'i : INk ! IN , i = 1; 2; : : : ; n,are non-de
reasing. It is straightforward that N is also asso
iated.3.4 Premium 
al
ulation prin
ipleLet us 
onsider a premium 
al
ulation prin
iple H[:℄, that assigns a premium amount H[X℄to any risk X. We assume that the distribution fun
tion of X 
ompletely determines thepremium for X. Assume further that H[:℄ preserves the stop-loss order, i.e. given two risksX and Y , X �s` Y ) H[X℄ � H[Y ℄:Consider LPQD risks X1; X2; � � � ; Xn. The stop-loss preserving property together withTheorem 2.6 yields H " nXi=1 X?i # � H " nXi=1 Xi# � H " nXi=1 F�1i (U)# : (3.1)The inequality above states that for a stop-loss preserving premium prin
iple, the premiumof a sum of LPQD risks is maximal if the risks are 
omonotoni
 and minimal if the risksare mutually independent. We remark that the se
ond inequality holds in general for all X(not ne
essarily LPQD); see e.g. Wang and Dhaene (1998). From (3.1), we �nd that if apremium prin
iple preserves stop-loss order and is additive for independent risks, then it issuper-additive for LPQD risks. This result is a generalization of the bivariate 
ase 
onsideredin Wang and Dhaene (1998).3.5 Mar
eau's modelLet us 
onsider the model re
ently de�ned by Mar
eau et al. (1999). This model allows de-penden
e between the risks of an insuran
e portfolio in the individual risk model. Consider aportfolio 
onsisting of n poli
ies with 
laim amounts X1; X2; : : : ; Xn. Let S be the aggregate
laim amount for the insuran
e portfolio, i.e. S =Pni=1Xi. Let Xi, i = 1; 2; : : : ; n, be of theform Xi = IiBi where the Ii's are Bernoulli random variables su
h that P [Ii = 1℄ = pi andP [Ii = 0℄ = qi, pi + qi = 1, and where the Bi's are independent positive random variables.Assume further that the random ve
tors I = (I1; I2; : : : ; In) and B = (B1; B2; : : : ; Bn) aremutually independent. Now, suppose that the Ii's satisfyIi = minfJi + J0; 1g; i = 1; 2; : : : ; n;where the Ji's, i = 0; 1; : : : ; n are independent Bernoulli random variables with P [Ji = 1℄ =pii and P [Ji = 0℄ = qii, pii+qii = 1. The random ve
tor I has 
learly dependent 
omponents,so that X = (X1; X2; : : : ; Xn) also has. Nevertheless, the Ii's remain Bernoulli distributedwith qi = q00qii. The Ii's are asso
iated sin
e given any non-de
reasing fun
tions �1 and�2 : IRn ! IR, there exist two non-de
reasing fun
tions  1 and  2 : IRn+1 ! IR su
h thatCov[�1(I1; I2; : : : ; In); �2(I1; I2; : : : ; In)℄ = Cov[ 1(J0; J1; : : : ; Jn);  2(J0; J1; : : : ; Jn)℄;10



whi
h is non-negative sin
e the Ji's are independent, and thus asso
iated. The Xi's are thenalso asso
iated. Indeed, from Property 2.1(ii) and the independen
e assumption, it followsthat I1; I2; : : : ; In; B1; B2; : : : ; Bn are asso
iated, and by Property 2.1(iii), we �nally �ndthat X is asso
iated.We remark that Mar
eau's model 
an be generalized and still remain asso
iated. Indeed,if the Ii's are de�ned by Ii = 'i(J0; J1; : : : ; Jn); i = 1; 2; : : : ; n;where the Ji's are arbitrary asso
iated random variables and where the fun
tions 'i : IRn !f0; 1g are non-de
reasing, then it is easy to verify that the ve
tor X remains asso
iated.Even more general: it suÆ
es that I and B are asso
iated and mutually independent toimply asso
iation of X.4 Con
lusionsIn this paper, we 
onsidered several notions of positive dependen
e. Ex
ept for the CIS,all these notions are symmetri
, in the sense that their de�nition is independent of theorder of the 
omponents of the random ve
tor. All these notions are qualitative (in thesense that a multivariate risk possesses or not a given dependen
e stru
ture). It turnedout that the independent random ve
tors and the 
omonotoni
 random ve
tors both are ina

ordan
e with all positive dependen
e notions we examined. Moreover, independen
e and
omonotoni
ity are extremal notions in the 
lass of positively dependent random ve
tors.Indeed, assuming that X is pairwise PQD (whi
h is the weakest dependen
e notion we
onsidered), we have that0 � Cov[Xi; Xj℄ � Cov[F�1i (U); F�1j (U)℄for all 1 � i 6= j � n. We proved that independen
e of the Xi's boils down to Cov[Xi; Xj℄ = 0for all 1 � i 6= j � n, while Denuit and Dhaene (1999) showed that 
omonotoni
ity of all
omponents is equivalent to Cov[Xi; Xj℄ = Cov[F�1i (U); F�1j (U)℄ for all 1 � i 6= j � n.We also proved that if X is LPQD then the stop-loss premium relating to the sum of the
omponents of X is bounded from below by the sum of the 
omponents of the independentversion X?. In this 
ase, the independen
e assumption will lead to an underestimation ofthe true stop-loss premium. Items for future resear
h are the study of quantitative measuresfor dependen
e (like 
orrelation in the bivariate 
ase) and their appropriateness in a
tuarials
ien
es.Referen
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