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Abstract

The present paper is devoted to the study of several notions of positive dependence among
risks, namely association, linear positive quadrant dependence, positive orthant dependence
and conditional increasingness in sequence. Various examples illustrate the usefulness of
these notions in an actuarial context.
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1 Introduction

The study of the dependence among risks has become one of the main topics in actuarial
sciences nowadays. It has been recognized that the assumption of mutual independence of
risks is often violated in insurance practice. In many lines of business, the introduction of
common shocks at the portfolio level is needed to represent the effects of catastrophes hitting
several (or a large number of) policies simultaneously, like earthquakes, tornados, epidemics
and so on. Consequently, the risks in the individual model are certainly not independent
but merely depend on each other. The purpose of this paper is to examine some statistical
models describing dependent risks, as well as to measure their consequences.

Let us briefly specify some notations. Henceforth, a non-negative random variable X with
a finite expectation is called a risk. A multivariate risk X is a random vector (X7, Xo,... , X,)
whose components X, X, ..., X, are univariate risks and covariances Cov[X;, X,] are finite
for all 7 # j. All the functions used in this paper are tacitly assumed to be measurable.
Finally, IR denotes the real line (—oc, +oc), IR, the half positive real line [0, +0c) and IV
the set of the non-negative integers {0,1,2,...}.

Several notions of positive dependence were introduced in the literature to model the fact
that large values of one of the components of a multivariate risk X tend to be associated
with large values of the others. Some of these concepts appear to be relevant in actuarial
sciences. We briefly review these notions in Section 2. Introducing these dependence notions
will enable us to generalize several results from Dhaene and Goovaerts (1996), Dhaene,
Vanneste and Wolthuis (1996) and Wang and Dhaene (1998), where only the bivariate case
was considered.

To begin with, we examine the notion of association in Subsection 2.1. The risks

X1, Xo, ..., X, are said to be associated (or equivalently the n-dimensional risk X is said to
possess this property) when
Cov [¢1(X17 XZ) e ;Xn); ¢2(X17 XZ) e ;Xn)] Z 0 (11)

for all the non-decreasing functions ¢, and ¢, : IR} — IR for which the covariances exist. A
single risk X is associated since the inequality

Cov[p1(X1), 2(X1)] > 0 (1.2)

holds for any non-decreasing functions ¢; and ¢,.

Association has been first considered in actuarial sciences by Norberg (1989) in the spe-
cial case n = 2; this author used this notion in order to investigate some alternatives to
the independence assumption for multilife statuses in life insurance. Association has also
recently been used by Ribas and Alegre (1999) in order to model dependency relations in
the individual life model.

In Subsection 2.2, we consider a notion of dependence that is weaker than association
and is defined with the aid of the positive quadrant dependence. As far as random couples
are concerned (n = 2), positive quadrant dependence (PQD, in short) has been extensively
used in actuarial sciences, e.g. by Dhaene and Goovaerts (1996) and Denuit, Lefevre and
Mesfioui (1999). Let us recall that two risks X; and X, are said to be PQD if the inequality

P[Xl > fL'l,XQ > ZL'Q] > P[Xl > l‘l]P[XQ > .CCQ] (13)



holds for any reals z1, x5 € IR, or, equivalently, if the inequality
Cov[p:1(X1), 2(X2)] > 0 (1.4)

holds for any non-decreasing functions ¢; and ¢, : IR, — IR; for a proof of the equivalence
of (1.3) and (1.4), proceed as for Theorem 1 in Dhaene and Goovaerts (1996). Considering
(1.3), the intuitive meaning of PQD is clear: if X; and X, are PQD then the probability
that they both assume “large” values is greater than if they were independent. Combining
(1.1) and (1.4), it is easily seen that associated risks X; and Xy are PQD.

Since the inequality

P[Xl > fL'l,Xl > ZL'Q] = P[Xl > max{xl,xg}] > P[Xl > l‘l]P[XQ > .CUQ]

obviously holds, we get (1.2) from (1.4).

A direct multivariate (n > 3) extension of the PQD concept is known as the pairwise
PQD: a n-dimensional risk X is said to be pairwise PQD if the components X; and X, of
X are PQD for all 7 # j. Subsection 2.2 is devoted to a less trivial extension of PQD, the
so-called linear PQD (LPQD, in short). We prove inter alia that the sum of the components
of a LPQD risk X dominates the sum of the components of its independent version in the
stop-loss sense.

In Subsection 2.3, in addition to pairwise PQD and LPQD, we present a third general-
ization of the bivariate PQD to higher dimensions, namely the positive orthant dependence
(POD, in short). Whereas (1.3) compares quadrant probabilities, POD uses the correspond-
ing orthant probabilities.

In Subsection 2.4, we review the conditional increasingness in sequence (CIS, in short).
The main interest of this technical condition is that it is sufficient to imply association as
well as LPQD and POD. Moreover, CIS is often easily verified in risk models.

Section 3 is devoted to various applications in actuarial sciences. We first extend to
the multivariate case the main results obtained by Dhaene, Vanneste and Wolthuis (1996)
for the bidimensional situation. To be specific, we compare the amounts of the net single
premium relating to a joint-life or to a last-survivor annuity under the independence and
the POD assumptions. Then, we examine a very particular dependence structure, namely
comonotonicity. We show that a comonotonic risk possesses all the properties discussed in
Section 2. We also investigate the family of counting distributions introduced by Ambagaspi-
tiya (1998). Next, the additivity of stop-loss preserving premium calculation principles is
briefly discussed. To end with, risk models similar to the one defined by Marceau, Cossette,
Gaillardetz and Rioux (1999) are investigated.

In the remainder, all the vectors are tacitly assumed to be column vectors and the super-

script “prime” denotes the usual transposition. The random vector X+ = (Xi-, X5, ... , X.1)
represents an independent version of X = (X, Xy,...,X,,), i.e. (i) the random variables
X, X4 .o, XF are mutually independent and (ii) for any i = 1,2, ... ,n, the random vari-

ables X; and X;* are identically distributed. Given two random variables X and Y, X is
said to precede Y in the stochastic dominance (resp. stop-loss order), written as X < YV
(resp. X <4 Y) if E¢(X) < E¢(Y) for all the non-decreasing (resp. non-decreasing and
convex) functions ¢ for which the expectations exist. The symbol “=;” means “is equally
distributed as”.



2 Positive dependence notions

2.1 Association

It is obvious that (1.1) models a situation where the components of X are positively depen-
dent, but the intuitive meaning of association is not clear. However, implicit in a conclusion
that a set of risks is associated is a wealth of inequalities, often of direct use in various
actuarial problems. Moreover, models recently introduced to take into account a possible
dependence often generate associated risks. This point will be considered in Section 3.

The following properties of association can be found in Esary, Proschan and Walkup
(1967).
Property 2.1. Let Xy, Xy,..., X, be associated risks. The following assertions hold true:
(1) any subset X;,, X X, of X1, X, ..., X, is associated;

s s

(ii) LetY1,Ys, ..., Y be associated random variables independent of the X;’s. Then X1, X,

o X, Y, Y, L0, Y are associated;
(iii) If the measurable functions 11,1, ..., : IR™ — IR are non-decreasing then the
random wvariables 1 (X1, Xo, -+, X)), ¥o( X1, Xo, -+, X5), o0, (X1, Xo, -+, X0)

are associated.

We will also often use the following result, which straightly follows from (1.2) together
with Property 2.1 (ii).

Property 2.2. X' is associated.

Many authors have questioned the relevance of the classical Pearson correlation coef-
ficient as a measure of dependence. See e.g. Embrechts, McNeil and Strauman (1999).
Nevertheless, under several positive dependence notions, this measure is of great interest to
the practitioner, as shown in Property 2.3; for other results in that vein, see Denuit and
Dhaene (1999).

Property 2.3. Suppose that the multivariate risk X is associated. The Xj’s are jointly
independent if, and only if, Cov[X;, X;] =0 for all i # j.

This means that for an associated multivariate risk X, investigating mutual independence
turns out to investigate the covariances. The variance-covariance matrix of an associated
risk X plays thus a central role in the investigation of the dependency structure of X. A
proof of Property 2.3 will be given in Section 2.2 where a more general version of the relation
between positive dependence notions and correlations will be considered.

2.2 Linear positive quadrant dependence

Newman (1984) proposed the following extension of the bivariate PQD: let X be a mul-
tivariate risk such that for any non-negative real constants a;,as,... and for any disjoint
A,BC{1,2,...,n},

ZaiXi and ZazXz are PQD (21)
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Then, X is said to be linearly PQD (LPQD, in short). Note that LPQD is essentially a
symmetrical condition, in the sense that saying that (X, Xo, ..., X,,) is LPQD is equivalent
to say that (X.a), Xz2), ..., Xa(n)) is LPQD, for any permutation 7 of {1,2,... ,n}. With-
out loss of generality, we may assume «; € [0,1] for all 7 in (2.1). As a consequence, (2.1)
can be interpreted as follows: for any two disjoint sets of risks A and B of the portfolio,
both aggregate risks associated with a quota share reinsurance treaty are PQD, i.e. the
probability that they both assume “large” values is greater than if they were independent.
It can be shown that, given a multivariate risk X,

X associated = X LPQD = X pairwise PQD, (2.2)

but the reverse is not necessarily true. The proof of the implications in (2.2) is straightfor-
ward.

The following properties are easy to prove (coming back to the definition of PQD by
means of correlation order for (ii)).

Property 2.4. Let X1, Xs,...,X,, be LPQD risks. The following assertions hold true:
(1) any subset X;,, X;,, ... of X1, Xo,...,X, is LPQD;

11 et Yi,Yo, ..., Yy be random variables independent of the X;’s. en X1, Xo,
ii) Let Y7,Y; Y. be LPQD d jables ind d he X;’s. Then X, X
, X, Y1, Y, ..., Y are LPQD.

By (2.2) together with Property 2.2, X+ is LPQD. Remark that the counterpart of
Property 2.1 (iii) is not necessarily valid here.

For X pairwise PQD, the covariance structure reveals a lot of information about the
dependence of the components Xy, Xo, ..., X, of X, as it was the case for association. This
is formally stated in the next result.

Zk

Property 2.5. Suppose that the multivariate risk X is pairwise PQD. Then,
(i) Cov[X;, X;] >0 for alli # j;
(ii) Given two disjoint subsets A and B of {1,2,... ,n}, {Xy, k € A} and {Xy, k € B}

are mutually independent if, and only if,

Cov[X;, X;] =0 foralli € A and j € B.

Proof. Since the couples (X;, X;) are PQD for all ¢ # j, (i) directly follows from (1.4). Let
us now prove (ii). Consider i € A and j € B, and assume that Cov[X;, X;] = 0. Let us
recall that Denuit, Lefevre and Mesfioui (1999) have shown that

X X / / Xz > I.EZ',Xj > .(E]]dxzdl']
z;=0 Jx;=0
Since the covariance between X; and X; equals 0, the latter formula yields
/-l-oc/ Xz > Ii,Xj > l‘j] — P[XZ > {,EZ]P[XJ > I]]}dl'ld.'ﬂj =0.
T; :1:]*0
Now, the integrand {.} in the latter expression is non-negative for all z; and z; (since (X;, X;)
is PQD); this implies that P[X; > x;, X; > x| = P[X; > x;|P[X; > x;] for all z;,2; € R,

so that X; and X; are mutually independent. The opposite conclusion is straightforward. [

4



As a consequence of Property 2.5 (ii) we have that for a pairwise PQD risk X, the
components X1, Xy, ..., X, are mutually independent if, and only if, Cov]X;, X;] = 0 for all
i # j. Because of (2.2) we have that the results of Property 2.5 a fortiori hold for LPQD or
associated risks X.

Let us now prove the following result which enhances the interest of LPQD in the study
of dependent risks. More precisely, it is known from Dhaene and Goovaerts (1996, Theorem
2) that if the random couple (X7, X3) is PQD then the stochastic inequality

Xi+ X5 <0 X1+ X,
holds; we provide hereafter a multivariate generalization of this result.

Theorem 2.6. Let X be LPQD with marginal distribution functions Fy, Fs, ..., F,. Then,
we have

X+ X+ X< X+ X4+ X, =g FTY )+ BN U) + .+ END),

where U denotes a random variable uniformly distributed on the unit interval [0, 1] and Fi’1
15 the quantile function associated to F;, i.e.

F7'(p) = inf{z € R|F;(z) > p}, 0<p<1.

Proof. The second stop-loss inequality is true in general, for risks X, X», ..., X, with dis-
tribution function Fy, Fy, ... , F,; see, e.g., Dhaene, Wang, Young and Goovaerts (1997). Let
us prove the first stop-loss inequality. Without loss of generality, the random vectors X+ and
X may be considered independent. Now, proceed by induction. First, X <, X; trivially
holds. Now, assume that

X+ X+ X S X+ X+ -+ X,

holds true for £k =1,2,--- ,n — 1. Then, by the closure of <,; under convolution, the latter
stochastic inequality yields

X+ X+ + X+ X, S X+ X+ + X + X, (2.3)

Now, since X is LPQD, X,, and X; + Xy + -+ + X,,_; are positively quadrant dependent,
we get

X+ X0+ + X+ X = X+ X4+ Xy + X (2.4)

Combining (2.3) and (2.4) yields the announced result by the transitivity property of <s. O

Note that Theorem 2.6 a fortiori holds when X is associated; see (2.2). It is worth men-
tioning that the result in Theorem 2.6 holds under much less restrictive (non-symmetrical)
conditions. Indeed, assuming that the random couples (X1, X5), (X + X, X3), (X1 + X5 +
X3, Xy), ..o, (X1 4+ Xo+ ...+ X1, X,,) are all PQD suffices to prove the theorem. This
notion of positive dependence is used by Denuit, Dhaene, Lefevre and Koutras (1999) to
deal with dependence in the individual risk model.
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From the above result, once the marginal distributions of the X;’s are fixed, the best
possible bounds in the < ;-sense on the aggregate claims X; + Xy + ...+ X,, of LPQD risks
are provided by Xi + X3 + ...+ X}t and F, '(U) + F, '(U) + ...+ E7Y(U). Therefore,
any risk-averse decision-maker will prefer Xi* + X5~ + ... + X;f over X1 + Xo + ... + X,
when the risks X, Xo, -+, X, are LPQD. This conclusion holds both in Von Neumann and
Morgenstern expected utility theory, as well as in Yaari’s dual theory of choice under risk.
For more details about the interpretation of <, in decision theory, see e.g. Dhaene, Wang,
Young and Goovaerts (1997).

For LPQD risks, the safest dependence structure is provided by mutual independence, for
fixed marginals. When the risks are not known to be LPQD, the safest dependence structure
does not always exist; see Dhaene and Denuit (1999) for more details.

We finally remark that it follows from Theorem 2.6 that making the assumption of mutual
independence between the components of a LPQD risk X leads to an underestimation of the
stop-loss premiums. In terms of utility theory this means that the insurer in fact replaces
the “real” aggregate claims by a “less risky” aggregate claims, which is of course a dangerous
strategy.

2.3 Positive orthant dependence

A multivariate risk X is said to be positively lower orthant dependent (PLOD, in short)
when the inequality

i=1

holds for any 1, 2o, ... ,z, € IR; it is said to be positively upper orthant dependent (PUOD,
in short) when the inequality

P[X1>$1,X2>$2,"',Xn>fL'n]ZHP[Xi>ZL'i] (26)

=1

holds for any 1, xs,... ,x, € IR. When (2.5) and (2.6) simultaneously hold, then X is said
to be positively orthant dependent (POD, in short). We have that

X associated = X POD;

for a proof, see e.g. Esary et al. (1967, Theorem 5.1).

Note that POD is a straight extension of the bivariate PQD to dimension n > 3 (hy
substituting orthants for bivariate quadrants). POD has an intuitive interpretation. Indeed,
from (2.5) we see that the probability that all the components of X are “small” is greater
than in the independent case, while (2.6) means that the probability that all the components
are “large” is greater than in the independent case. Note that (2.5) and (2.6) are in general
not equivalent when n > 3.

It can easily be shown that for random couples (n = 2), the following equivalences hold

true:
X PQD < X POD < X LPQD.
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Of course, these equivalences no more hold in general for dimension n > 3. It is worth men-
tioning that the inequalities (2.5) and (2.6) are usually referred to as the Sidak inequalities,
or as the first order product-type inequalities. A study of the accuracy of these inequalities
can be found e.g. in Glaz and Johnson (1984). These authors also proposed a method to
exploit the dependence srtucture in order to get better bounds on orthant probabilities than
those furnished by (2.5) and (2.6).

From (2.5) and (2.6), it is easy to conclude that when X is POD, the stochastic inequal-
ities

miin X =<y miin X, and max X <a max Xt (2.7)

are valid. The latter result can be found e.g. in Baccelli and Makowski (1989) and explains
the usefulness of the POD notion in a variety of situations, since it suggests a natural way
of generating computable bounds for the maximum or the minimum of n POD risks.

2.4 Conditional increasingness in sequence

The abstract characterization (1.1) of association is often difficult to deal with in a concrete
statistical model. Therefore, a stronger notion than association but better tractable may be
of interest. Conditional increasingness in sequence is such a concept of dependence.

A random vector X is said to be conditionally increasing in sequence (CIS, in short) if,
for any 1 = 2,3, ... ,n, one of the equivalent following conditions hold:

(i) P[X;> x| X, =21, Xy =29,...,X; 1 = x; 1] is non-decreasing in x, s, ... ,2; 1 in the
support of the X;’s for all x;

(ii) [Xi|X1 =x1,Xo =a9,... ,X; 1 = xiq] =t [Xi|X1 =y, Xo=Yyg,..., X, | = yifl] for

any r1 < Y1, Lo < Yo, ..., ;1 < y;_1 in the support of the X;’s;
(iii) E[o(X)|X; = 21, Xe = 29,..., X; 1 = 2, 1] is a non-decreasing function of the vari-
ables x1,o,... ,x;_1 in the support of the X,’s for all the non-decreasing functions ¢

for which the expectations are defined.

See Cohen and Sackrowitz (1995) for further results.
As mentioned above, a CIS multivariate risk X is associated; for a proof, we refer the
interested reader e.g. to Joe (1997, Theorem 2.4 page 16). It is easily seen that Xt is CIS.
In an actuarial context, CIS may be generalized to weaker orderings than <, (in partic-
ular, the stop-loss order). We could require, for instance, that for any i = 2,3,... ,n,

Bl(X;—2)4|Xi =21, Xo =29, ..., Xj_1 = 3i_4]

to be non-decreasing in xy,xs,...,x;_1 in the support of the X;’s for all x, which in turn
boils down to

(Xi|Xi =21, Xo=m9, ..., Xim1 =xi1] S [Xil X1 =y, Xo=vo, ..., Xim1 = yi1]

for any 1 < y1, 9 < ¥yo, ..., ;1 < y;_1 in the support of the X;’s. A study of this
dependence concept is deferred to a subsequent work.



3 Applications

3.1 Multiple life statuses

Consider the statuses (z1), (@2), ..., (z,) with remaining lifetimes T(,,), T(z,), -- -5 T(an);
respectively. The joint life status (x,zs,...,,) exists as long as all individual statuses
exist. This status has remaining lifetime

Ty o en) = W0 { Tay), Tian), - Tlan) } -

The last survivor status (1, za, ... , x,) exists as long as at least one of the individual status
is alive. Its remaining lifetime is given by

= max {T(ml), T(m), ce ,T(mn)} .

(1,22, ,Tn)

Let us now assume that T = (T(;,),T(s,),--. ;T (a,)) is POD. Let us also introduce the
following straightforward notations:

1 : 1 1 1 1 1 1 1
T — min {T(x1)7 T(xg)’ Ce ,T(xn)} and Ti( — Imax {T(ml), T( A 7T(£En)} .

($17x27"-7xn) mhI?:"'!Iﬂ) 1172)’ .
From (2.7), it follows that

Tl =st T(:vl,xg,...,xn) and T( =st Tl

(CEl,CEQ,...,CEn) 1,22, ,Tn) — (z1,22,... ,Tn)

which in turn implies that

wl . . .l
a(m,m,...,mn) st A(z1,22,...,Tn) and a(ml,zg,...,zn) st a(xl,:vg,...,:vn)’

where the superscript “L” is used to indicate that the annuity is based on Tél 2o im) OF
L

Trr——" This means that for POD remaining lifetimes, the independence assumption
(while leaving the marginal distribution functions unchanged) leads to an underestimation
of the net single premium (and reserves) of a joint life annuity. The opposite conclusion
holds for the last survivor annuity. Similar conclusions can be drawn for endowment and
whole life insurances. These results extend those in Dhaene, Vanneste and Wolthuis (1996),
where only the bivariate case is considered.

3.2 Comonotonic risks

The risks X1, Xy, -+, X,, with marginal distribution functions Fi, F, ..., F,, are said to be
mutually comonotonic when

(X1, Xo, ..., X)) =4 (FTHU), KN (U, ..., E-HU)),

n

with U uniformly distributed over the unit interval [0, 1]. Actuarial applications of the notion
of comonotonicity can be found e.g. in Goovaerts, Dhaene and De Schepper (1999).

Such an extreme multivariate risk X fulfills all the positive dependence notions examined
above. Firstly, a mutually comonotonic risk is necessarily associated, from Property 2.1(iii)
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together with the fact that U is associated by (1.2). A direct check of this assertion is as
follows: it suffices to note that, given any non-decreasing functions ¢, and ¢, : IR" — IR, we
have that

Cov[¢(X), $2(X)] = Cov[yy (U), (V)]
where
vi(u) = ¢ (Fy H(w), By H(u), ..., F, N (uw), i=1,2.
It is straightforward that v); and ) are both non-decreasing. The latter covariance is then

non-negative in virtue of (1.2).
A comonotonic risk X is even CIS. Indeed, for any non-decreasing function ¢, we find

E[¢(Xz‘)|X1 =71, Xo=mp,..., X; 1 = xiq]
= E[qS(Fi_l(U))\Fl_l(U) = T, F2_1(U) = T2, .- aFi__11(U) = Iz‘—l]
= E[¢(F; (U))|Fj(z; —0) < U < Fj(x;) for j =1,2,...,i—1]

’

which is clearly non-decreasing in x, zo, ..., T;_1.
Finally, we prove (directly) that a comonotonic risk is also POD. Indeed, we have that

P[Xl S xl;XQ S Loy .. 7XTL S xn] - min{Fl(xl);FQ(xZ)a s 7Fn(xn)} Z HE('xz)
i=1

and

P[Xl >.’.E1,X2 > To, ... ,Xn >In] = m1n{P[X1 >I1],P[X2 >I2],... ,P[Xn >1‘n]}

=1

3.3 Ambagaspityia’s class of counting distributions

Ambagaspitiya (1998) proposed a new family of discrete multivariate distributions represent-
ing the number of claims in different classes of business. To be specific, the n-dimensional
random vector N is given as

N, ay; Q2 - Qg M,
Ny Q21 Q22 -+ Q2 M,

= A s
Nn Ap1 QApz -+ Apg Mk

where a;; € IN for all ¢ and j, and M is a random vector valued in IN* with independent
components. Such a random vector N is associated since given any non-decreasing functions
¢ and ¢y : IR™ — IR, there exist two non-decreasing functions ¢; and v : IR¥ — IR such
that

Cov[p1(N), d2(N)] = Cov[1h (M), ¢ (M)].

The latter covariance is non-negative since M has independent components, which implies
that M is associated.



A possible generalization of Ambagaspitiya’s class of multivariate distributions is as fol-
lows: let M be defined as above, and consider N with ith component N; of the form
N; = o;(My, My, ... ,My),i=1,2,... n, where the functions ¢; : N* — IN,i=1,2,... ,n,
are non-decreasing. It is straightforward that N is also associated.

3.4 Premium calculation principle

Let us consider a premium calculation principle H[.], that assigns a premium amount H|[X|
to any risk X. We assume that the distribution function of X completely determines the
premium for X. Assume further that H[.] preserves the stop-loss order, i.e. given two risks
X and Y,

X =Y = HIX]<H[Y].

Consider LPQD risks Xy, Xs, -+, X,,. The stop-loss preserving property together with
Theorem 2.6 yields

<H <H . (3.1)

n n n
H [Z X+ X > FYU)

i=1 i=1 i=1
The inequality above states that for a stop-loss preserving premium principle, the premium
of a sum of LPQD risks is maximal if the risks are comonotonic and minimal if the risks
are mutually independent. We remark that the second inequality holds in general for all X
(not necessarily LPQD); see e.g. Wang and Dhaene (1998). From (3.1), we find that if a
premium principle preserves stop-loss order and is additive for independent risks, then it is

super-additive for LPQD risks. This result is a generalization of the bivariate case considered
in Wang and Dhaene (1998).

3.5 Marceau’s model

Let us consider the model recently defined by Marceau et al. (1999). This model allows de-
pendence between the risks of an insurance portfolio in the individual risk model. Consider a
portfolio consisting of n policies with claim amounts X, X, ..., X,,. Let S be the aggregate
claim amount for the insurance portfolio, i.e. S =>"" | X;. Let X;, i =1,2,...,n, be of the
form X; = I;B; where the I;’s are Bernoulli random variables such that P[I; = 1] = p; and
P[I; = 0] = ¢;, p; + ¢ = 1, and where the B;’s are independent positive random variables.
Assume further that the random vectors I = (I, ls,... ,I,) and B = (By, By, ..., B,) are
mutually independent. Now, suppose that the I;’s satisfy

I =min{.J; + Jo, 1}, i=1,2,... n,

where the J;’s, i = 0,1,... ,n are independent Bernoulli random variables with P[.J; = 1] =
pi; and P[J; = 0] = ¢, pii+ s = 1. The random vector I has clearly dependent components,
so that X = (X, Xo,...,X,) also has. Nevertheless, the [;’s remain Bernoulli distributed
with ¢; = qooq;;- The I;’s are associated since given any non-decreasing functions ¢; and
¢s 1 IR™ — IR, there exist two non-decreasing functions v and 1), : IR"*' — IR such that

COV[¢1(11,IQ, e ,In),¢2(Il,IQ, e ;In)] = COV[T/)l(JU,Jl, e ,Jn),wQ(JU, Jl; e ,Jn)],
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which is non-negative since the .J;’s are independent, and thus associated. The X;’s are then
also associated. Indeed, from Property 2.1(ii) and the independence assumption, it follows
that Iy, Io,... ,I,, By, Bs,..., B, are associated, and by Property 2.1(iii), we finally find
that X is associated.

We remark that Marceau’s model can be generalized and still remain associated. Indeed,
if the I;’s are defined by

Ii:(pi(JU;JI;--- ,Jn), Z:1,2, ,n,

where the J;’s are arbitrary associated random variables and where the functions ¢; : IR" —
{0,1} are non-decreasing, then it is easy to verify that the vector X remains associated.
Even more general: it suffices that I and B are associated and mutually independent to
imply association of X.

4 Conclusions

In this paper, we considered several notions of positive dependence. Except for the CIS,
all these notions are symmetric, in the sense that their definition is independent of the
order of the components of the random vector. All these notions are qualitative (in the
sense that a multivariate risk possesses or not a given dependence structure). It turned
out that the independent random vectors and the comonotonic random vectors both are in
accordance with all positive dependence notions we examined. Moreover, independence and
comonotonicity are extremal notions in the class of positively dependent random vectors.
Indeed, assuming that X is pairwise PQD (which is the weakest dependence notion we
considered), we have that
0 < Cov[X;, X;] < Cov[F; ' (U), F; ' (U)]

for all 1 <i # j < n. We proved that independence of the X;’s boils down to Cov[X;, X, =0
for all 1 < i # j < n, while Denuit and Dhaene (1999) showed that comonotonicity of all
components is equivalent to Cov[X;, X;] = Cov[F; '(U), F; '(U)] for all 1 < i # j < n.
We also proved that if X is LPQD then the stop-loss premium relating to the sum of the
components of X is bounded from below by the sum of the components of the independent
version X*. In this case, the independence assumption will lead to an underestimation of
the true stop-loss premium. Items for future research are the study of quantitative measures
for dependence (like correlation in the bivariate case) and their appropriateness in actuarial
sciences.
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