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Abstract

The present paper is devoted to different methods of choice under risk in an ac-
tuarial setting. The classical expected utility theory is first presented, and its
drawbacks are underlined. A second approach based on the so-called distorted
expectation hypothesis is then described. It will be seen that the well-known
stochastic dominance as well as the stop-loss order have common interpreta-
tions in both theories, while defining higher degree stochastic orders leads to
different concepts. The aim of this paper is to emphasize the similarities of
the two approaches of choice under risk as well as to point out their major
differences.

1 Introduction

Individuals and insurers often have to make choices under conditions of uncertainty
concerning the outcome of a risk, i.e. some future random financial loss. A person
bearing a risk may consider whether it is preferable or not to (partly) insure this
risk, that is, to ask a third person, usually an insurance company, to assume (a
part of) this risk. Insurance companies accept risks from their clients, the insureds,
against a certain price called a premium. If a risk, or portfolio of risks, is too large
for a company, it will pass on parts of it to one or several other companies, its
reinsurers, whereby that part which finally remains with the first company is called
its retention. Therefore, an insurer may be faced with the problem of finding an
optimal reinsurance program. These are but two examples of a more general class of
problems where a decision-maker has to choose between several future random levels
of his fortune. Of course, such choices depend on many things. In the first place, a
wealthy company can clearly afford to retain more for its own account than a poor
one. Secondly, it depends whether management is at all willing to take risks : a
conservative manager will display little risk willingness, contrary to a courageous or
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even foolhardy entrepreneur. The same kind of remarks of course hold for insureds.
Furthermore, both the insured and the underwriter will have to make up their mind
on the premium : is the amount of premium reasonable or acceptable compared to
the risk transferred ?

In this paper, we present different approaches to decision making under risk.
These approaches have in common that the preference relations of a decision-maker,
which are qualitative in nature, follow from simple comparisons of numerical quan-
tities to be associated to the alternative choices under consideration. The first
approach is the classical expected utility theory. In this framework, a utility func-
tion u assigns a value u(x) to a monetary amount of x$; u describes “how much
the decision-maker appreciates a fortune of x$”. Utility functions are of a sub-
jective nature, they reflect the preferences of individuals or insurance companies.
Moreover, different individuals usually have different utility functions, even if all
the reasonable utility functions have to share some common properties, such as
non-decreasingness (which translates the lure of profit). Expected utility theory has
greatly contributed to understanding the economics of risk and uncertainty for the
past several decades. For instance, expected utility theory has been used in order
to determine the optimal forms of insurance contracts and reinsurance treaties (see,
for instance, Denuit and Vermandele (1998a,b) and the references therein), optimal
insurance policies in the presence of adverse selection or moral hazard, optimal in-
surance versus precautionary saving, and so on. This theory has also been linked to
stochastic dominance relations expressing common peferences of classes of reason-
able decision-makers. The second approach we will present is Yaari’s (1987) dual
theory for choice under risk. Yaari developed a parallel theory of risk by modifying
the independence axiom of von Neumann and Morgenstern (1947). In Yaari’s the-
ory, attitudes towards risks are characterized by a distortion applied to probability
distribution functions, in contrast to expected utility theory in which attitudes to-
wards risks are characterized by a utility function of wealth. In Yaari’s framework,
the concept of distortion function emerges; distortion functions can be considered
as the parallel to the concept of utility function in the classical expected utility
theory. As in the classical expected utility approach, Yaari’s theory also generates
some classes of stochastic orderings termed as inverse stochastic dominance ordering
by Muliere and Scarsini (1989). Our purpose is to describe and compare these two
theories of decision making under risk, as well as to enlighten their applicability to
actuarial problems.

The paper is organized as follows. In Section 2, we present the classical expected
utility theory. Section 3 is devoted to the notion of risk aversion in this framework,
while Section 4 deals with the potential use of expected utility theory in insurance
business. Most results summarized in these three sections are known for a (very)
long time. The reason why we provide a detailed account of these in the present
paper is that they will precisely allow the reader to compare expected utility theory
with Yaari’s approach of choice under risk. Then, Section 5 introduces the concept of
associated utility function while Section 6 gives a first extension of expected utility



theory, namely the approach based on integral stochastic orderings. In Section
7, we examine a somewhat new application of expected utility theory in actuarial
sciences, namely in the study of the extreme dependence structures among correlated
risks. Section 8 introduces the distorted expected hypothesis and details Yaari’s dual
theory for choice under risk. Sections 9, 10, 11 and 12 try to stress the differences and
similarities of the two approaches. Finally, Section 13 expands on the application
presented in Section 7. The very last Section 14 briefly presents a new approach
mixing the two theories. The latter will certainly be applied in actuarial sciences.

The present paper is of pedagogical nature and is far from being exhaustive.
The interested reader will find in the references a lot of material to continue his
investigations. We also mention the papers by Gerber (1987) and Gerber and Pafumi
(1998) reviewing expected utility and related topics in an actuarial setting.

2 The Expected Utility Hypothesis

Consider a decision-maker who has to choose between two uncertain future incomes
modeled by the random variables X and Y. One possible methodology for mak-
ing a choice among these two alternatives consists in computing their respective
expectations and then select the income with the highest expectation. This simple
valuation method has already been challenged by Nicholas Bernouilli as early as
1728. He posed the following problem : “A fair coin is tossed repeatedly until it
lands heads. The income you receive is equal to 2" if the first head appears on the
n-th toss. How much are you willing to pay for this game?”. Assuming that the
coin is fair, it is easy to verify that the expected income of the gamble is equal to
infinity. It has been noticed, however, that although the expected income is infinite,
the maximum amount almost all decision-makers would pay to take part in the game
is finite and even moderate. This seemingly paradox is known in the literature as
the St. Petersburg paradox.

Gabriel Cramer (1728) and Daniel Bernouilli (1738) proposed to solve this para-
dox by stating that decision-makers do not base their decisions under risk on simply
comparing the expectations of the incomes under consideration. Since the value
of money does not solve the St. Petersburg paradox, they suggested to adopt the
moral value of money as a standard of judgment. More precisely, they introduced
the concept of “utility” and hypothesized that a decision-maker possesses a utility
function u such that the utility (or moral value) of having a fortune of x$ is given
by u(x). If the decision maker has to choose between two uncertain future incomes
X and Y, he will prefer the one which leads to the the highest expected utility
of the future fortune. Hence, if the decision-maker’s initial fortune is w, then the
decision-maker is willing to play the coin tossing game for a price P if, and only if,
the following inequality is satisfied :

u(w) < Zju(w—P—l—Q”) !
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The latter inequality expresses that the decision-maker will enter the game only if
the expected utility of playing the game is greater than the utility of not taking
part in it. Cramer proposed that the utility u(x) of a fortune of x$ is given by the
square root 1/ of this fortune. Bernouilli on the other hand, suggested a logarithmic
utility function u(z) = logz. As an illustration, for an initial wealth of 10 000$ and
a logarithmic utility function, the decision-maker is only willing to pay 14.25% to
play the St. Petersburg game, although the expected gain is infinite.

Let us associate to each random variable X its cumulative distribution function
Fy, defined as Fx(z) = P[X < z|, x € IR. In other words, Fx(z) represents the
probability that the random variable X assumes a value that is less than or equal to a
point x of the real line IR. In the sequel, we will always assume that the distribution
functions of the random variables under consideration are known. Hence, the only
risk when considering a future random income is assumed to be the uncertainty
about the particular outcome, not the uncertainty about its distribution function.
A decision-maker is said to base his preferences on the “expected utility hypothesis”
if he acts in order to maximize his expected utility. This means that there exists
a real-valued function v which asserts the decision-makers’ utility-of-wealth to each
fortune. For all uncertain future fortunes X and Y we have that the decision-maker
with utility w will prefer Y over X (denoted as X =<, Y in the remainder of the
paper) if, and only if,

+00 +o00
Eu(X)] = / _u(@)dFx(x) < Blu(Y)] = / _u(@)dFy (@), (23)
provided that the expectations exist. In other words, he will prefer fortune Y over X
if the expected utility of Y exceeds the expected utility of X. A decision-maker with
utility function w is said to be indifferent between X and Y (denoted as X =, Y
in the remainder) if, and only if, equality holds in (2.1); that is, if X <, Y and
Y <, X simultaneously hold. Since two random fortunes X and Y with the same
distribution function have the same expected utility, the decision-maker will be
indifferent between them. This means that the individual’s preferences structure
is in fact a total order relation in the set of the distribution functions of random
fortunes (for which the integrals in (2.1) exist).

According to von Neumann and Morgentern (1947), expected utility theory is
built up from five axioms describing rational behaviour of decision-makers. Let the
binary relation < defined on the space of all (distribution functions of) random
fortunes be such that X <Y if, and only if, Y is preferred over X and X <Y if,
and only if, the decision-maker is indifferent between X and Y. Now, consider the
following axioms :

1. Axiom EU1 : if X and Y are identically distributed then X 0Y’;
2. Axiom EU2 : < is reflexive, transitive and connected;

3. Axiom EU3 : < is continuous in the topology of weak convergence;
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4. Axiom EU4 : if Fy > Fy then X QY

5. Axiom EU5 : if X <Y and if the distribution function of Xp and }7;; are given
by
Fg () = pFx(x) + (1 = p)Fz(x), = € R,

and
Iy (v) = pFy(2) + (1 —p)Fz(x), = € R,

for an arbitrary distribution function Fz, then X'p < }7;, for any p € [0, 1].

It has been shown that, if the axioms EU1-EUb are satisfied then there must exist
a utility function u such that

XAV e Xy Yand X <Y & X =, Y;

see, e.g., Fishburn (1982).

It seems natural that an individual always prefers more wealth to less wealth.
Therefore, the utility function u is always assumed to be non-decreasing. Usually,
u is almost everywhere differentiable, so that the lure of gain is expressed by the
condition " > 0 (where u®) denotes the s-th derivative of the function u).

Remark that a decision maker’s utility function needs only to be determined
up to positive linear transformations. This follows from the fact that the utility
function u* defined by

u*(x) = au(x) +b, x € R, (2.2)

for real constants a > 0 and b leads to the same preference structure as the utility
function w (in such a case, u* is said to be equivalent to u). Hence, it is always
possible to standardize a utility function u, for example by requiring that

u(zo) = 0 and uM () = 1, (2.3)

for a particular point xq € IR.

The considerations above indicate that a general theory of insurance must, or at
least could, be based on the utility concept. This has in fact been recognized for
a long time. In 1834, Barrois constructed a very complete theory of fire insurance,
based on the particular utility function u(z) = log(z), originally used by Bernoulli.
It must, however, be admitted that the modern use of the utility concept in insurance
literature is due to the results provided by von Neumann and Morgenstern. The
expected utility theory became popular after these authors developed their axiomatic
approach of it in 1947. Borch enlightened the relevance of the expected utility
theory in order to solve problems in insurance; his works were collected in two
books published in 1974 and 1990. As Trowbridge (1989) pointed out, utility theory
forms the philosophical basis of actuarial sciences, and yet this subject is seldom
mentioned in the actuarial literature beyond chapter I of Bowers et al. (1997). For
more details concerning expected utility, we refer interested readers to Huang and
Litzenberger (1988), Schmidt (1998) and Panjer (1998), as well as to the references
therein.



3 Risk Aversion and Expected Utility

An important concept in utility theory, which is in accordance with rational behavior
of insurance managers, is the notion of risk aversion. A decision-maker is said to
be risk averse when his utility function is concave on its domain. If u is assumed
to be twice almost everywhere differentiable, this reduces to u(® < 0. Remark that
risk aversion induces some smoothness property on u, since a concave function is
necessarily continuous. One way to justify the concavity assumption is to remark
that it implies that the marginal utility u(! is a decreasing function of wealth, or
equivalently, that the increase of utility resulting from a gain of A$, u(x+A)—u(x),
is a decreasing function of the wealth x. But this is rather an attitude towards wealth
than an attitude towards risk. Therefore, the usual explanation of the meaning of
risk aversion is provided by Jensen’s inequality. The latter states that, given any
concave function u, the inequality

Eu(X)] < u(E[X]) (3.1)

holds for all random fortunes X. Therefore, a risk averse decision-maker always
prefers a certain fortune to a random fortune income with the same expected value.
As a special case of (3.1), we find that a risk averse person is never willing to accept
(or is indifferent to) any actuarially fair gamble (i.e. a gamble with zero expected
payoff).

To a given twice differentiable utility function u, one can associate a function r
defined as o p

—u'(x
r(z) = W(.;) = ——In(u®(2)) (3.2)

called the risk aversion function. It is easily seen that r» > 0 for any profit-seeking
risk averse decision-maker. The Arrow-Pratt measure of absolute risk aversion (3.2)
measures the local propensity to insure under the utility function u. Requiring that
a decision-maker has a decreasing r(.) means that his risk premium is larger the
larger the risks, i.e., the amount of money he is willing to pay in order to replace
a random loss with its expected value is a decreasing function of his initial wealth,
for all possible loss. Remark that in the framework of expected utility, the agent’s
attitude towards risk and the agent’s attitude towards wealth are forever bonded
together (since they are both derived from the characteristics of u) : risk aversion and
diminishing marginal utility of wealth are synonymous. Nevertheless, risk aversion
expresses an attitude towards risk while decreasing marginal utility expresses an
attitude towards wealth. In the dual theory of choice under risk proposed by Yaari
(1987), we will see that these two notions are kept separate from each other.

In addition to the risk aversion function, one also defines the risk tolerance. For
a twice differentiable utility function u, the function

—uV(z) 1

m(z) = u®(z)  r(z)
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is called the risk tolerance function (see, e.g., Panjer et al. (1998), page 161). The
assumption that u translates lure of profit and risk aversion (i.e. w® > 0 and
u® < 0) implies that 7(z) > 0. This auxiliary measure of risk has been used by
Gerber and Shiu (1998) in order to study the optimal dynamic investment strategy
for allocating assets in a pension plan.

If w is replaced by an equivalent function u* satisfying (2.2) then the risk aversion
function remains unchanged, i.e. r* = r. Moreover, if u is standardized about x
(as in (2.3)), u can be expressed in terms of 7 as

u(r) = /z: exp (— /xi T(n)dn) d¢. (3.3)

The certainty equivalent of a random fortune X, denoted as CE[X], is defined
as the root of the following equation :

w(CE[X]) = E [u (X)]. (3.4)

The certainty equivalent CE[X] of a random fortune X is therefore defined by the
condition that the decision-maker is indifferent between receiving X or the fixed
amount CE[X]. From (3.1) together with (3.4), we find that the inequality

CE [X] < E[X] (3.5)

holds for any non-decreasing and concave utility function uw. Therefore, a profit-
seeking risk averse decision-maker always prefers certainty to uncertainty, even if
the certain income is (to a certain amount) less than the expected uncertain income.

The risk premium of X is defined as the difference between the expected fortune
and the certainty equivalent, i.e.

RP[X] = E[X] — CE[X]. (3.6)
As a consequence of (3.4), we have by definition that
u(E[X]—RP[X])=FEu(X)]. (3.7)

Formula (3.7) can be interpreted as follows : the risk premium RP[X] is equal to the
amount of money the individual is willing to pay in order to get a certain fortune
E[X] rather than the random fortune X, i.e. to replace uncertainty by certainty.

4 Expected Utility and Insurance

The central notion in actuarial mathematics is the notion of risk. A risk can be
described as an event solely due to the whims of fate that may or may not take
place, and that brings about some financial loss. It always contains an element of
uncertainty : either the moment of its occurrence (like in life insurance), either its
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occurrence itself, or the nature and severity of its consequences (like in third party
liability automobile insurance).

The actuary models these risks with the aid of random variables. The latter
represent the random amounts of money the insurance company will have to pay out
in order to indemnify the policyholder and/or the third party for the consequences of
the occurence of the insured risk. These random variables may generally be assumed
non-negative with bounded support (as the upper limit to the financial loss for which
the insurance company underwrites is, in most of the cases, fixed by the contract,
or obtained wvia reinsurance techniques). Henceforth, we consider that a risk X is
a non-negative random variable with a finite mean, representing a future financial
loss.

Suppose that a profit-seeking risk averse decision-maker faces a risk X. Suppose
that an insurer is willing to accept the risk X for an amount of premium P. In
other words, in return for a premium P, the insurer is willing to bear the financial
consequences of the claims produced by X. Let u be the utility function of the
decision-maker and w be his initial wealth. We assume that the development of the
decision maker’s fortune during the insurance period is not influenced by any other
factors than the risk and the insurance premium. According to the expected utility
hypothesis, the person is only willing to underwrite the insurance if w—X <, w— P,
ie.

u(w—P)>Eu(w—X)]. (4.1)
Obviously, (4.1) is satisfied for P = 0. Let PM be the supremum of all premiums P
satisfying (4.1). We tacitly assume that PM is finite (if this were not the case then
the risk X should be so terrible that the risk holder is willing to pay any premium
to be insured and PY = +o00). From the monotonicity and the continuity of the
utility function, we find that PM satisfies

u(w—P") = Eu(w-X), (4.2)

which is equivalent to w — PM ~, w — X. Therefore, P is the amount of premium
for which the decision-maker is indifferent between insurance and no insurance.
Moreover, the inequality

PY > B X] (4.3)
follows from (3.1). In conclusion, a risk averse decision-maker is willing to pay more
than his expected loss to get insured. It is straightforward to verify that the risk
premium the person is willing to pay, is given by

RP[w — X] = PM — F[X], (4.4)

where the utility function is strictly increasing.

Let us now examine the viewpoint of a profit-seeking risk averse insurer. Assume
that the insurer has a utility function @ and an initial fortune @w. The insurer is
willing to insure the risk at a premium P if w <; w + P — X, i.e.

(@) < Eli(i+ P — X)). (4.5)
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Formula (4.5) means that the insurer will write the policy only if his expected utility
with the contract (right-hand side member) is greater than or equal to his utility
without the contract (left-hand side member). Here, we have made the (unrealistic)
assumption that the insurer only takes into account his initial fortune and the risk
X to determine his future random fortune. Let P™ be the infimum of all premiums
that satisfy the inequality (4.5); it fulfills

i () = Efii (0 + P™ — X)), (4.6)

which is equivalent to w ~; w + P™ — X and possesses an obvious intuitive expla-
nation. From Jensen’s inequality (3.1) and the monotonicity of the utility function
we find that
P™ > E[X]. (4.7)

Hence, the insurer will require a premium that is greater than or equal to the
expected claim amount for covering the risk X.

Finally, we can conclude that an insurance policy is only feasible if the amount
of premium relating to the contract, P say, satisfies the following inequalities :

Pm"<p<pM (4.8)

since such a premium fullfills the expected utility requirements (4.1) and (4.5) of
both parties. In insurance practice, P — E[X] is usually called the safety loading
and it has, inter alia, to compensate the random fluctuations of the observed claims
with respect to the expected claims.

5 The Associated Utility Function

Let u be a non-decreasing utility function. Then, the function v defined by
v(r) = —u(—x), = € IR, (5.1)

is also a non-decreasing utility function. If u is the utility function of a decision-
maker, then v will be said to be the associated utility function of the decision-maker
under consideration. Moreover, it is easy to verify that

u 1S convex < v 1S concave.

Hence, saying that a decision-maker with utility function w is risk averse is equivalent
to saying that his associated utility function v is convex.
Let us now consider a loss X > 0 almost surely, or equivalently, an income —X.
We have that
Elu(w—X)]=—FE[v(—w+ X)]. (5.2)

Hence, we get the following equivalence for losses X and Y (which are almost surely
non-negative)

EFlu(w—-X)|>Flu(w-Y)|e Ev(-w+ X)] < Elv(—w+Y)]. (5.3)
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In terms of the associated utility function, the expected utility hypotheses states
that a loss X is preferred over a loss Y if, and only if,

Ev(—w+ X)] < Eu(—w+Y)], (5.4)

ie.,

w—Y <, w-X&X-w=x,Y—-w. (5.5)

Remark that in the expected utility approach one considers the expected utility of
random variables describing fortune, income or wealth. In actuarial sciences, the
key study objects are risks, i.e., negative incomes or losses. One could interpret a
risk X as a negative income —X, and then compute the expected utility of w —
X. Equivalently, one can compute the expected associated utility of X — w. The
utility functions u expresses the utility associated to wealth. The associated utility
functions v is in fact a “pain function”, v(z) expresses the pain associated with
debt x. This interpretation makes it clear that risk aversion can be expressed as
decreasing marginal utility of wealth or equivalently, increasing marginal pain of
debt.

6 Stochastic Orderings Among Risks

The utility concept may be considered indispensable in theoretical work on insur-
ance, but it does not seem to have found many applications to insurance practice.
One explanation of this apparent paradox may be that presidents and executives of
insurance companies find it difficult to specify the utility function which represents
their preference-ordering over the set of attainable profit distributions. Another
explanation may be that the expected utility model oversimplifies reality. A lot
of decision problems in an insurance company involves a choice among probability
distributions, but it is not certain that these decisions or choices can be studied in
isolation. In simple terms, any decision may depend on the whole situation of the
company, and this situation may again depends on the choices which are expected
to be available in the future.

The main criticism addressed to expected utility theory is that ordering of risks
depends on a subjective utility function, unknown to an objective observer. In most
practical situations, it is indeed extremely difficult to find an explicit expression for a
decision-maker’s utility function u. Therefore, several authors suggested to focus on
the common preferences shared by all the members of classes of reasonable decision-
makers, and this gave rise to the theory of the integral stochastic orderings. Note
that whereas each individual of the class totally orders the risk, albeit differently,
their common preferences only generate a partial ordering. The application of the
stochastic ordering concept in decision theory began about forty years ago (see Allais
(1953), Quirk and Saposnik (1962) and Fishburn (1964)).

The preferences shared by all the decision-makers whose utility function satisfies
certain reasonable conditions consitute a partial order of all risks, which can be
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represented as an integral stochastic ordering. Such an order is useful because it
gives information about the risk-preferences of an actuary based on the distribution
of the risk alone, not on the actual utility function, except that it satisfies some
general conditions. More precisely, we consider that a risk X is dominated by
another one, Y say, when

X =, Y for all v in a class F, (6.1)

where the class F contains all the “reasonable” pain functions v. Henceforth, we
always assume that if x — v(z) € F, then also z — v(w + z) € F. Dealing with
such a class enables us to assume, without loss of generality, that the initial wealth
w equals 0.

During the last two decades, the interest of the actuarial literature in the stochas-
tic orderings has been growing to such a point that they become one of the most
important tools to compare the riskiness of different random situations. The reader
interested in actuarial applications of stochastic orderings is referred to the books
by Goovaerts, Kaas, Van Heerwaarden and Bauwelinckx (1990) and by Kaas, Van
Heerwaarden and Goovaerts (1994). For a general overview of this topic in applied
probability, see Shaked and Shanthikumar (1994).

A first possibility consists in considering all the profit-seeking decision-makers.
We then obtain the stochastic dominance <; defined as

X <4 Y < X <, Y for all the pain functions v such that v* > 0. (6.2)
Note that
X =4Y & Y =<, —X for all the utility functions v such that uM > 0.

In other words, given two risks X and Y, saying that X <, Y means that the loss
X is preferred over the loss Y by all the profit-seeking decision-makers. It is worth
mentioning that

X =4 Y & Fx(x) > Fy(x) for all z € IR,

so that X <, Y means that the probability that X assumes small values (i.e. less
than z) is always greater than the corresponding probability for Y. Intuitively,
X is thus “smaller” than Y. The stochastic dominance is usually termed as the
first-degree stochastic dominance in economics (see, e.g., Levy (1992)).

A second possibility consists in further assuming that the decision-makers are
risk averse. We then get the stop-loss order <, defined as

X <4 Y < X <, Y for all the pain functions v such that v, v > 0. (6.3)
Again,

X 24Y e —Y =<, —X for all the utility functions u such that uM >0, v <0
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so that, given two risks X and Y, saying that X <, Y means that the loss X is
preferred over the loss Y by all the risk averse profit-seeking decision-makers. The
name stop-loss order comes from the following characterization of this stochastic
order relation : given two risks X and Y,

X2 Y e EX—-dy<EY—d),foralld >0, (6.4)

that is, X is smaller than Y in the stop-loss sense when the stop-loss premiums for
X are smaller than the corresponding ones for Y, for any level d of the deductible.
One intuitively feels that Y will be considered as more dangerous than X by all the
“reasonable” decision-makers. The stop-loss order is widely used by the actuaries.
It can be considered as a dual version of the well-known second-degree stochastic
dominance of the economists (see, e.g., Levy (1992)), and is usually termed as
the increasing convex order in the mathematical literature (see, e.g., Shaked and
Shanthikumar (1994)).

As pointed out earlier, the stochastic dominance and the stop-loss order are now
widely used for many application purposes in actuarial sciences. In an attempt to
generalize these orderings, Goovaerts et al. (1990) and Denuit, Lefevre and Shaked
(1998) introduced respectively the higher degree stop-loss orders and the higher
degree convex orders. The s-th degree stop-loss order between risks X and Y is
defined as follows :

X <, Y & X =<, Y for all the pain functions v such that v, v® . . vC+D > 0.
(6.5)
It is easily seen that, given two risks X and Y,
X st Y& X =0-st Y and X =t Y X =1-st Y.
We also have that
X st Y& Y =u -X
for all the utility functions u such that vV >0, «® <0,...,(=1)*ut*) > 0.

Given two risks X and Y, saying that X =<, ., Y means that the loss X is preferred
over the loss Y by all the decision-makers with non-decreasing utility functions with
first s derivatives of alternating signs. Therefore, <, ,, may be regarded as a dual
of the (s — 1)th-degree stochastic dominance in economics (see, e.g., Levy (1992)).

Strengthenings of the orderings <;_s have been recently proposed by Denuit,
Lefevre and Shaked (1998) and termed as the s-convex orders. These are obtained by
requiring, in addition, that the first moments of the risks X and Y to be compared
coincide. More precisely, given two risks X and Y with finite first s moments, the
ordering <,_¢ — is defined as

X jsfsf Y7

X =Y & (6.6)
EX*=FEY*fork=1,2,...,s.
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The relation <;_, — is termed as the convex order of degree s+ 1 (since it is closely
related to the cones of the convex functions of degree s + 1; for an overview about
this concept of generalized convexity, the reader is referred e.g. to Pecaric, Proschan
and Tong (1992), or to Roberts and Varberg (1973). The orderings <;_g — have
been applied to insurance problems by Denuit, De Vylder and Lefevre (1998) and
Denuit (1998a,b).

In economics, the analysis of investor’s behavior is typically confined to first,
second and third stochastic dominance. The insurers are assumed to have increasing
utility of wealth (i.e. their utility function has to satisfy u¥) > 0). The class of risk
averse insurers is defined by adding the stipulation u® > 0, while the addition
of decreasing absolute risk aversion implies that ©® > 0 (a non-negative third
derivative is, of course, a necessary but not a sufficient condition for decreasing
absolute risk aversion).

A special interest in only the first three derivatives of the utility function has
probably been driven by the common analysis of utility functions which is based on
developing a Taylor series expansion for u, truncating and then taking the expected
value of the truncated series. Nevertheless, the three-moments approach to the
ranking of two risks is not in general consistant with the ranking based on expected
utility theory (see, e.g., Levy (1992), Kang (1994) and Brockett and Kahane (1992)),
except in some very particular cases (as for cubic polynomial utility functions).

Now, the standard stochastic dominance, stop-loss and convex orders take into
account the first and second derivative of the pain function v (i.e., they only express
lure of gain and risk aversion). Therefore, it seems natural to consider stochastic
orderings as =<9_g4 — taking the third derivative into account and translating thus
decreasing risk aversion. In economics, third-degree stochastic dominance has been
considered e.g. in Whitmore (1970) and Fishburn (1985); the interested reader is
referred to the review paper by Levy (1992) for more details.

When used to compare pairs of risks with equal means ans variances, <g_gp - ex-
presses the common preferences of all the risk-averse profit-seeking decision-makers
who are afraid of positive skewness (i.e., they prefer risks left-asymmetric). On the
other hand, <y, expresses the same preferences among risks with possible different
first two moments.

de Villiers (1997) got the following interesting result about third degree stochastic
dominance with equal mean and variance (which is in fact equivalent to <o g ) :
there exists a non-decreasing, twice differentiable convex pain function v such that,
given two risks X and Y, if X <9 4 - Y then X will be preferred over Y by all
the rational individuals at least as risk averse as the one with utility function ¢ (i.e.
by all those with a pain function v that can be expressed as v = ¢ o ¥ for some
non-decreasing and convex function ¢). In other words, there exist a pain function
1 such that

X Z9_g-Y & X <, Y for all v more risk averse than ).

Such a result thus relies on the second degree stochastic dominance with respect to
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a function considered by Meyer (1977).

Let us now recall the following well-known characterization of <,_g,. Therefore,
let us introduce the iterated right-tail distributions of a risk X as follows : put
Sg? = 1 — Fx and then define recursively the k-th iterated right-tail distributions

Sy; of X by
k+1] / t)dt, = € IR.

Then, the following equivalence holds :

EXF<EY*fork=1,2,...,s,
X js—s( Y & (67)

SE(x) < SE(x) for all 2 € IR.

A similar result for <;_g _ is easily deduced from (6.6).

To end with, Denuit, Lefevre and Shaked (1998) proved that there is an easy
sufficient condition of crossing-type for <,_g —. Indeed, if F’x and Fy cross each
other exactly s times with Fy surpasing Fy after the last crossing, and if

EXF=FEY*fork=1,2,...,s,

then X <;_ - Y holds true. Of course, this is only a sufficient condition and does
not cover all the cases. But when the sufficient condition is indeed fullfilled, it is
easily detected.

7 Mutually Exclusive Risks

The framework of expected utility theory and stochastic orderings has been re-
cently used by several authors in order to investigate the consequences of a possible
dependence among the risks of a given portfolio. We provide hereafter a brief sum-
mary of the techniques employed to study what happens when the independence
assumption is no more reasonable (see also Section 13). The present section is
mainly based on the ideas contained in Dhaene and Denuit (1998) and Dhaene and
Goovaerts (1996,1997); for related results, see also Denuit and Lefevre (1997), De-
nuit, Lefevre and Mesfioui (1998a,b), Miiller (1997), Béuerle and Miiller (1998) and
Ribas, Goovaerts and Dhaene (1998).

Consider the individual model of risk theory where the aggregate claim .S of the
portfolio is modelled as the sum of the claims relating to the individual risks X},
Xo, -+, X, lee.

In many situations, individual risks are correlated since they are subject to the
same claim generating mechanism or are influenced by the same economic/physical
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environment. In traditional risk theory, individual risks are usually assumed to be
independent, mainly because the mathematics for correlated risks are less tractable.
Consequently, the aggregate claims distribution and the stop-loss premiums for the
portfolio are evaluated under the independence assumption. In order to investigate
the effect of correlation on stop-loss premiums when the assumption of mutually
independence of the individual risks no longer holds, one possibility is to determine
the safest and the worst dependence structures, in the sense that they are those which
generate the smallest and the largest stop-loss premiums for any given retention level.

In order to formalize the problem, let Fi, F5,---, F, be univariate cumulative
distribution functions and consider the Fréchet space R, (Fi, Fy, - - -, F,) consisting
of all n-dimensional cumulative distribution functions Fx (or equivalently of all the
n-dimensional random vectors X = (X1, Xy, -+, X,,)) possessing F, Fy,---, F, as
marginal cumulative distribution functions, i.e.

FX(X) EFX(x17x27"'7xn) :P[Xl leaXQ §x27"'7Xn an]a X = <$17x27"'7xn) ER”?

and

xiﬂlg}nv ” Fx(x) = Fj(z;), xe€ R".

We restrict ourselves to (cumulative distribution functions of) non-negative random
variables with finite expectations, further called multivariate risks; X takes on the
n risks of the portfolio under interest. In other words, we assume that the marginal
distributions are known but the structure of the dependence among the X;’s in the
portfolio is unknown.

We have that for all X in R, (Fy, Fy, - - -, F},) the following inequality holds :

M, (x) < Fx(x) < W,(x) for all x € R", (7.1)

where W, is usually referred to as the Fréchet upper bound of R, (Fy, Fy, - -, Fy,)
and is defined by

Wi (x) = min {Fy(z1), Fo(z2), -+, Fu(z,)}, x € R,

while M,, is usually referred to as the Fréchet lower bound of R,,(F}, Fs, - - -, F},) and
is defined by

M, (x) = max {Z Fi(x;)) —n+ 1,0} , x € R".
i=1
Remark that W, is reachable in R, (Fy, Fy, -+, F,). Indeed, given a random vari-

able U uniformly distributed on [0, 1], it can be shown that W,, is the cumulative
distribution function of the vector

(Fl_l(U)7F2_1(U)7 v '7F_1(U)) € RN(FDF?’ v '7Fn)7 (72>

n

where the generalized inverses of the F;’s are defined as

F ' (u) =inf{z € R|Fy(x) > u}, v €[0,1], i=1,2,...,n,

2
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with the convention that inf() = +o0o. On the contrary, when n > 3, M, is not
always a cumulative distribution function anymore (see, e.g., Tchen (1980)). The
following necessary and sufficient condition for M,, to be a cumulative distribution
function in R, (Fy, Fs, -+, F,,) can be found e.g. in Joe (1997, Theorem 3.7).

Proposition 7.1 A necessary and sufficient condition for M, to be a cumulative
distribution function in R, (Fy, Fy, -+, F,) is that either

1. 3% Fi(z;) <1 whenever 0 < Fy(z;) <1, j=1,2,---,n; or
2. 35y Fi(w;) > n—1 whenever 0 < Fj(x;) <1, j=1,2,---,n.

Let us assume that R, (Fy, Fy, - - -, F,) fulfills the condition

> ¢ <1 where ¢; = 1 — F;(0), i=1,2,---,n. (7.3)
i=1
According to Proposition 7.1(2), (7.3) is a sufficient condition for the lower Fréchet
bound M,, to be a proper cumulative distribution function in R, (Fy, Fa,---, F,).
The study of Fréchet spaces satisfying (8.3) has some actuarial relevance (see Dhaene
and Denuit (1998), as well as Taizhong and Quiang (1998)).

Let us introduce the notion of mutually exclusive risks. Roughly speaking, the
risks X1, Xs, -+, X,, are said to be mutually exclusive when at most one of them
can be different from zero. More formally, the risks Xi, X5, ---, X,, are said to be
mutually exclusive (or, equivalently, the multivariate risk X is said to possess this
property) when

P[X;>0,X; >0] =0 for all ¢ # j.

Examples of mutually exclusive risks abound in actuarial sciences : think for instance
of the present value of the benefit associated with a whole life insurance A, (which
can be decomposed as A, = A;k—‘ + 1Az, where the benefit funtions associated with

A;k—| and y A, are mutually exclusive). Other examples are a term insurance with
doubled capital in case of accidental death, a n-year endowment insurance (with
payment in case of death and survival), a franchise deductible where the risks taken

by the insured and the insurer are respectively given by

X it X <d, 0if X <d,
Xy = and X, =

0 otherwise, X otherwise.

Dhaene and Denuit (1998) proved the following characterization of mutual ex-
clusivity, which relates this notion to the Fréchet lower bound.

Proposition 7.2 Consider a Fréchet space R, (Fy, Fy, - - -, F,) satisfying (7.3). The
multivariate risk X € R, (Fy, Fy, -+, F,) is mutually exclusive if, and only if, Fx =
M,,.
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Consider a decision-maker with a non-decreasing and concave utility function
u, and faced with a risk S which is the sum of the n mutually exclusive risks
X1, Xs, -+, X,. It can be shown that the distribution function of X7+ Xo+---4+ X,
can be expressed as

n

Fxpsxpeo, () = 3 Fx () +1 .

=1

Let w be the decision maker’s initial capital. The expected utility of the random
fortune under consideration is then given by

Fulw—X;—Xo—---—X,)] = /:O u(w — 2)dFx, 4 xy4-tx, (T)

This means that the expected utility related to bearing a risk which is a sum of
mutually exclusive risks is equal to the sum of the individual expected utilities
involved. This linearity property for the expected utility enables us to state the
following result.

Proposition 7.3 Consider a Fréchet space R, (Fy, Fy, -+, F,) satisfying (7.3). Let
S1 and Sy be two aggregate claims of the form S = X1 4+ Xo + -+ + X,, and
So =Y14+Yo+---4Y,, where X, Y € R(Fy, Fy, -, F,) and X is mutually exclusive.
Then, S1 =<4 Sa holds.

In other words, in a Fréchet space R, (F1, Fy, - -+, F,) such that (7.3) is fulfilled,
the mutually exclusive risks lead to the safest portfolio, in the sense that this kind
of mutual dependency leads to the smallest stop-loss premiums. Therefore, the
portfolio consisting of mutually exclusive risks is preferred by all the profit-seeking
risk averse decision-makers over all the other portfolio’s with the same marginal
structure.

8 The Distorted Expectation Hypothesis

Although the expected utility model has been the main framework for analyzing deci-
sions under risk, there is experimental evidence that individual’s preferences are not
always based on the expected utility hypothesis. A famous experiment in this con-
text is known as the Allais (1953) paradox. Let us represent (the distribution of) an
income X by a vector (xy,p1; T2, P2+ Tn, Pn) Where z1, 2o, - - -, ,, are the possible
values of the income (measured in millions of dollars, for instance) and py, ps, - -+, pn
are the associated probabilities, i.e. p; = P[X =], i = 1,2,...,n. Consider the
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following incomes X, Y,V and W defined as X = (1,1), Y = (5,0.1;1,0.89;0,0.01),
V = (1,0.11;0,0.89) and W = (5,0.1;0,0.9). Now, suppose that the decision
maker’s preferences can be represented by an increasing utility function u. Without
loss of generaliy, we can assume that u(5) = 1 and u(0) = 0. If X is preferred over
Y then u(1) > 0.1+ 0.89 u(1) and, therefore 0.11 w(1) > 0.1 which, in turn, implies
that V' is preferred over W. However, empirical studies reveal that many people
tend to prefer X over Y and W over V. People with these preferences cannot take
their decisions under uncertainty based on the expected utility hypothesis.

Motivated by the empirical evidence that individuals often tend to violate the
expected utility hypothesis, several researchers have developed alternative theories
of choice under risk which are able to explain the observed patterns of behavior. A
review of such models, usually termed as “non-expected utility” or “generalizations
of expected utility”, is given in Sugden (1997) or Schmidt (1998). The ideas that
will be developed hereafter originate from Yaari (1987), see also Roéll (1987) and
Schmeidler (1989). Yaari’s “dual theory of choice under risk” turns out to be a
special case of Quiggin’s (1982) “anticipated utility theory”.

Let us associate to each random variable X its decumulative distribution function
Sx, defined as Sx(x) = P[X > z], x € IR, which gives the probability that the
random variable X exceeds some point z € IR. Consider a decision-maker with a
future random fortune equal to X. The expectation of X can be written as

0 o
E[X]:—/ [1—SX($)]dx—|—/+O Sx(z)dz.
Under the “distorted expectations hypothesis” it is assumed that each decision-
maker has a distortion function f : [0,1] — [0,1] with f(0) = 0 en f(1) = 1.
Instead of using the tail probabilities Sx(x), the decision maker uses the distorted
tail probabilities f (Sx(z)). In order to express preferences, a fortune X is valued
at its “distorted expectation” H[X| defined as

0 400
HX) == [ [L—f(Sx@)d+ [ "f(Sx(x)da (8.1)
If the fortune is non-negative with probability one, then we find
+o00 1 1
HiX] = [ f(Sx(@)de = [ S5'(w)df (), (8:2)
=0 p=0

where
S)}l(p) = inf{z € R|Sx(z) <p}, 0<p <1,

with Sy'(1) = 0. The function f is called a distortion because it distorts the
probabilities Sy (x) before calculating a generalized expected value. In expected
utility theory, one has (by substituting p for Fx(z) in (2.1)) that

Elu(x)) = | " u(S5\(p))dp, (8.3)

=0
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so that the expressions (8.2) and (8.3) are rather similar from the mathematical
point of view but are really distinct from a philosophical point of view : under the
expected utility hypothesis, the possible amounts of fortune are adjusted by a utility
function while, under the distorted expectation hypothesis, the tail probabilities are
adjusted.

Increasing = will lead to a smaller tail probability Sx(z). It is a desirable prop-
erty that incrasing the fortune x will also lead to a smaller distorted tail probabil-
ity f(Sx(z)). Therefore, we will always assume that the distortion functions are
non-decreasing. Remark that the distorted tail function cannot necessarily be inter-
preted as a tail function associated to some random variable, so that the distorted
expectation is not necessarily the expectation of some random variable.

Under the “distorted expectations hypothesis” the following preference rule is
used : if the decision maker has a distortion function f, then a fortune Y is preferred
over a fortune X (denoted as X <y Y in the remainder of the paper) if, and only
if

?

HyX] < HylY]. (8.4)

The hypothesis of the dual theory is that agents will chose among random variables
so as to maximize the distorted expectation of their fortune. In both theories,
the preference relations of a decision-maker are thus modeled by comparisons of
numerical quantities associated to the choices under consideration; compare (8.4) to
(2.1). Finally, a decision-maker with distortion function f is said to be indifferent
between X and Y (denoted as X ocy Y in the remainder) if, and only if, equality
holds in (8.4).

Yaari’s theory can be considered as a dual theory of choice under risk in the sense
that he uses the concept of “distortion function” as opposed to “utility function” in
utility theory. Starting from an axiomatic setting different from the one of utility
theory, Yaari (1987) showed that there must exist a distortion function f such that
the decision-maker will prefer Y to X (or be indifferent between them) if, and only if,
(8.4) holds. Yaari’s axiomatic setting differs from von Neumann and Morgenstern’s
one by the independence axiom EU5. Instead of requiring independence with re-
spect to probability mixtures of risky prospects, Yaari (1987) required independence
with respect to direct mixing of payments of risky prospects. More precisely, the
axiom that gives rise to the dual theory of choice under risk is as follows :

Axiom DU5 : given two random variables X and Y such that Y is preferred to X,
Y} is preferred to X, for any p € [0, 1], where the inverse decumulative distribution
functions of X, and Y, are respectively given by

pSx' + (1 —p)Sz" and pSy' + (1 —p)Sz",

for an arbitrary decumulative distribution function Sy.
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Note that (ozS)_(l + (1 - a)Sgl)_l can also be seen as a sort of mixture for decumu-
lative distribution functions Sx and Sz. In other words, instead of independence
being postulated for convex combinations which are formed along the probability
axis, independence is postulated in Yaari’s theory for convex combinations which are
formed along the payment axis. Under axiomes EU1-EU4 and DU5, Yaari (1987)
showed that for each decision-maker, there exists a distortion function f such that
X is preferred over Y if, and only if, (8.4) is satisfied.

The function f is unique up to a positive affine tranformation and can therefore
be normalized (in the spirit of (2.2)-(2.3) above). It is easy to prove (see, e.g., Yaari
(1987), Proposition 2) that, for real constants a > 0 and b,

This means that under the distorted expectations hypothesis, the preferences are
invariant up to positive linear transformations : if a fortune Y is preferred over a
fortune X, then the same preference holds for a positive linear transformation of X
and Y. As an important consequence, we find that the preferences of the decision
maker are independent of initial wealth.

Note that in utility theory, an agent has to be risk neutral (i.e. this agent’s
preferences always rank random variables by comparing their means, and therefore
u is increasing linear) in order to have

X2 Y&saX+b=<,aY +bforalla>0,be IR,

whereas
XL YeaX+b<paY +bforalla>0,be IR,

holds in the dual theory without any further assumption on the distortion function.

As quoted above, behavior which is inconsistent with expected utility theory has
been experimentally observed, and often such a behavior is called “paradoxical”.
Yaari (1987) showed that a behavior which is “paradoxical” under expected utility
theory is, in many cases, entirely consistent with the dual theory. However, this
does not mean that the dual theory is exempt of paradox. On the contrary, for each
“paradox” of expected utility theory, one can usually construct a “dual paradox”
for the dual theory.

To end with, let us point out some properties of the distorted expectations. In
addition to (8.5), Wang (1996) got the following properties of H, :

1. if f(p) > p for all p € [0, 1] then
ol7] = EX;
2. for concave f, H¢[X] > EX and
Hy[X + Y] < Hy[X] + Hf[Y];
3. for convex f, H¢[X] < EX and
HiX +Y] > HfX]+ H;[Y].
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9 Risk Aversion and Distorted Expectations

We have seen above that the notion of risk aversion plays a crucial role in the
economics of insurance. We now describe how this notion can be translated in the
framework of distorted expected utility.

Under the distorted expectations hypothesis, a decision-maker is said to be risk
averse if his distortion function is convex. This comes from the fact that a convex
distortion function satisfies

f(p) <p, pel0,1],

and hence
f(Sx(x)) < Sx(z), = € R.

This means that a risk averse decision-maker systematically underestimates his tail
probabilities related to levels-of-fortune, which is a prudent attitude. As we imme-
diately find for convex f that

Hy[X] < E[X] = Hy [E[X]], (9-1)

we see that a risk averse decision maker will always prefer a certain fortune to a
random fortune with the same expected value. Therefore, the philosophy of risk
aversion is similar in the two theories; see (9.1) and (3.1). A decision-maker is said
to be risk neutral if f(p) = p. In this case, the distorted expectation hypothesis
coincides with comparing expected values. The notion of risk neutrality is therefore
very similar in the two approaches.

In theory, we could also define a certainty equivalent for any fortune X as the
certain fortune for which the decision-maker is indifferent between choosing this
amount and the random fortune X. Hence, CE[X] is determined as the root of the
equation

H, [CE[X]] = H, [X).

which is similar to (3.4). We find that the certainty equivalent is equal to H [X] :
CE[X] = H[X].

Note that in expected utility theory, CE[X] was implicitly defined by (3.4) but no
explicit expression was available in general. On the other hand, formula (3.5) still
holds in Yaari’s framework. As in (3.6), the risk premium of X, denoted by RP[X],
is then defined by

RP[X]| = F [X]| — H/[X].

As
Hy[X] = Hy [E[X] - RP[X]],

we find that the risk premium is the amount that the decision maker is willing to
pay in order to get a random fortune replaced by its expectation.
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10 Distorted Expectations and Insurance

Suppose that a risk averse decision-maker faces a risk X and that an insurer is
willing to accept the risk X in return for a premium P. Let the distortion function
of the decision maker be given by f, while his initial wealth equals a certain fixed
amount w. As earlier, we assume that the development of the decision maker’s
fortune during the insurance period is not influenced by any other factors than the
risk and the insurance premium. Under the distorted expectation hypothesis, the
person is only willing to underwrite the insurance if w — X <y w — P, i.e.

The maximal premium P the person is willing to pay is the largest value of P
satisfying (10.1); it is the root of the equation

w—PM = Hyw— X], (10.2)

which is equivalent to w — PM oy w — X. Since Hy [w — X] < w — E [X], we find
that PM has to satisfy
PY > B X].

As for the expected utility theory, we can conclude that the risk averse insured is
willing to pay more than the expected loss for being covered.

Let us now examine the viewpoint of the risk averse insurer. Assume that the
insurer has a distortion function f and an initial fortune @w. The insurer is willing
to assume the risk at a premium P if w <;w + P — X, iLe.

Hj[w] < H[w + P - X]. (10.3)

Let P™ be the infimum of all premiums that satisfy the inequality (10.3); it has to
fulfill
@:Hf[lf}—f-Pm—X],

which reduces to w ocp w + P™ — X. As
Hi[w+ P" - X] <w+ P" - F[X],
we find that P™ has to be such that
P™ > E[X].

Hence, the risk averse insurer will require a premium that is greater than or equal
to the expected claim amount.

Finally, we can conclude that an insurance policy is only feasible if the premium
P satisfies the following inequalities :

pr<p<pM
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since such a premium satisfies the expected utility requirements (10.1)-(10.3) of both
parties. In conclusion, we could say that the two theories lead to a similar analysis
of the microeconomy of insurance business. It is worth mentioning that in distortion
theory we find explicit expressions of PM and P™ as

PY = —Hy[-X] and P™ = —H{—X].

11 The Associated Distortion Function

Let f be the distortion function involved in (8.4); f is thus used in order to compare
different levels of fortunes and can be considered as an income distortion function.
To each income distortion function f, we associate a function g defined as

glp)=1—f(1—-p), 0<p<1; (11.1)

it is easily seen that ¢ is also a distortion function, i.e. ¢ is a non-decreasing function,
defined on the interval [0, 1] with g(0) = 0 and g(1) = 1 (compare (11.1) to (5.1)).
If f is the distortion function of a decision-maker, then g will be said to be the
associated distortion function of the decisision-maker under consideration. Remark
that

f convex < g concave.

Hence, saying that a decision-maker with distortion function f is risk averse is
equivalent to saying that his associated distortion function g is concave.
Let us now consider an income —X, or equivalently, a loss X. We have that

=X =~ [0 S x@)de [ F (S x(e) d

=—00

In terms of the associated distortion function g, we find

which is similar to (5.2). Hence, we have
Hf[_Y] < Hf[_X] = HQ[X] < Hg[Y]'

In terms of the associated distortion function, the distorted expectations hypotheses
states that a risk X is preferred over a risk Y, if and only, if

Hy[X] < Hy[Y]

ie.,
-Y <y XX <y Y.

Remark that whereas f has to be interpreted as an income distortion function, the
associated distorsion function g can be regarded as a loss distortion function. Risk
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aversion means either that the tail function of a random wealth in underestimated
(by use of f) or, equivalently, that the tail function of a random loss is overestimated
(by use of g). Moreover, remark that if we use the distortion function approach then
we have to consider the random variables as income variables (a loss X is equal to an
income —X). If we use the associated distortion function approach, however, then
the random variables involved have to be considered as loss-variables.

If X is a risk, i.e. a non-negative loss, then we find from (8.1) that

HX] = [ g(Sx(@)dr.

=0

Wang (1996) suggested to compute the risk-adjusted premium 7[X] of a risk X as
a distorted expectation of X, i.e. w[X] = H,[X] with the distortion function g such
that g(p) > p for all p € [0,1] (which is true when ¢ is concave). Wang’s class
of premium principles is therefore strongly connected with Yaari’s dual theory for
choice under risk. It is also related to recent developments in non-additive measure
theory; see Denneberg (1997). Actuarial applications of Wang’s premium principles
can be found in Wang and Dhaene (1997) and Dhaene, Wang, Young and Goovaerts
(1997). Recently, Wang, Young and Panjer (1997) proposed an axiomatic approach
to characterize insurance prices in a competitive market setting. They determined
some properties that should hold for a reasonable premium principle and proved
that if these are fulfilled then the premium principle that the insurer should use is
uniquely determined and turns out to be a principle belonging to Wang’s class. A
similar problem is addressed in Goovaerts and Dhaene (1998). They consider a less
general axiomatic setting, leading to an easier-to-prove characterization of Wang’s
premium principles.

12 Stochastic Orderings and Distorted Utility The-
ory

One possible criticism against Yaari’s dual theory, as against expected utility theory,
is that orderings of risks depends on a subjective distortion function, unknown to
an objective observer. As in expected utility, if one is interested in how a collection
of decision-makers orders risks, then then the resulting ranking will be a partial
ordering, dual to those introduced in Section 6. We summarize in this section
the results obtained by Wang and Young (1998) and Dhaene, Wang, Young and
Goovaerts (1997).

We have seen above that, within the framework of expected utility theory,
stochastic dominance two risks is equivalent to saying that one risk is preferred
over another by all the profit-seeking decision-makers. A similar interpretation ex-
ists within the framework of Yaari’s theory of choice under risk. Indeed, it is possible
to prove that, given two risks X and Y,

X 24 Y & H,[X]| < Hj[Y] for all non-decreasing distortion functions g. (12.1)
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In other words, a risk X is smaller than a risk Y in the stochastic dominance sense
if, and only if, X is preferred over Y by all the decision-makers with non-decreasing
associated distortion function. A result in the same vein holds for the stop-loss
order, i.e. given two risks X and Y, one can show that

stZY

< H,[X] < H,[Y] for all non-decreasing concave associated distortion functions g.
(12.2)
Within the framework of utility theory, we have seen that the stop-loss ordering of
two risks is equivalent to saying that one risk is preferred over another by all the
profit-seeking risk averse decision-makers. Within the framework of Yaari’s theory
of choice under risk, X =<, Y holds if, and only if, all the decion-makers with a
non-decreasing and concave associated distortion function prefer the risk X.
Therefore, stochastic dominance and stop-loss order have a common interpreta-
tion in both theories of choice under risk. In view of (12.1) and (12.2), Wang and
Young (1998) suggested to define the dual s-th degree stop-loss order between risks
X and Y as follows :
X js—sﬁ* Y

& X <, Y for all g such that g >0,¢® <0,,(=1)%¢"*) > 0. (12.3)
It can be proven that
X <Y & X =0 wY e X2, (12.4)
X2 gV o X2 uY e X 24Y, (12.5)
and a natural question that arises is whether the equivalence
X2V & X 2 Y (12.6)

holds true for s > 3. Quite surprisingly, (12.6) is not true in general, as shown in
Wang and Young (1998), Example 4.8. Orderings <, are in fact those introduced
by Muliere and Scarsini (1989). In other words, the classes {=<s_g, s € IN} and
{=s_stx, $ € IN} coincide for s = 0 and s = 1 but turn out to be really distinct for
s> 3.

A characterization in the spirit of (6.7) still holds for <, .. To be more spe-
cific, put Sg?]* = S%!' and define recursively the k-th iterated inverse decumulative

distribution Sy(ﬂ* of X by

* P *
K = [ Sk @de e o.1)
as well as the k-th inverse moment of X as

Ho X = [ {1= (1= Sx(a))}dr,

=0
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with gx(p) = 1 — (1 — p)*. Wang and Young (1998) then proved that

Hy, [X] < Hy[Y]|fork=1,2,...,s,
X <YV & (12.7)

S (p) < S¥(p) for all p € [0, 1].

Asin (6.6), we may define the strengthening <. — of <s_s. obtained by requiring
the equality of the first s inverse moments of the risks X and Y to be compared, i.e.

X js—sf* K
X 2= Y & (12.8)

H, [X]=H,[Y]for k=1,2,...,s.

Wang and Young (1998), Proposition 4.9, proved the following crossing condition,
which is very similar to the one for <,_4 —. Namely, if the numbers of crossings of
Sx and Sy is equal to s, with Sy surpassing Sy after the last crossing, and

H, [ X|=H,[Y]fork=1,2,...,s,

then X <, . - Y. Using the sufficient condition of crossing type for X <, ;- Y,
Denuit, De Vylder and Lefevre (1998) deduced the extremal distributions for <, s —
in moment spaces. A point of interest for future research should be whether the
extremal distributions with respect to <;_g ~ could be determined using Wang
and Young’s crossing result.

13 Mutually comonotonic risks

As in Section 7, assume we are faced with a case where the independence hypothesis
of the individual claim amounts may be regarded as unrealistic. For instance, con-
sider individual risks of an earthquake risk portfolio located in the same geographic
area : these are correlated since individual claims are contingent on the occurence
and severity of the same earthquake. As another example, think of a bond port-
folio : individual bond default experience may be conditionnally independent for
given market conditions but the underlying economic environment (e.g., interest
rates) may affect all individual bonds in a similar way.

In order to model such a situation, the notion of comonotonicity has been in-
troduced. It is defined as follows. The risks X1, X5, ..., X,, are said to be mutually
comonotonic (or equivalently, the multivariate risk X is said to possess this property)
when there exists a random variable Z and non-decreasing functions ¢4, ¢o, ..., ¢, :
IR — IR" such that X is distributed as the vector (¢1(Z2), ¢2(Z), ..., pu(Z)).

The economic meaning of comonotonocity is as follows : when two random
variables are comonotonic, then it can be said that neither of them is a hedge
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against the other. The variability of one is never tempered by counter-variability of
the other. The interpretation for more than two risks immediately follows from the
equivalence

(X, X;) are comonotonic for all i # j

< (X1, Xy, ..., X,) are comonotonic.

From the definition, we see that comonotonic risks can be considered as “common
monotonic” in the sense that such risks are not able to compensate each other. See
Denneberg (1997) for an extensive theory about this topic.

Now, let us stress the meaning of comonotonicity in insurance business. Consider
for example an insurance company that gives compensation for the damages caused
by catastrophes like hurricanes or earthquakes. In this case, it is realistic to assume
that there is a real random variable Z, which gives the measure for the magnitude
of the catastrophe, and the individual risks are non-decreasing functions ¢; of the
magnitude Z of the catastrophe. In such a case, the random vector X is clearly
comonotonic.

The modified independence axiom DU5 giving rise to Yaari’s dual theory for
choice under risk can be stated in a way that makes its economic content clear using
comonotonic random variables. Indeed, this axiom requires that, (X7, Xs, X3) being
comonotonic,

X1 <<g X2 = le + (1 —p)Xg <<g ng + (1 —p>X3

for all p € [0,1]. The equivalance follows from the fact that if X; and X3 are
comonotonic then pX; + (1 — p) X3 has inverse decumulative distribution function
pS)_(ll + (1 — p)S)_(;. Note that we are dealing with ordinary convex combinations
of random variables and that pX; + (1 — p) X3 is not a probability mixture. Dual
independence requires therefore the direction of preference to be retained under
mixing of payments, provided hedging is not involved. In an insurance context,
suppose that a reinsurer has to choose between the following portfolio’s of insurance
risks : portfolio 1 consists of X in proportion p with the remainder of the portfolio
being made up with risks X3; portfolio 2 consists of risks X5 in proportion p and the
remainder made up with risk X3. Also assume that the reinsurer considers X; as
less risky than Xs. If X3 is a hedge against risk X5, then the reinsurer may decide
that portfolio 2 is preferable to portfolio 1 even though X5 is riskier than X; without
the presence of X3. However, if the risks X;, X, and X3 are comonotonic, X3 will
not be a hedge against X; or X5, and in Yaari’s approach, the reinsurer will choose
portfolio 1 over portfolio 2, for the same premium scheme.

The following well-known result characterizes comonotonicity with the aid of the
Fréchet upper bound. It can be seen as a dual of Proposition 7.2 relating to mutually
exclusive risks.

Proposition 13.1 Consider a Fréchet space R, (Fi, Fa,---, F,). The multivariate
risk X is comonotonic if, and only if, Fx = W,,.
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The concept of comonotonicity can be explained in terms of Monte Carlo sim-
ulation. From (7.2) together with Proposition 13.1, the risks X, Xy, -+, X, are
comonotonic if, and only if, X is distributed as the vector (Fy 1 (U), Fy *(U), - -, F7Y(U))
for U being any uniformly distributed random variable on [0, 1]. Hence, in order to
simulate comonotonic risks, one needs to generate only one sample of random uni-
form numbers and insert them in the F; '’s to get a sample of the X;’s. By contrast,
if the X;’s were independent, then one needs to generate n independent samples of
random uniform numbers and then insert them in Fy, F5, ---, F},, respectively.

Recall that X and Y are positively perfectly correlated if, and only if, there exist
real numbers a > 0 and b such that Y = aX + b, except, perhaps, for values of X
with zero probability. It follows immediately that perfect correlation of X and Y
implies

PIX <2,V <y| =min(Fx(z), Fy(y)) = Wa(z,y),
so that positively perfectly correlated risks are also comonotonic by Proposition 13.1.
Hence comonotonicity appears as an extension of the concept of positive perfect
correlation. This extension is very useful in order to analyze insurance business.
Consider a risk X and split it as follows :

X it X <d, 0if X <d,
X1 = and X5 =

d otherwise, X — d otherwise.

Then, X; can be interpreted as the part of total claims generated by X to be
covered by the primary insurer and X, the part to be covered by the reinsurer
in a stop-loss treaty. It follows that X; and X, are not perfectly correlated since
one cannot be written as a linear function of the other. However, since X; and
X, are non-decreasing functions of the original risk X, they are comonotonic. More
generally, we can say that most risk sharing schemes (between insurer and reinsurer,
or between insured and insurer) lead to partial risks that are comonotonic. The only
restriction that has to hold is that both risk sharing partners have to bear more (or
at least as much) if the underlying total claims increases. To be specific, let the
function ¢ : IRt — IR describe the indemnity benefit associated to some insurance
agreement; ¢(z) is the amount paid by the insurance company to the policyholder if
a loss of amount x occurs. It is usual to restrict ¢ to be a non-decreasing function.
In such a case, X and ¢(X) are comonotonic risks. Similarly, one often restricts ¢ to
increase at a slower rate than the underlying loss (if ¢ is piecewize differentiable, this
condition reduces to ") < 1). As a consequence, X —p(X) and X are comonotonic
risks. Examples of insurance contracts that satisfy both restrictions are

1. deductible coverage : () = max(x — d,0) for some d > 0;
2. coinsurance : p(z) = ax for some «a € [0, 1];

3. coverage with a maximal limit : ¢(z) = min(z, d) for some d > 0;
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4. as well as coverages combining the three forms above.

Under the expected utility hypothesis, we found that the expected utility was
additive for mutually exclusive risks. Under the distorted expectations hypothesis, a
similar result holds for comonotonic risks. More precisely, consider a decision-maker
with an associated distortion function g, who bears the mutual comonotonic risks
X1, X5, ..., X,,. Then, we find

[e.e]

Hy X1+ Xo + .+ Xa] = /z 9lSx b, (@)

n
B /po SX1+Xa .t X, (P)AG (D)
Now, since the inverse decumulative distribution of the sum X; + X, satisfies

Sxirx:(p) = Sx(0) + Sx,(p), P €[0,1];
when the risks X; and X, are comonotonic (see, e.g., Wang (1996)), we get that

1 n

HXi+Xo+ ... +X,] = zj:/p S)_(il(p)dg(p) = ZHg [X].

=0 ‘1

1=

This means that the dual distorted expectation operator is linear for mutually
comonotonic risks.

Proposition 13.2 Consider a Fréchet space R, (Fi, Fy, -+, F,). Let S; and Sy be
two aggregate claims of the form S; = X1+ Xo+-- -4+ X, and Sy = Y1+ Yo+ - -+Y,,
where X, Y € R, (Fy, Fy,---, F,) and Y is mutually comonotonic. Then, for any
non-decreasing and concave associated distortion function g, S <, Se holds,i.e.,

St =5t Sa.

In other words, in a Fréchet space R, (F1, Fy, - - -, F},), the mutually comonotonic
risks lead to the most dangerous portfolio, in the sense that this kind of mutual
dependency leads to the largest stop-loss premiums. Therefore, when a profit seeking
risk averse decision-maker can choose between elements of a given Fréchet space, he
will never choose the mutually comonotonic risks.

14 The Rank-Dependent Expected Utility Hypoth-
esis

In this last section, we briefly present a theory which combines the expected utility
and the distorted expected utility assumptions, to a certain extent. For more details,
we refer the interested reader e.g. to Chateauneuf, Cohen and Meilijson (1997).
Under the rank-dependent expected utility model, a decision-maker is character-
ized by a non-negative utility function u (that plays the role of utility on certainty)
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in conjunction with a distorted function f (that plays the role of a probability per-
ception function). Such a decision-maker prefers the fortune Y to the fortune X if|
and onyl if|

H{[X] < H{[Y], (14.1)

where H}[X] is defined as

+o0
HyX] = = [ 7 u@df(Sx())
_ /t+oof(P[u(X)>t])dt.

=0
It is easy to see that if f(v) = v, we get the expected utility model. There is a hughe
literature about these topics in economics, with applications to insurance problems.
See, for instance, Landsberger and Meilijson (1990,1994a,b). For related stochastic
orderings, see, e.g., Chateauneuf, Cohen and Meilijson (1996).
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