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Abstract

In this paper we investigate the dependence in Fréchet spaces containing mutually exclusive risks. It is shown that, under
some reasonable assumptions, the safest dependence structure, in the sense of the minimal stop-loss premiums for the
aggregate claims involved, is obtained with the Fréchet lower bound and precisely corresponds to the mutually exclusive
risks of the Fréchet space. In that respect, the present paper complements some previous studies by Heilmann (1986) [On the
impact of independence of risks on stop-loss premiums. Insurance: Mathematics and Economics 5, 197–199], Dhaene and
Goovaerts (1996) [Dependency of risks and stop-loss order. ASTIN Bulletin 26, 201–212], Dhaene and Goovaerts (1997)
[On the dependency of risks in the individual life model, Insurance: Mathematics and Economics 19, 243–253], Müller
(1997) [Stop-loss order for portfolios of dependent risks. Insurance: Mathematics and Economics 21, 219–224], Taizhong
and Zhiqiang (1999) [On the dependence of risks and the stop-loss premiums. Insurance: Mathematics and Economics 24,
323–332]. A couple of actuarial applications enhance the interest of the results derived here. ©1999 Elsevier Science B.V.
All rights reserved.

Keywords:Fréchet spaces; Fréchet bounds; Comonotonicity; Mutual exclusivity; Stop-loss order; Supermodular order

1. Introduction

Consider a portfolio consisting ofn insurance policies. The aggregate claimsS of the portfolio is the sum of all
amountsX1, X2, . . . , Xn payable during the reference period (one year, say), i.e.

S =
n∑

i=1

Xi;

the random variablesXi , assumed to possess a finite mathematical expectation, are commonly called “risks” in the
actuarial literature. TheXi ’s are non-negative and model the total claims generated by policyi, i = 1, 2, . . . , n. The
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calculation of the stop-loss premiums related to such a portfolio is one of the main topics of risk theory. Therefore not
only the marginal distributions of theXi ’s have to be known, but also the knowledge of the dependence structure
among theXi ’s is required. In practice, the problem is almost always simplified by assuming that theXi ’s are
mutually independent so that knowledge of the marginal distributions suffices to compute stop-loss premiums.
Of course, the independence hypothesis obviously relies on computational convenience rather than realism, and
dependencies may have disastrous effects on stop-loss premiums (for numerical illustrations, the interested reader
is referred e.g. to Kaas (1993) or Dhaene and Goovaerts (1997)).

The present paper is devoted to the safest dependence structure between the risksX1, X2, . . . , Xn with given
marginals, i.e. the one giving rise to the smallest stop-loss premiums forS. Several authors (e.g. Dhaene and
Goovaerts, 1996,1997; Müller, 1997) have already determined the worst dependence structure, i.e. the one generating
the largest stop-loss premiums forS. They showed that the dependence structure of the riskiest portfolio is described
by the so-called Fréchet upper bound. We will see below that the Fréchet lower bound plays a symmetric role for
the safest portfolio, although some mathematical conditions are involved.

In order to compare the riskiness of insurance portfolios, we will use the stop-loss order. Therefore, we briefly
recall the following result which will be used in the sequel.

Definition 1. A risk X is said to be smaller in stop-loss order than a riskY , which is denoted asX ≤sl Y , if any of
the two following conditions hold:
1. the stop-loss premiums associated toX andY are ordered for any leveld of the deductible, i.e.

E[(X − d)+] ≤ E[(Y − d)+] for all d ≥ 0;
2. X is preferred overY by all the risk-averse profit-seeking decision-makers, i.e.

E[u(−X)] ≥ E[u(−Y )]

for every concave non-decreasing utility functionu, provided that the expectations exist.

For a proof of the equivalence of the two conditions contained in Definition 1 for stop-loss order, see e.g. Kaas
et al. (1994, Theorem 1.1 on page 21).

The paper is organized as follows. In Section 2, we provide some mathematical background about Fréchet spaces
and Fréchet bounds. It is explained why then-dimensional case (n ≥ 3) and the bivariate case are so different.
In Section 3, we give bounds in the stochastic dominance sense on the largest and smallest claims affecting an
insurance portfolio. In Section 4, we investigate the safest dependence structure among the risksX1, X2, . . . , Xn

and we extend to general risks a recent result obtained by Taizhong and Zhiqiang (1999) in the case of two-point
distributions. Therefore, we introduce the concept of mutually exclusive risks, which is particularly relevant in
actuarial sciences. In Section 5, we show that, under some circumstances, the Fréchet lower bound is the minimal
element for the supermodular order in a given Fréchet space. This complements a recent result obtained by Müller
(1997). We end the paper by providing two applications of the theory. We first derive bounds on reinsurance
premiums when dependent risks are involved. For exponentially distributed risks, elegant explicit formulas are
available. Secondly, we examine optimality among some life insurance contracts and we prove a result in the vein
of Bowers et al. (1996) and Kling and Wolthuis (1992); namely that from the insurer’s point of view, it is safer to
issue ann-year endowment on a single person than to sell ann-year pure endowment together with ann-year term
insurance to two different people.

2. Fréchet spaces and Fréchet bounds

Let F1, F2, . . . , Fn be univariate cumulative distribution functions (c.d.f.’s, in short) and consider the Fréchet
spaceRn(F1, F2, . . . , Fn) consisting of alln-dimensional c.d.f.’sFX (or equivalently of all then-dimensional
random vectorsX = (X1, X2, . . . , Xn)) possessingF1, F2, . . . , Fn as marginal c.d.f.’s. In this paper, we restrict
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ourselves to (c.d.f.’s of) non-negative random variables with finite expectations, further called risks. We have that
for all X in Rn(F1, F2, . . . , Fn) the following inequality holds:

Mn(x) ≤ FX(x) ≤ Wn(x) for all x = (x1, x2, . . . , xn) ∈ Rn,

whereWn is usually referred to as the Fréchet upper bound ofRn(F1, F2, . . . , Fn) and is defined by

Wn(x) = min{F1(x1), F2(x2), . . . , Fn(xn)}, x ∈ Rn,

while Mn is usually referred to as the Fréchet lower bound ofRn(F1, F2, . . . , Fn) and is defined by

Mn(x) = max

{
n∑

i=1

Fi(xi) − n + 1, 0

}
, x ∈ Rn.

Remark thatWn is reachable inRn(F1, F2, . . . , Fn). Indeed, given a random variableU , uniformly distributed
on [0,1], it can be shown thatWn is the c.d.f. of

(F−1
1 (U), F−1

2 (U), . . . , F−1
n (U)) ∈ Rn(F1, F2, . . . , Fn),

where the generalized inverses of theFi ’s are defined as

F−1
i (u) = inf {x ∈ R such thatFi(x) ≥ u}, u ∈ [0, 1], i = 1, 2, . . . , n.

The elements of the Fréchet spaceRn(F1, F2, . . . , Fn) which have a multivariate c.d.f. given byWn(x) are said to
be comonotonic. Applications of the notion of comonotonicity in the actuarial literature can be found, e.g. in Wang
(1996), Wang and Dhaene (1997), Dhaene et al. (1997), Wang et al. (1997).

On the contrary, whenn ≥ 3, Mn is not always a c.d.f. anymore, as shown by the following counterexample
proposed by Tchen (1980): forn = 3, takeX1, X2 andX3 uniformly distributed on the unit interval [0,1]; then, the
“probability” thatX lies in [0.5, 1]× [0.5, 1]× [0.5, 1] is equal to−0.5 when the dependence structure is described
by M3, so thatM3 cannot be a proper c.d.f. (another counterexample is provided by Joe (1997, Example 3.1)). The
following necessary and sufficient condition forMn to be a c.d.f. inRn(F1, F2, . . . , Fn) can be found e.g. in Joe
(1997, Theorem 3.7).

Theorem 2. A necessary and sufficient condition forMn to be a c.d.f. inRn(F1, F2, . . . , Fn) is that either
1.
∑n

j=1Fj (xj ) ≤ 1 for all x ∈ Rn with 0 < Fj (xj ) < 1, j = 1, 2, . . . , n; or
2.
∑n

j=1Fj (xj ) ≥ n − 1 for all x ∈ Rn with 0 < Fj (xj ) < 1, j = 1, 2, . . . , n.

3. Stochastic bounds on the smallest and largest claims

DespiteMn is not always a proper c.d.f., Tchen (1980, Theorem 4) proved that there existsX ∈ Rn(F1, F2, . . . , Fn)

achieving the lower boundMn when all thexi ’s are equal. This is formally stated in the next result.

Theorem 3. There existX ∈ Rn(F1, F2, . . . , Fn) such that

P [max{X1, X2, . . . , Xn} ≤ x] = Mn(x, x, . . . , x)

for anyn ∈ N0 andx ∈ R.

As a corollary, Tchen (1980, Corollary 4.1) provided the following bounds on the distribution of
max{X1, X2, . . . , Xn} and min{X1, X2, . . . , Xn}: for anyX ∈ Rn(F1, F2, . . . , Fn),
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1 − min{F1(x), F2(x), . . . , Fn(x)} ≤ P [max{X1, X2, . . . , Xn} > x]

≤ min

{
1,

n∑
i=1

(1 − Fi(x))

}
for all x ∈ R,

and

max{F1(x), F2(x), . . . , Fn(x)} ≤ P [min{X1, X2, . . . , Xn} ≤ x] ≤ min

{
1,

n∑
i=1

Fi(x)

}
for all x ∈ R.

The latter inequalities provided useful bounds on the distribution of the largest and smallest claims affecting an
insurance portfolio consisting of dependent risks. Therefore, they can be used to get bounds on the premium of a
LCR(1) treaty (such a reinsurance agreement covers the largest claim occurring during a given reference period (one
year, say)). Of course, when theXi ’s are thought of as being time-until-death random variables, these inequalities
also yield bounds on life insurances or annuities based on either a joint-life status or a last-survivor status. These
bounds have been used by Dhaene et al. (1997) in order to find extremal joint-life and last-survivor statuses (in
terms of stochastic dominance).

4. Extremal dependence structures

Dhaene and Goovaerts (1997) considered the Fréchet spacesRn(F1, F2, . . . , Fn) of all n-dimensional multivari-
ate risks(X1, X2, . . . , Xn) with eachXi having a two-point distribution (with probability masses in 0 andαi > 0).
They investigated the dangerousness of this Fréchet space by looking for the element with the most dangerous
mutual dependence between the risks, i.e. the one leading to the highest stop-loss premiums. They found that the
most dangerous dependence structure is described by the Fréchet upper boundWn; see also Dhaene and Goovaerts
(1996) and Müller (1997) for an extension of this result to general risks. The following theorem is borrowed from
Dhaene et al. (1997).

Theorem 4. LetU be a random variable uniformly distributed on[0,1]. Then,

n∑
i=1

Xi ≤sl

n∑
i=1

F−1
i (U)

for any multivariate riskX in Rn(F1, F2, . . . , Fn).

Other proofs for this theorem can be found in Müller (1997) (in terms of supermodular ordering), and in a special
setting, in Heilmann (1986) (in terms of convex mappings).

In view of the above, an interesting problem is to look for the safest element in the Fréchet classRn(F1, F2, . . . , Fn),
with “safest” meaning that the corresponding dependence structure leads to the lowest stop-loss premiums forS. By
symmetry, we would like to say that the Fréchet lower boundMn provides the least dangerous mutual dependence
between the risks. Nevertheless, if this were true, the problem will not have a solution in general, because the Fréchet
lower bound is not always a proper c.d.f. (see Theorem 2). Therefore, we will restrict our study to a Fréchet class
Rn(F1, F2, . . . , Fn) for which the condition

n∑
i=1

qi ≤ 1 where qi = 1 − Fi(0), i = 1, 2, . . . , n, (1)

is fulfilled, i.e. the probability mass of the marginal distributions outside 0 is at most 1. According to Theorem 2(2),
(1) is a sufficient condition for the lower Fréchet boundMn to be a proper c.d.f. inRn(F1, F2, . . . , Fn). As we will
see the study of Fréchet spaces satisfying (1) has some actuarial relevance.
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In a recent paper by Taizhong and Zhiqiang (1999), the aforementioned problem has already been investigated
when the marginalsF1, F2, . . . , Fn are two-point distributions. They found the following result.

Theorem 5. Consider a Fréchet spaceRn(F1, F2, . . . , Fn) satisfying (1), such that fori = 1, 2, . . . , n, theFi are
two-point distributions with probability masses in0 andαi > 0. Consider the riskX ∈ Rn(F1, F2, . . . , Fn) with
dependence structure given by

P [Xi = αi, Xj = αj ] = 0 for all i 6= j.

Then,

n∑
i=1

Xi ≤sl

n∑
i=1

Yi

holds for anyY ∈ Rn(F1, F2, . . . , Fn).

We mention that condition (1) for two-point distributions is equivalent to the conditions of Theorem 2 so that (1)
is in this particular case necessary and sufficient forMn to be a proper c.d.f.

We are now going to generalize Theorem 5 to the case of general risks. First, we introduce the notion of mutually
exclusive risks. Roughly speaking, the risksX1, X2, . . . , Xn are said to be mutually exclusive when at most one
of them can be different from zero. This can be considered as a sort of dual notion of comonotonicity. Indeed, the
knowledge that one risk assumes a positive value directly implies that all the other ones vanish. Mutually exclusive
risks are therefore “anti-monotonic”.

Definition 6. The risksX1, X2, . . . , Xn are said to be mutually exclusive (or, equivalently, the multivariate riskX
is said to possess this property) when

P [Xi > 0, Xj > 0] = 0 for all i 6= j.

Let us point out that mutually exclusivity ofX means that its probability mass is concentrated on the axes.
Examples of mutually exclusive risks abound in actuarial sciences: think for instance of:

1. The present value of the benefit associated with a whole life insuranceAx written on a status(x) which can be
decomposed as

Ax = A1
x;k| +k| Ax.

The benefit funtions associated withA1
x;k| andk|Ax (and written on the same status(x)) are mutually exclusive,

2. A life annuityax written on a status(x) can be decomposed as

ax =
ω−x∑
k=1

kEx,

whereω is the ultimate age of the lifetable. The benefit functions associated with thekEx , all written on the
same status(x), are comonotonic. On the other hand, a life annuity can also be decomposed as

ax =
ω−x∑
k=0

k|qxak|.

The benefit functions associated with thek|qxak|’s (all written on the same status(x)) are mutually exclusive.
3. A term insurance with doubled capital in case of accidental death.
4. An n-year endowment insurance (with payment in case of death and survival) – see also further.
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5. A franchise deductible splitting the riskX up in two partsX = X1 + X2, with the retained part given by

X1 =
{

X if X < d,

0 if X ≥ d,

and the insured part

X2 =
{

0 if X < d,

X if X ≥ d.

The risk-sharing scheme(X1, X2) is mutually exclusive.
As an example in finance, consider a stock with priceX at timet . Consider two European options (a put and a call)
on this stock with expiration datet and exercise priced. The writer of the options bears the risk

X1 = max(0, X − d)

for the call and

X2 = max(0, d − X)

for the put.X1 andX2 are mutually exclusive.
Let us now emphasize the central role of condition (1) in the theory of mutually exclusive risks.

Theorem 7. A Fréchet spaceRn(F1, F2, . . . , Fn) contains mutually exclusive risks if and only if it satisfies(1).

Proof. First, assume thatX is mutually exclusive and belongs toRn(F1, F2, . . . , Fn). Define the indicator variables
I1, I2, . . . , In as

Ii =
{

1 if Xi > 0,

0 if Xi = 0,

so thatP [Ii = 1] = qi, i = 1, 2, . . . , n. Note that

P [I1 = I2 = · · · = In = 0] = 1 − P [∃ i such thatIi = 1] = 1 −
n∑

i=1

qi,

so that (1) has to be fulfilled. Conversely, assume thatRn(F1, F2, . . . , Fn) satisfies (1). From Theorem 2, we know
thatMn is a c.d.f. inRn(F1, F2, . . . , Fn). ConsiderX ∈ Rn(F1, F2, . . . , Fn) with c.d.f.Mn. Then, we find

P [Xi = 0, Xj = 0] = 1 − qi − qj for all i 6= j,

whence it follows that

P [Xi > 0, Xj > 0] = 0 for all i 6= j,

which, in turn, means thatX is mutually exclusive. �
Let us prove the following characterization of mutual exclusivity, which relates this notion to the Fréchet lower

bound (as comonotonicity corresponds to the Fréchet upper bound). More precisely, we prove that when (1) is
fulfilled, the multivariate c.d.f.FX of the mutually exclusive riskX in the Fréchet spaceRn(F1, F2, . . . , Fn) is
given by the Fréchet lower boundMn(x).

Theorem 8. Consider a Fréchet spaceRn(F1, F2, . . . , Fn) satisfying(1). The riskX ∈ Rn(F1, F2, . . . , Fn) is
said to be mutually exclusive if and only if

FX(x) = Mn(x), x ∈ Rn.
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Proof. Assume thatX is mutually exclusive. Then, we have that

FX(x) =
n∑

i=1

P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn|Ii = 1]P [Ii = 1] + P [I1 = I2 = · · · = In = 0]

=
n∑

i=1

P [Xi ≤ xi |Ii = 1]qi + 1 −
n∑

i=1

qi =
n∑

i=1

(Fi(xi) − Fi(0)) + 1 −
n∑

i=1

qi =
n∑

i=1

Fi(xi) + 1 − n

= Mn(x),

which achieves the proof of the necessity part. The opposite direction immediately follows from the second part of
the proof of Theorem 7. �

Combining Theorems 7 and 8, we find that a Fréchet spaceRn(F1, F2, . . . , Fn) satisfies (1) if and only if the
Fréchet lower bound is the unique c.d.f. ofRn(F1, F2, . . . , Fn) which is concentrated on the axes.

Let us now derive the following result, which states that the expected utility is additive for a sum of mutually
exclusive risks.

Theorem 9. Consider a Fréchet spaceRn(F1, F2, . . . , Fn) satisfying(1). Let X be a mutually exclusive risk in
Rn(F1, F2, . . . , Fn). Then,

E

[
u

(
−

n∑
i=1

Xi

)]
=

n∑
i=1

E[u(−Xi)]

holds for any utility functionu.

Proof. As X is mutually exclusive, the distribution of the aggregate claimsS is given by

P


 n∑

j=1

Xj ≤ x


=

n∑
i=1

P


 n∑

j=1

Xj ≤ x|Ii = 1


P [Ii = 1] + P [I1 = I2 = · · · = In = 0]

=
n∑

i=1

P [Xi ≤ x|Ii = 1]qi + 1 −
n∑

i=1

qi =
n∑

i=1

Fi(x) + 1 − n,

whence the desired result directly follows. �
As a special case of Theorem 9, we find that

E


( n∑

i=1

Xi − d

)
+


 =

n∑
i=1

E(Xi − d)+ (2)

holds whenX is mutually exclusive for any deductibled ≥ 0.
We are now in a position to extend Theorem 5 to general risks.

Theorem 10. Consider a Fréchet spaceRn(F1, F2, . . . , Fn) satisfying(1). Let X be a mutually exclusive risk in
Rn(F1, F2, . . . , Fn). Then,

n∑
i=1

Xi ≤sl

n∑
i=1

Yi

holds for anyY ∈ Rn(F1, F2, . . . , Fn).
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Proof. SinceX is mutually exclusive, we have from (2) that

E



(

n∑
i=1

Xi − d

)
+


 =

n∑
i=1

E(Xi − d)+.

Now asX andY both belong toRn(F1, F2, . . . , Fn), the latter relation yields

E



(

n∑
i=1

Xi − d

)
+


 =

n∑
i=1

E(Yi − d)+ ≤ E



(

n∑
i=1

Yi − d

)
+


 ,

where the latter inequality is true in general. This ends the proof. �
We have proven that in the classRn(F1, F2, . . . , Fn) of all the risks with given marginalsFi and such that (1)

is fulfilled, the mutually exlusive risks lead to the safest portfolio, in the sense that this kind of mutual dependency
leads to the smallest stop-loss premiums. This means that all the risk-averse decision-makers (with non-decreasing
utility functions) who have to bear a riskS which is the aggregate claims of the components of a freely choosen
element in a Fréchet spaceRn(F1, F2, . . . , Fn) containing mutually exclusive risks will prefer the latter elements.

Remark that a slightly generalization of Theorem 10 is possible.

Corollary 11. Assume thatXi ≤sl Yi for i = 1, 2, . . . , n, andX is mutually exclusive. Then,

n∑
i=1

Xi ≤sl

n∑
i=1

Yi

holds true.

Corollary 11 means that we can leave the original Fréchet space to another one for which the components are
larger in stop-loss order.

5. Inequalities of supermodular-type

In this section, we extend the stochastic inequality of Theorem 10 with the aid of the supermodular order. To be
specific, we show that in a Fréchet spaceRn(F1, F2, . . . , Fn) satisfying (1), the minimal element with respect to
the supermodular order is preciselyMn, the Fréchet lower bound.

The supermodular order has been introduced in the actuarial literature by Müller (1997) (see also Bäuerle and
Müller (1998) and the references therein) who characterized the riskiest portfolio among all those with identical
marginals. For a reference in statistics, see e.g. Shaked and Shanthikumar (1997). The supermodular order is based
on the comparison of expectations of supermodular functions. A real-valued functionφ defined on the positive
orthantRn+ is called supermodular if

φ(max(x1, y1), . . . , max(xn, yn)) + φ(min(x1, y1), . . . , min(xn, yn)) ≥ φ(x) + φ(y) (3)

for all x, y ∈ Rn+. If φ has second partial derivatives then it is supermodular if and only if

∂2φ

∂xi∂xj

≥ 0 on Rn
+ for all i 6= j.

Then, given two multivariate risksX andY inRn(F1, F2, . . . , Fn), X is said to precedeY in the supermodular order,
denoted asX �sm Y, if Eφ(X) ≤ Eφ(Y) for all supermodular functionφ : Rn+ → R for which the expectations
exist.
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Let us now prove the following result.

Theorem 12. Consider a Fréchet spaceRn(F1, F2, . . . , Fn) satisfying(1). Let X be a mutually exclusive risk in
Rn(F1, F2, . . . , Fn). Then,

X �sm Y

holds for anyY ∈ Rn(F1, F2, . . . , Fn).

Proof. Without loss of generality, the supermodular functions generating�sm may be assumed to vanish on the
axes. It suffices indeed to substitute forφ : Rn+ → R the auxiliary functionφ∗ : Rn+ → R defined as

φ∗(x) = φ(x) −
n∑

i=1

φ(0, . . . , 0, xi, 0, . . . , 0) + (n − 1)φ(0, 0, . . . , 0),

and to notice then that the inequalityEφ(X) ≤ Eφ(Y) holds if, and only if,Eφ∗(X) ≤ Eφ∗(Y) holds, sinceX
andY both belong toRn(F1, F2, . . . , Fn). Now, a supermodular functionφ : Rn+ → R that is zero on the axes is
necessarily valued inR+; this is easily seen from repeated use of Eq. (3) which gives

φ(x1, x2, . . . , xn) ≥ φ(x1, x2, . . . , xn−1, 0) ≥ φ(x1, x2, . . . , xn−2, 0, 0) ≥ · · · ≥ φ(0, 0, . . . , 0) = 0,

for all x ∈ Rn+. To conclude, it suffices to quote thatEφ(Y) ≥ 0 for anyY ∈ Rn(F1, F2, . . . , Fn), whileEφ(X) = 0
since the c.d.f. ofX is concentrated on the axes. �

It is well known that the stochastic inequality contained in Theorem 12 implies the one proposed in Theorem 10.
Moreover, it provides a host of useful inequalities in actuarial sciences.

Müller (1997) proved that the most dangerous portfolio (in the supermodular sense) among all those with the same
marginals was distributed according to the Fréchet upper boundWn. The result above states that the least dangerous
one follows the Fréchet lower boundMn provided that the marginalsF1, F2, . . . , Fn satisfy condition (1). In other
words, the Fréchet bounds are the extremal distributions with respect to the supermodular order, provided that (1)
is fulfilled for the minimum.

6. Actuarial examples

6.1. Reinsurance premiums for dependent portfolios

Consider a travel insurance contract, including the following coverages:
1. medical costs (including repatrial costs);
2. a sum in case of death;
3. a sum in case of disablement (proportional to the degree of disability).

The risks resulting from some of these coverages are clearly more or less positively correlated (medical costs and
disablement payments, for instance), while others are rather negatively correlated, or even mutually exclusive (death
payments and disability payments). Many insurance contracts provide various coverages generating dependent risks.

Now, consider such a portfolio consisting ofν independent risks of the form

Xk = Xk1 + Xk2 + Xk3, k = 1, 2, . . . , ν,

where theXki ’s are dependent with distribution functionsFi , i = 1, 2, 3, satisfying (1). Note that (1) is reasonable
in the present context since the no-claim probabilities are in most cases rather high. The portfolio is protected by
an excess of loss treaty, for which the reinsurance benefit is given by
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ν∑
k=1

(Xk − d)+.

Bounds on the reinsurance premium are provided by the following inequalities:

3∑
i=1

E(F−1
i (U) − d)+ ≤ E(Xk − d)+ ≤ E

(
3∑

i=1

F−1
i (U) − d

)
+

, (4)

whereU is a random variable uniformly distributed over [0,1]. When

Fi(x) = π + (1 − π)(1 − exp(−λix)), x ≥ 0, i = 1, 2, 3,

with 0 ≤ π ≤ 1 and 3π ≥ 2, the bounds in (4) admit a nice closed expression. Indeed, after some algebra, it can
be shown that

π

3∑
i=1

exp(−λid)

λi

≤ E(Xk − d)+ ≤ d(1 − π)

3∑
i=1

1

λi

.

It is important to note that these bounds are the best that can be found in the Fréchet classR3(F1, F2, F3) and that
hold for all retention levelsd.

6.2. Optimality in life insurance

Let Z be the benefit function of ann-year endowment insurance which pays 1 at the moment of the insured’s
death, or 1 at the end of then-year term, whichever occurs first. IfT denotes the insured’s future lifetime,Z is given
by

Z =
{

vT if T ≤ n,

vn either,

wherev is the discount factor corresponding to the constant yearly interest rate stipulated in the contract.
Now, letT1 andT2 be the remaining lifetimes of two persons such thatT , T1 andT2 are identically distributed.

We do not assume independence among these random variables. If we define

Z1 =
{

vT1 if T1 ≤ n,

0 either,
and Z2 =

{
0 if T2 ≤ n,

vn either,

we have from Theorem 10 that

Z ≤sl Z1 + Z2,

which means that any risk-averse insurer will prefer to sell a singlen-year term insurance than to issue simultaneously
ann-year pure endowment and ann-year term insurance whatever the dependence between the remaining lifetimes
is. Note that the latter inequality in the stop-loss sense holds whatever the dependency betweenT1 andT2 is.

From Kaas et al. (1994), it follows that

EZα ≤ E(Z1 + Z2)
α for all α ≥ 1.

As the expectations of both random variables are equal, we also get that

Var [Z] ≤ Var[Z1 + Z2].

The latter inequality can be found in Bowers et al. (1996, Section 4.2.2) for independentT1 andT2; see also Kling
and Wolthuis (1992).
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