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Abstract

In this paper we investigate the dependence in Fréchet spaces containing mutually exclusive risks. It is shown that, under
some reasonable assumptions, the safest dependence structure, in the sense of the minimal stop-loss premiums for the
aggregate claims involved, is obtained with the Fréchet lower bound and precisely corresponds to the mutually exclusive
risks of the Fréchet space. In that respect, the present paper complements some previous studies by Heilmann (1986) [On the
impact of independence of risks on stop-loss premiums. Insurance: Mathematics and Economics 5, 197-199], Dhaene and
Goovaerts (1996) [Dependency of risks and stop-loss order. ASTIN Bulletin 26, 201-212], Dhaene and Goovaerts (1997)
[On the dependency of risks in the individual life model, Insurance: Mathematics and Economics 19, 243-253], Miiller
(1997) [Stop-loss order for portfolios of dependent risks. Insurance: Mathematics and Economics 21, 219-224], Taizhong
and Zhigiang (1999) [On the dependence of risks and the stop-loss premiums. Insurance: Mathematics and Economics 24,
323-332]. A couple of actuarial applications enhance the interest of the results derived here. ©1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Consider a portfolio consisting afinsurance policies. The aggregate claisnsf the portfolio is the sum of all
amountsX1, X», ... , X,, payable during the reference period (one year, say), i.e.

n
S = ZX,»;
i=1

the random variableX;, assumed to possess a finite mathematical expectation, are commonly called “risks” in the
actuarial literature. Th&;’s are non-negative and model the total claims generated by poliey 1, 2, ... , n. The
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calculation of the stop-loss premiums related to such a portfolio is one of the main topics of risk theory. Therefore not
only the marginal distributions of th¥;’s have to be known, but also the knowledge of the dependence structure
among theX;'s is required. In practice, the problem is almost always simplified by assuming that; thare

mutually independent so that knowledge of the marginal distributions suffices to compute stop-loss premiums.
Of course, the independence hypothesis obviously relies on computational convenience rather than realism, and
dependencies may have disastrous effects on stop-loss premiums (for numerical illustrations, the interested reader
is referred e.g. to Kaas (1993) or Dhaene and Goovaerts (1997)).

The present paper is devoted to the safest dependence structure between tkig, 8ks . . , X,, with given
marginals, i.e. the one giving rise to the smallest stop-loss premiums. fSeveral authors (e.g. Dhaene and
Goovaerts, 1996,1997; Miller, 1997) have already determined the worst dependence structure, i.e. the one generating
the largest stop-loss premiums frThey showed that the dependence structure of the riskiest portfolio is described
by the so-called Fréchet upper bound. We will see below that the Fréchet lower bound plays a symmetric role for
the safest portfolio, although some mathematical conditions are involved.

In order to compare the riskiness of insurance portfolios, we will use the stop-loss order. Therefore, we briefly
recall the following result which will be used in the sequel.

Definition 1. Arisk X is said to be smaller in stop-loss order than a kskvhich is denoted aX <y; Y, if any of
the two following conditions hold:
1. the stop-loss premiums associatedtandY are ordered for any level of the deductible, i.e.

E[(X —d);] < E[(Y —d)4] for all d>0;
2. X is preferred ovet’ by all the risk-averse profit-seeking decision-makers, i.e.
E[u(=X)] = E[u(-Y)]
for every concave non-decreasing utility functiorprovided that the expectations exist.

For a proof of the equivalence of the two conditions contained in Definition 1 for stop-loss order, see e.g. Kaas
etal. (1994, Theorem 1.1 on page 21).

The paper is organized as follows. In Section 2, we provide some mathematical background about Fréchet spaces
and Fréchet bounds. It is explained why thelimensional casen(> 3) and the bivariate case are so different.
In Section 3, we give bounds in the stochastic dominance sense on the largest and smallest claims affecting an
insurance portfolio. In Section 4, we investigate the safest dependence structure among g t8ks. . , X,
and we extend to general risks a recent result obtained by Taizhong and Zhigiang (1999) in the case of two-point
distributions. Therefore, we introduce the concept of mutually exclusive risks, which is particularly relevant in
actuarial sciences. In Section 5, we show that, under some circumstances, the Fréchet lower bound is the minimal
element for the supermodular order in a given Fréchet space. This complements a recent result obtained by Muller
(1997). We end the paper by providing two applications of the theory. We first derive bounds on reinsurance
premiums when dependent risks are involved. For exponentially distributed risks, elegant explicit formulas are
available. Secondly, we examine optimality among some life insurance contracts and we prove a result in the vein
of Bowers et al. (1996) and Kling and Wolthuis (1992); namely that from the insurer’s point of view, it is safer to
issue am-year endowment on a single person than to sell-gear pure endowment together withatyear term
insurance to two different people.

2. Fréchet spaces and Fréchet bounds

Let F1, F>, ..., F, be univariate cumulative distribution functions (c.d.f.’s, in short) and consider the Fréchet
spaceR, (F1, Fo, ..., F,) consisting of allz-dimensional c.d.f.’sFx (or equivalently of all the:-dimensional
random vectorX = (X1, X», ..., X,)) possessing, F», ... , F, as marginal c.d.f.’s. In this paper, we restrict
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ourselves to (c.d.f.’s of) non-negative random variables with finite expectations, further called risks. We have that

forall X in R, (F1, Fo, ... , F,) the following inequality holds:
M,(X) < Fx(X) < W,(x) for all x= (x1,x2,...,x,) € R",

whereW,, is usually referred to as the Fréchet upper bounRpfF1, Fo, ..., F,) and is defined by
Wn(X) = min{F1(x1), F2(x2), ..., Fa(xn)}, X €R",

while M,, is usually referred to as the Fréchet lower boun®gf F1, F>, ... , F,) and is defined by

M,(X) = max{ZF,-(x,-) —-n+1 0} , XeR"
i=1

Remark thatv, is reachable iR, (Fy, Fo, ... , F,;). Indeed, given a random variablg, uniformly distributed
on [0,1], it can be shown th&,, is the c.d.f. of

(FLHU), FHU), ... F7YNU)) € Ru(Fu, Fa, ... Fy),
where the generalized inverses of thés are defined as
F'(u) =inf{x € R such thatF;(x) >u}, uel0,1], i=12,...,n.

The elements of the Fréchet spa&g(F1, Fo, ... , F,) which have a multivariate c.d.f. given B, (x) are said to
be comonotonic. Applications of the notion of comonotonicity in the actuarial literature can be found, e.g. in Wang
(1996), Wang and Dhaene (1997), Dhaene et al. (1997), Wang et al. (1997).

On the contrary, when > 3, M,, is not always a c.d.f. anymore, as shown by the following counterexample
proposed by Tchen (1980): far= 3, takeX1, X» and X3 uniformly distributed on the unit interval [0,1]; then, the
“probability” that X lies in [0.5, 1] x [0.5, 1] x [0.5, 1] is equal to—0.5 when the dependence structure is described
by M3, so thatM3 cannot be a proper c.d.f. (another counterexample is provided by Joe (1997, Example 3.1)). The

following necessary and sufficient condition f&f, to be a c.d.f. inR, (Fy, F>, ..., F,) can be found e.g. in Joe
(1997, Theorem 3.7).
Theorem 2. A necessary and sufficient condition ff, to be a c.d.f. iR, (F1, Fo, ..., F,) is that either

1. Z;lej(xj) <1forallx e R"withO< F;(xj) <1,j=12,... ,n;0r
2. Z’}:le(xj) >n—1forallx e R"with0 < Fj(x;) <1,j=1,2,... ,n.

3. Stochastic bounds on the smallest and largest claims

DespiteM,, is notalways a proper c.d.f., Tchen (1980, Theorem 4) proved that thereexis®, (F1, F2, ... , Fy)
achieving the lower boungif,, when all thex;’s are equal. This is formally stated in the next result.

Theorem 3. There exisK € R, (F1, F», ... , F,) such that
Plmax{X1, X2,..., Xp} <x]=M,(x,x,...,x)

foranyn € Ng andx € R.

As a corollary, Tchen (1980, Corollary 4.1) provided the following bounds on the distribution of
max{Xi, X2, ..., Xy} and minXy, Xo, ..., X,}: foranyX € R, (F1, Fo, ..., F,),
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1—min{F1(x), F2(x), ..., Fa(x)} < P[max{X1, X2, ..., X,} > x]

<min {1, > oa- Fi(x))} for all x € R,

i=1
and

n

max{Fi(x), Fo(x), ..., Fo(x)} < P[min{X1, X2, ..., X,} < x] < min {1, ZFi(x)} for all x € R.
i=1

The latter inequalities provided useful bounds on the distribution of the largest and smallest claims affecting an
insurance portfolio consisting of dependent risks. Therefore, they can be used to get bounds on the premium of a
LCR(1) treaty (such areinsurance agreement covers the largest claim occurring during a given reference period (one
year, say)). Of course, when thg’s are thought of as being time-until-death random variables, these inequalities
also yield bounds on life insurances or annuities based on either a joint-life status or a last-survivor status. These
bounds have been used by Dhaene et al. (1997) in order to find extremal joint-life and last-survivor statuses (in
terms of stochastic dominance).

4. Extremal dependence structures

Dhaene and Goovaerts (1997) considered the Fréchet SRacCes, Fo, ... , F,) of all n-dimensional multivari-
ate riskg(X1, Xo, ..., X,) with eachX; having a two-point distribution (with probability masses in 0 and- 0).
They investigated the dangerousness of this Fréchet space by looking for the element with the most dangerous
mutual dependence between the risks, i.e. the one leading to the highest stop-loss premiums. They found that the
most dangerous dependence structure is described by the Fréchet uppeWhosed also Dhaene and Goovaerts
(1996) and Miiller (1997) for an extension of this result to general risks. The following theorem is borrowed from
Dhaene et al. (1997).

Theorem 4. LetU be a random variable uniformly distributed §®,1]. Then

n n
in sl ZFi_l(U)
i=1 i=1

for any multivariate riskX in R,,(F1, Fo, ..., F,).

Other proofs for this theorem can be found in Muller (1997) (in terms of supermodular ordering), and in a special
setting, in Heilmann (1986) (in terms of convex mappings).

Inview of the above, an interesting problemisto look for the safestelementinthe Fréch&alassFo, . . . , Fy),
with “safest” meaning that the corresponding dependence structure leads to the lowest stop-loss prersiilBys for
symmetry, we would like to say that the Fréchet lower bodfydprovides the least dangerous mutual dependence
between the risks. Nevertheless, if this were true, the problem will not have a solution in general, because the Fréchet
lower bound is not always a proper c.d.f. (see Theorem 2). Therefore, we will restrict our study to a Fréchet class
R.(Fy, Fo, ..., F,) for which the condition

n
Y qi<1 whereq;=1-F(0), i=12....n, 1)
i=1
is fulfilled, i.e. the probability mass of the marginal distributions outside 0 is at most 1. According to Theorem 2(2),

(2) is a sufficient condition for the lower Fréchet bouvid to be a proper c.d.f. iR, (F1, Fo, ... , F,). As we will
see the study of Fréchet spaces satisfying (1) has some actuarial relevance.
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In a recent paper by Taizhong and Zhigiang (1999), the aforementioned problem has already been investigated
when the marginal&y, F», ... , F, are two-point distributions. They found the following result.

Theorem 5. Consider a Fréchet spad®, (F1, Fo, ... , Fy,) satisfying (1), such thatfar=1, 2, ... , n,theF; are
two-point distributions with probability massesGand«; > 0. Consider the riskX € R, (F1, F2, ... , F,;) with
dependence structure given by

P[Xi=a;,X;=a;]=0 for all i#j.

Then

n n
Y Xi<a ) Vi
i=1 i=1

holds for anyY € R, (F1, Fa2, ..., Fy,).

We mention that condition (1) for two-point distributions is equivalent to the conditions of Theorem 2 so that (1)
is in this particular case necessary and sufficientgrto be a proper c.d.f.

We are now going to generalize Theorem 5 to the case of general risks. First, we introduce the notion of mutually
exclusive risks. Roughly speaking, the risks, X», ..., X,, are said to be mutually exclusive when at most one
of them can be different from zero. This can be considered as a sort of dual notion of comonotonicity. Indeed, the
knowledge that one risk assumes a positive value directly implies that all the other ones vanish. Mutually exclusive
risks are therefore “anti-monotonic”.

Definition 6. The risksXq, X2, ... , X, are said to be mutually exclusive (or, equivalently, the multivariateXisk
is said to possess this property) when

P[X; >0,X; >0]=0 for all i # j.
Let us point out that mutually exclusivity & means that its probability mass is concentrated on the axes.
Examples of mutually exclusive risks abound in actuarial sciences: think for instance of:

1. The present value of the benefit associated with a whole life insuranegitten on a statugx) which can be
decomposed as

1
Ay = Ax;k—| +i) Ax.

The benefit funtions associated wmjﬂ andy A, (and written on the same stat{ig) are mutually exclusive,

2. Alife annuitya, written on a statugx) can be decomposed as
w—X
ay = Z kEx,
k=1

wherew is the ultimate age of the lifetable. The benefit functions associated withtheall written on the
same statuér), are comonotonic. On the other hand, a life annuity can also be decomposed as

w—x
ay = Z k|qx g
k=0

The benefit functions associated with m@xakj's (all written on the same statis)) are mutually exclusive.
3. Aterm insurance with doubled capital in case of accidental death.
4. Ann-year endowment insurance (with payment in case of death and survival) — see also further.
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5. Afranchise deductible splitting the risk up in two partsX = X; + X», with the retained part given by

X if X <d,
&Z{o it X >d,

and the insured part

Yo — 0 if X<d,
2T )x if X>d.

The risk-sharing scheme1, X») is mutually exclusive.
As an example in finance, consider a stock with peicat timet. Consider two European options (a put and a call)
on this stock with expiration dateand exercise pricé. The writer of the options bears the risk

X1 =max0, X —d)
for the call and
Xo =max0,d — X)

for the put.X1 and X, are mutually exclusive.
Let us now emphasize the central role of condition (1) in the theory of mutually exclusive risks.

Theorem 7. A Fréchet spac®, (F1, F, ... , F,;) contains mutually exclusive risks if and only if it satisfigls
Proof. First, assume that is mutually exclusive and belongs®, (F1, Fo, ... , F,). Define the indicator variables
I, Db,...,1I,as
I = 1 if X,’ > O,
! 0 if X; =0,
sothatP[l; = 1] =¢;,i =1, 2,...,n. Note that
n
P[h=I=--=1,=0]=1-P[3 i such that; =1]=1-) g
i=1
so that (1) has to be fulfilled. Conversely, assume®atFi, Fo, ... , F,) satisfies (1). From Theorem 2, we know

thatM, is ac.d.f. inR,,(Fy, F>, ..., F,). ConsideiX € R, (F1, Fo, ..., F,) with c.d.f. M,,. Then, we find
P[X;=0,X;=0l=1-¢; —q; forall i#j,

whence it follows that
P[X; >0,X; >0]=0 for all i # j,

which, in turn, means tha{ is mutually exclusive. O

Let us prove the following characterization of mutual exclusivity, which relates this notion to the Fréchet lower
bound (as comonotonicity corresponds to the Fréchet upper bound). More precisely, we prove that when (1) is
fulfilled, the multivariate c.d.fFx of the mutually exclusive risK in the Fréchet spacR, (F1, Fo, ... , F,) is
given by the Fréchet lower bourid,, (x).

Theorem 8. Consider a Fréchet spack, (F, Fo, ... , F,) satisfying(1). The riskX € R, (F1, Fo, ..., F,) is
said to be mutually exclusive if and only if

Fx(X) = M,(x), xeR".
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Proof. Assume thaX is mutually exclusive. Then, we have that

n
Fx() =Y P[X1<x1,X2<x2,..., Xy S xulli =P[li =1+ P[h=l=--- =1, =0]
i=1

=) PIXi<xilli=1gi+1-) gi=) (F)—FO)+1-) gi=) F(x)+1-n
i=1 i=1 i=1 i=1 i=1
ZMn(X)a

which achieves the proof of the necessity part. The opposite direction immediately follows from the second part of
the proof of Theorem 7. |

Combining Theorems 7 and 8, we find that a Fréchet spagé, Fo, ... , F,) satisfies (1) if and only if the
Fréchet lower bound is the unique c.d.f®f (F1, F2, ..., F,) which is concentrated on the axes.

Let us now derive the following result, which states that the expected utility is additive for a sum of mutually
exclusive risks.

Theorem 9. Consider a Fréchet spacg, (F1, Fo, ... , Fy,) satisfying(1). Let X be a mutually exclusive risk in
R, (F1, Fa, ..., F,). Then

E {u (—anx,ﬂ = Y Bl X
i=1 i=1

holds for any utility function:.

Proof. As X is mutually exclusive, the distribution of the aggregate clathis given by

n n n
PIY Xj<x|=)P|> X;<xl=1|P[l;=1]+P[hi=L==1,=0]
j=1 i=1 | j=1

n n n
=Y PIX; <x| =1l +1-) ;=Y F(x)+1-n,
i=1 i=1 i=1
whence the desired result directly follows. a

As a special case of Theorem 9, we find that

E (Xn:xi - d) - ZH:E(X,» —d)y )
i=1 n

i=1

holds whenX is mutually exclusive for any deductibée> 0.
We are now in a position to extend Theorem 5 to general risks.

Theorem 10. Consider a Fréchet spacg, (F1, F>, ... , F,) satisfying(1). Let X be a mutually exclusive risk in
R, (F1, Fa, ..., F,). Then

n n
Y Xi<a) Vi
i=1 i=1

holds for anyY € R, (F1, Fo, ..., F,).
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Proof. SinceX is mutually exclusive, we have from (2) that

E (iX,-—d) =ZH:E(Xi—d)+.
| V=l +

i=1

Now asX andY both belong tdR,,(F1, F», ... , F,), the latter relation yields

E (in—d> =Y EYi—d) <E (ZY,-—d) ,
B i=1 +_ i=1 +

i=1

where the latter inequality is true in general. This ends the proof. O

We have proven that in the cla®, (F1, F>, ... , F,,) of all the risks with given marginalg; and such that (1)
is fulfilled, the mutually exlusive risks lead to the safest portfolio, in the sense that this kind of mutual dependency
leads to the smallest stop-loss premiums. This means that all the risk-averse decision-makers (with non-decreasing
utility functions) who have to bear a riskwhich is the aggregate claims of the components of a freely choosen
element in a Fréchet spadg, (F1, Fo, ... , F,) containing mutually exclusive risks will prefer the latter elements.
Remark that a slightly generalization of Theorem 10 is possible.

Corollary 11. Assume thak; <y Y; fori =1,2,...,n,andX is mutually exclusive. Then
n n
in Ssi ZYi
i=1 i=1

holds true

Corollary 11 means that we can leave the original Fréchet space to another one for which the components are
larger in stop-loss order.

5. Inequalities of supermodular-type

In this section, we extend the stochastic inequality of Theorem 10 with the aid of the supermodular order. To be
specific, we show that in a Fréchet spdeg(Fi, I, ... , F,) satisfying (1), the minimal element with respect to
the supermodular order is precisélfy,, the Fréchet lower bound.

The supermodular order has been introduced in the actuarial literature by Muller (1997) (see also Bauerle and
Muller (1998) and the references therein) who characterized the riskiest portfolio among all those with identical
marginals. For a reference in statistics, see e.g. Shaked and Shanthikumar (1997). The supermodular order is based
on the comparison of expectations of supermodular functions. A real-valued fugctiefined on the positive
orthantR”} is called supermodular if

¢ (Max(xa, y1), ... , MaX(xy, ¥p)) + ¢ (MiN(x, y1), ..., MiNC, ya)) = @ (X) + ¢ (y) @)
forallx,y e R',.. If ¢ has second partial derivatives then it is supermodular if and only if

92¢
Bxiaxj

>0 on R for all i # j.

Then, given two multivariate risk§ andY in R, (F1, Fo, ..., F,), X is said to preced¥ in the supermodular order,
denoted aX <, Y, if E¢(X) < E¢(Y) for all supermodular functiog : R, — R for which the expectations
exist.
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Let us now prove the following result.

Theorem 12. Consider a Fréchet spad®, (F1, Fo, ... , F,) satisfying(1). Let X be a mutually exclusive risk in
Ru.(Fy, Fa, ..., F,). Then

X Zsm Y

holds for anyY € R, (F1, Fa, ..., F,).

Proof. Without loss of generality, the supermodular functions generatingmay be assumed to vanish on the
axes. It suffices indeed to substitute for R, — R the auxiliary functionp* : R, — R defined as

¢ ) =¢(X) =Y ¢(0,....0,x.,0,...,0)+ (n — D$(0,0,... ,0),
i=1

and to notice then that the inequaliB (X) < E¢(Y) holds if, and only if, E¢*(X) < E¢*(Y) holds, sinceX
andY both belong tdR,,(F1, F2, ... , F,). Now, a supermodular functiop : R, — R that is zero on the axes is
necessarily valued iR™; this is easily seen from repeated use of Eq. (3) which gives

¢(x11x2$"' 1xn) Z¢(x13x27"' 9xn—1$o)2¢(-xlv-x21"' 7-xn—2a070)2"'2¢(0107"' 9O)=0a

forallx € R’.. To conclude, it suffices to quote thé$ (Y) > OforanyY € R, (F1, F2, ... , F,),whileE¢(X) =0
since the c.d.f. oK is concentrated on the axes. O

Itis well known that the stochastic inequality contained in Theorem 12 implies the one proposed in Theorem 10.
Moreover, it provides a host of useful inequalities in actuarial sciences.

Mauller (1997) proved that the most dangerous portfolio (in the supermodular sense) among all those with the same
marginals was distributed according to the Fréchet upper b@ind he result above states that the least dangerous
one follows the Fréchet lower bound, provided that the marginalg,, F», ... , F, satisfy condition (1). In other
words, the Fréchet bounds are the extremal distributions with respect to the supermodular order, provided that (1)
is fulfilled for the minimum.

6. Actuarial examples
6.1. Reinsurance premiums for dependent portfolios

Consider a travel insurance contract, including the following coverages:
1. medical costs (including repatrial costs);
2. asum in case of death;
3. asum in case of disablement (proportional to the degree of disability).
The risks resulting from some of these coverages are clearly more or less positively correlated (medical costs and
disablement payments, for instance), while others are rather negatively correlated, or even mutually exclusive (death
payments and disability payments). Many insurance contracts provide various coverages generating dependent risks.
Now, consider such a portfolio consistingwindependent risks of the form

Xp =X+ X2+ Xps, k=1,2,...,v,

where theXy;'s are dependent with distribution functiofis, i = 1, 2, 3, satisfying (1). Note that (1) is reasonable
in the present context since the no-claim probabilities are in most cases rather high. The portfolio is protected by
an excess of loss treaty, for which the reinsurance benefit is given by
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Z(Xk —d)+.
k=1

Bounds on the reinsurance premium are provided by the following inequalities:

3 3
D EFEU) ~d)y <EXx—d)p <E (ZF,-*(U) - d) , @)
+

i=1 i=1
whereU is a random variable uniformly distributed over [0,1]. When

Fix)=n+Q-m)1—exp(—iix)), x=0, i=123,
with 0 <7 < 1and 3 > 2, the bounds in (4) admit a nice closed expression. Indeed, after some algebra, it can

be shown that
3 exp(—A;d) 31
M < EXp—d)p <d(1— —.
nZ S EX—d)y =d( ”)in
i=1 i=1
It is important to note that these bounds are the best that can be found in the FréchRgclass», F3) and that
hold for all retention leveld.

6.2. Optimality in life insurance

Let Z be the benefit function of amyear endowment insurance which pays 1 at the moment of the insured’s
death, or 1 at the end of theyear term, whichever occurs first. Afdenotes the insured’s future lifetimé,is given

by
ol if T <n,
Z= { v either,

whereuv is the discount factor corresponding to the constant yearly interest rate stipulated in the contract.
Now, let Ty andT> be the remaining lifetimes of two persons such thaf; and7> are identically distributed.
We do not assume independence among these random variables. If we define

7. vt if Ty <,
1710 either

0 if To» <n,
and Zp = { V" either,
we have from Theorem 10 that

Z <y Z1+ Z>,

which means that any risk-averse insurer will prefer to sell a simglear term insurance than to issue simultaneously
ann-year pure endowment and afyear term insurance whatever the dependence between the remaining lifetimes
is. Note that the latter inequality in the stop-loss sense holds whatever the dependency Bgtavets is.

From Kaas et al. (1994), it follows that

EZ% < E(Z1+ Z»)* for all a > 1.
As the expectations of both random variables are equal, we also get that
Var [Z] < Var[Z1 + Z7].

The latter inequality can be found in Bowers et al. (1996, Section 4.2.2) for indepehdamd 75; see also Kling
and Wolthuis (1992).
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