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Abstract

For any function f on the non-negative integers, we can evaluate
the cumulative function T'f given by I'f(s) = Y.5_, f(x) from the
values of f by the recursion I'f(s) = I'f(s—1)+ f(s). Analogously we
can use this procedure ¢ times to evaluate the t-th order cumulative
function I'* f. As an alternative, in the present paper we shall derive
recursions for direct evaluation of I'' f when f itself satisfies a certain
sort of recursion. We shall also derive recursions for the ¢-th order tails
A'f where Af(s) = 332, f(x). The recursions can be applied for
exact and approximate evaluation of distribution functions and stop-
loss transforms of probability distributions. The class of recursions
for f includes the classes discussed by Sundt (1992), incorporating the
class studied by Panjer (1981). We discuss in particular convolutions

and compound functions.
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1 Introduction

Since the publication of Panjer’s (1981) paper there has grown up an exten-
sive literature on recursive evaluation of the probability function of discrete
compound distributions with severity distributions on the non-negative in-
tegers. Panjer assumed that the probability function p of the counting
distribution satisfies

b
sy = (a4 Dot = 1) 0= 12 0
for some a and b.
In Sundt (1992) the following generalisation of Panjer’s class of counting

distributions is considered:

p(n) = Z (a(:v) + b(;v)) p(n — x) n =12 .) (2)

z=1
for some positive integer k and functions a and b on {1,2,...,k} with
p(n) = 0 for n<0 .

Almost the whole literature on recursive evaluation of probability distri-
butions is restricted to the derivation of recursions for the probability func-
tions. There are only a few references where recursions are considered for the
distribution function and/or the stop-loss transform. A recursive algorithm
for the distribution function of a convolution of discrete uniform distributions
can be found in Sundt (1988). In Sundt (1992) recursions are derived for the
distribution function and the stop-loss transform of a compound distribution
whose counting distribution has a probability function satisfying the recur-
sion (2) with b identical to zero. The compound geometric case is considered
in Sundt (1982). Waldmann (1996) considers a recursion for the distribution
function of compound distributions having a counting distribution satisying
the recursion (1).

In this paper we shall derive recursions for distribution functions and stop-
loss transforms within a general class of discrete probability distributions.
Compound distributions with counting distributions satisfying the recursion

(2) appear as a special case.



We propose to use the recursions for distribution functions and stop-
loss transforms, rather than using the known recursions for the probability
function and then making the appropriate summations. Although these new
recursions will not always give rise to time-reduction, there is an advantage
in that the distribution function and the stop-loss transform are monotonic
functions which will give some stability advantages for the recursions for
evaluating these values, cf. Waldmann (1996). As an application, we shall
use a result of Panjer & Wang (1993) to derive conditions under which the
recursion for the distribution function of the number of claims in an insurance
portfolio (individual model) is strongly stable.

To allow for application of our results not only to proper probability dis-
tributions, but also to approximations which are not necessarily probability
distributions themselves, we shall derive our results for more general func-

tions.

2 Main result

Let Fy denote the class of functions g on the non-negative integers
with ¢(0) > 0 . In the remainder of this paper, for any ¢ e Fy, we will
set g(s) = 0 if s < 0. For functions f on the non-negative integers the

summation operator I' is defined by

Lf(s) = Z f(x) (s = 0,1, ...)
z=0
Further, let
rr =y
It = r(rt—l) t =12 .)

Our main result is stated in the following theorem.

Theorem 1 If f e Fy satisfies the recursion

f) = 2y >

rx=1

(a(x) + @) f(s—x) (s =1,2,..) (3)



then for t = 0,1, 2, ..., I''f satisfies the recursion

It p(s) = 9 Z < LG )>rtf< D (s = 1,2 ) (4)

S
with

bi(z) = b(x) + t(1 — Ta(z — 1)) (x = 1,2, ..)
and a(0) = ¢(0) = 0.

Proof. We first prove (4) for ¢ = 1, that is

sTf(s) = Tg(s)+ ES: [sa(z) + b(x) + 1 — Ta(x — 1)|Tf(s—x) (s =1,2,..)
r=1
(5)
by induction on s .
It is easily shown that (5) holds fors = 1.
Let us now assume that (5) holds for s = r . By application of (5) and
(3) we obtain
(r+ DLCf(r + 1)
= (r+ DIEf) + f(r + 1))
= rIf(r) + (r + )f(r + 1) + T'f(r)

= Tyg(r) + z?": [ra(z) + b(z) + 1 — Ta(z — 1)]Tf(r — x)

ol + 1) 2) + b(@)] f(r + 1 — ) + Tf(r)

i M* I M+

= Tg( [(r + Da(z) + b(x) + 1 — Ta(x — D|Tf(r+1—z) + 1

I = Ta(r) f(0) + z": Ta(z — 1) f(r+1—2) — al@)lf(r — x)]

= Ta(r) f(0) + zi: Ta(z — 1) f(r +1 —2) 4+ la(z — HI'f(r — 2)
—Tla(z — DI'f(r — z) — a(x)L'f(r — x)]
= Ta(r) f(0) + > [Pa(z — )Tf(r + 1 — z) — Pa(z)T f(r — z)]

= Ta(0)Lf(r)
=0



This proves that (5) holds for s = r + 1. Induction now gives that (5)
holds for all positive integers s, that is, the theorem holds for ¢t = 1.

It remains to show that (4) also holds for ¢ > 1. We once more apply
induction. We assume that (4) holds for ¢ equal to a positive integer r. By
applying the case t = 1 to the function I'"f we now easily obtain that
(4) holds for ¢t = r 4+ 1, and by induction we obtain that (4) holds for all
non-negative integers ¢ .

This completes the proof of the theorem.
]

Remark that every f e Fy can always be written in the form (3), and
that such a representation is not unique. Successful use of Theorem 1 and
the other results that we will derive, requires that the functions a, b and g
can be chosen sufficiently "nice”.

Let us now assume that f e Fy is the probability function of a random
variable S with a positive probability in zero, and satisfies the recursion (3).
A recursion for the distribution function T'f is given by (4) with ¢ = 1.
The quantity T**1f(s) (¢ = 0,1) can be interpreted as the expectation

of a function of S . Indeed, one can prove that
fs —1) = El(s =S4 (=01 s=12.)
As we have that
E[(S —s)s] = Ells = 5] + E[(S — s)]

we find that
EI(S = 5)4] = T2f(s — 1) + B(S) — s (6)

so that the stop-loss transform f of f defined by
(&) =E[(S —s)4] (s=0,1,..)

can be evaluated recursively by (4) and (6).
Instead of using (4) and (6) one could also start with evaluating the

probability function from (3) and then using
fls) =2f(s = 1) = f(s = 2) + f(s = 1)

bt



for s = 2,3,.. in order to evaluate the stop-loss transform. It is clear
that this way of evaluation will mostly give rise to a computation time of the
same order of magnitude. Nevertheless, if f is a probability function, then
the recursion (4) has, for ¢t > 1, the nice property of producing increasing
values which will influence the stability of the recursion. Further research
has to be done on this matter. A first attempt is made in Subsection 5.2.

A function p € Fy is said to be in the form Ryla,b] if it satisfies the
recursion (2), c¢f. Dhaene & Sundt (1998). In this case we will always silently
assume that a(z) = b(z) = 0 for > k. From Theorem 1 we immediately

obtain the following corollary.

Corollary 1 If p € Fy is in the form Ryla,b], then fort =0,1,2,... Tp is
in the form Ruo[a,b] with

bi(z) = b(z) +t(1 —Ta(z — 1)) (x=1,2,...)

Sundt (1992) considered functions p € Fy that satisfy the recursion

p(s)=> (a(x)—i—&?) pis—x) (s=m+1m+2..) (7)

z=1

which is more general than (2). We easily see that p satisfies the recursion
(3) with

k

o) =)= 3 (a0 + " D) s -] =120

z=1

and g(s) = 0 for s > m. Thus we can apply Theorem 1 for recursive evalua-

tion of I'p.

3 Convolutions

The convolution of two functions f and g on the non-negative integers is
defined by

x

(fxg)(x)=> fyglz—y) (x=0,1,2,..)

y=0



and the n-fold convolution f** of f by

fr=frf o (n=1,2,.)

For simplicity we restrict to probability functions for the rest of Section
3. However, the results also hold for more general functions. |
If a probability function f € Fy is in the form Ry|a, b, then we say that
f is Rgla, b]; in this case f is uniquely determined by a and b. Sundt (1992)
discussed convolutions of such probability functions. In particular he showed
that the convolution f = *7L,f;, where f; is Ri[a,b;] (j = 1,...,m), is
Ry[a, b] with

m

b(z) = (m — za(z) + > bj(z) (x=1,2,....k) (8)

J=1

By combining (8) with Theorem 1 we can evaluate I' f recursively.
In particular we see from (8) and Corollary 1 that if f is Rg[a,b], then
I f*™ is Roola, by ] with

bnt(x) = mb(z) + (m — za(z) +t(1 — Ta(z — 1)) (x=1,2,...)

Sundt (1992) showed that any probability function f € Fy can be ex-
pressed in the form R.[a,b] with

a(x) = @ b(x) = 2xM (x=1,2,..) 9)

f(0) £(0)
By combining (8) and (9) we find that T f*™ is Ry [a, by 4] with

ba(z) = %[(m F)ef(a) + Tf(r—1)] (r=1,2,.)

that is, for any probability function f € Fy, I't f*™ satisfies the recursion
1 & t
D m(s) = o 3 [(m+ )2 = 1) f@) + T = D] T e—a) (=12,

For t = 0, this recursion was deduced by De Pril (1985).
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4 Compound functions

4.1 The general class

Let F, denote the class of functions on the positive integers. For p € F; and
h € F, we define the compound function p vV h € Fy by

(pV h)(s Zp YW (s (s=0,1,2,..)

If p and h are probability functions, then p V h is the probability function of
a compound distribution with counting probability function p and severity
probability function h.

The following theorem is a trivial generalisation of Theorem 3.1 in Sundt, |
Dhaene & De Pril (1995).

Theorem 2 If h € F, and p € Fy satisfies the recursion

p(n) =r(n) + anl (a(x) + @) p(n —x) (n=1,2,..) (10)

then p V h satisfies the recursion

(pVh)(s) = (rvh)(8)+i:1(p\/h)(s—x) i (a(y) + @§> h*(x) (s=1,2,..
(11)

We see that the recursion (10) is equivalent with the recursion (3) with
g(s) = sr(s). Furthermore, we also have that the recursion (11) is in the

form (3) as we can rewrite (11) as

(v h)s) = 2 4 Z ( df))p(s _a) (=12,

with
g(s) =s(rVvh)(s) (s=1,2,..) (12)
c(x) = ;a(y)h*y(:c) (x=1,2,...)
d(z) :xibz)h*y( ) (x=1,2,..)

Combining this with Theorem 1 gives the following corollary.

8



Corollary 2 If h € F, and p € Fy satisfies the recursion (10), then for
t=0,1,2,... T%pV h) satisfies the recursion

T'(pVh)(s) = +Z

_|_

~
/
—_
|
MH
3‘
*
=
&
|
}—‘
| I |
’B
<
D‘
CI.)
|
8
@
|
=
}\D
N~—

® |

with g given by (12).

4.2 Panjer’s class

Let us now consider the special case where p is in the form R;[a,b]. Then we
find from Corollary 2 that I'(p V h) can be evaluated recursively by

S

CH(pvh)(s) = 3 Ka + bf) hz) + 2(1 —aTh(z — 1) D) (s—2)  (s=1,2,..)

z=1

(13)
Let us now assume that p and h are probability functions.
When t = 0, (13) reduces to Panjer’s (1981) well-known recursion
o x
PV (s) =3 (a + bg> h@)(pVh)(s—z) (s=1,2,..)
=1
Let us now consider the case t = 1. Then we have for s = 1,2, .... that

DpVA)(s) = 3 Ka 4 bf) hz) + %(1 —aTh(z —1)| TV (s—2) (14)

x=1

A related recursion is presented by Waldmann (1996). I

5 The case a =0

5.1 A general result

It is easy to see that a function feF, always satisfies a recursion of the

form

= = Z b(x) f(s — x) (s = 1,2, ..) (15)

a:*l



with the function b uniquely determined by f. Recursions in the form (15)
appear in many areas, in particular in actuarial science where relevant ref-
erences include White & Greville (1959), De Pril (1989), Dhaene & De Pril
(1994), Dhaene & Sundt (1998), Sundt (1995) and Sundt, Dhaene and De
Pril (1998).

As b(x) may alternate between positive and negative values when x
varies, stability problems may arise, see e.g. Panjer & Wang (1993) who also
state a definition of strong stability.

From Theorem 1 we find that I'*f can be evaluated by

I f(s) = é S (b@) + OT'f(s — ) (s = 1,20  (16)
z=1

From (16) we see that if b(z) > —t¢ for all z , then the coefficients in
the recursion for I''f are positive so that this recursion is strongly stable,
see Panjer & Wang (1993). It is interesting to note that the greater ¢ is, the
more likely it is that the recursion for evaluating I'f 1is strongly stable.
Moreover, if the recursion for T'f is strongly stable, then the recursion
for T'°f, s > t 1is strongly stable. Thus we see that if b is bounded,
then it is always possible to obtain a stable recursion for I'*f by choosing
s sufficiently large. From I*f we can evaluate I''f for ¢t < s by
taking differences. The evaluation of these differences will not accumulate
errors, and thus one might feel tempted to conclude that we have also found
a stable way of evaluating I''f . However, this is not necessarily the case as

the differences would be of a different order of magnitude than T f .

5.2 The number of claims in the individual risk theory

model

As an example we will derive stability conditions for the recursions related
to the number of claims in the individual risk theory model, see White &
Greville (1959) and De Pril (1989).

Let N be the number of claims occurred during a certain reference
period in a portfolio consisting of m independent risks, labelled from 1 to

m . Risk i either produces a claim (with probability ¢; ) or no claim (with

10



probability p; = 1 — ¢; ). We assume that
0<¢q <1/2 (1=1,2,...,m) (17)

From White & Greville (1959) we find that the probability function f of
the number of claims produced during the reference period can be evaluated

recursively by

1
s

2:: )™ f (s ):l<ﬁ>x (s = 1,2, .., m)

We see that this recursion is of the form (15) with

b(z) = (—1)**! gj < ) (r = 1,2,..) (18)

From (16) we obtain

9L e £ () e 6 1m

=1
The alternating sign of b may cause stability problems. However, from
(17) and (18) we see that

b(z) > b(2) = — ﬁjl (Z) (x=1,2,.)

Hence, if b(2) > —t, or equivalently,

()

then b(x) > —t for x = 1,2, ..., and the recursion for I'*f is strongly stable

for all integers s > t.

6 Other classes of recursions

6.1 The general case

In the present subsection we shall deduce an alternative to Theorem 1 for

recursive evaluation of I'* f.

11



For functions h on the integers we define the difference operator A by
Ah(z) = h(z) — h(z —1)
We also introduce the notation
A’h =h
A'h = A(A"h)  (t=1,2,..)

Theorem 3 If f € Fy satisfies the recursion

f(s) :r(s)—i—il <a(x)+@> f(s—x) (s=1,2,...) (19)

then fort =0,1,2,... Tt f satisfies the recursion

If(s) =r(s)+ 28:1 (Ata(x) + %> I"f(s—x) (s=1,2,...) (20)

s
with a(0) = —1, a(z) =0 for x <0 and b(z) =0 for z < 0.

Proof. From (19) we immediately see that (20) holds for ¢ = 0.

Now let us assume that (20) holds for ¢ = u. We shall prove that it also
holds for t =u + 1. For s =1,2,... we have
[ f(s) = (s — 1) +T"f(s)

° A'b(z
= T""f(s=1) +r(s)+ > (A“a(x) + s(
=1

AUb(x)

S

~—

)rww—x>

= I"“Mf(s—1)+r(s)+ il (A“a(x) +
D1 (s — o — 1))
= I"“Mf(s—1)+r(s)+ Z (A“a(x) - Ab(a:)) (s — ) —

S

) s - -

i (A“a(x -1)+ %) " f(s — )
= r(s)+ ZS:I (A““a(m) + w> T+ f(s — )

that is, (20) holds for ¢t = u + 1.

12



The theorem is now proved by induction. 0

If a(x) = b(x) = 0 for all = greater than some finite k, then Afa(z) =
A'b(x) =0 for all z > k + ¢ so that we can rewrite (19) and (20) as

f(s) :r(s)+z_:1 (a(m)—k@) fls—ux) (s=1,2,..) (21)

If(s) =r(s)+ zj:l (Ata(x) + %) I"f(s—x) (s=1,2,...) (22)

with T*f(s) = 0 for all s < 0. On the other hand, a similar property does
not hold for b; defined in Theorem 1 for ¢ > 0, and thus it seems that the
recursion (21) will be more convenient than the recursion (4) if & is small.

With r = 0 we see from (22) that if f is in the form Ry[a,b], then ' f is
in the form Ry,[A’a, A'D].

Let us now define the tail operator A for functions h on the integers by

Ah(s) = i h(x)
w=s+1

assuming that this sum exists and is finite. Further, let

A°h = h

Ah=AANTR) (t=1,2,..)

If h is a probability function, then Ah is the tail of the distribution. The stop-
loss transform £ is easily found from A?h as h = A%h(s — 1) for s = 0,1, ....
The following theorem gives a similar recursion to (22) for A'f and can

be proved in the same way as Theorem 3.

Theorem 4 If f € Fy satisfies the recursion

f(s):r(s)—l—z_:l(a(:c)—l—@) f(s—x) (s=1,2,..)

with k < 0o, then fort =0,1,2,... A'f satisfies the recursion

Af(s) = (=1)'r(s) + il <Ata(x) + %) A f(s —x) (s=1,2,..)

(23)
with a(0) = —1, a(z) =0 for x <0 and b(z) =0 for z < 0.

13



As A'f(s) is in general not equal to zero for s < 0, we cannot apply
the recursion (23) to evaluate A'f when k = co. For the same reason, the
assumption that f is in the form Ry[a,b], does not imply that A’f is in the
form Ry.[Ala, A'D].

6.2 The case b=0

Let us now assume that f satisfies the recursion (19) with b =0, that is,

f(s +Z (s—2) (s=1,2,..) (24)

We see that in this case the recursion given by Theorem 3 is also in the

form (24). We shall now deduce an alternative recursion for I f.

Theorem 5 If f € Fy satisfies the recursion (24), then for t = 0,1,2, ...
It f satisfies the recursion

S

I'f(s) =T'(s) + > a(z)"f(s — z) (s=1,2,...) (25)

r=1

with r(0) = f(0).

Proof. The recursion (25) trivially holds for ¢ = 0. Let us now assume
that it holds for ¢ = u. Then, for s = 0,1, 2, ..., we have

i f(s) ZF“f (0)+Zij (F“ )+ Za ) f(x — ))
=Tvtlr(s) + Za Tt f(s —g)

Thus (25) also holds for ¢ = u + 1, and by induction, it follows that (25)
holds for all ¢. O

We shall now deduce a recursion for the tails A’f.

Theorem 6 If [ € Fy satisfies the recursion (24), then for t = 0,1,2, ...
AL f satisfies the recursion

S

A f(s) = Alr(s)+Af(— ZA] )+ a(z)A f(s—z) (s=1,2,..) (26)

=1

14



Proof. We shall prove the special case t = 1; the general case follows

easily by induction. For s = 1,2, ... we have

Af(s) = > fla)y= > [r(@)+ > aly)f(z -
r=s5+1 r=s+1 y=1
= Ar(s)+ > aly) > flz- Z y) A f (max(
y=1 r=max(y, s+1) y=1
= Ar(s)+Af(— Z Y)Af(s—y)
that is, (26) holds for ¢ = 1. This completes the proof of Theorem 6. O

If f € Fo is a probability function, then Af(—1) = 1.
We now turn to compound functions. If h € F, and p € F satisfies the

recursion (24), then Theorem 2 gives
(pVh)(s) = (rVh)(s —i—Z pVh)(s—x Z Y)Y (x (s=1,2,...) (27)
=1 y=1

This recursion is also in the form (25), and thus we can evaluate I''(p V h)
and A’(p V h) by respectively Theorems 5 and 6.
Let us consider the special case of compound geometric distributions, that

is, h and p are probability functions and p is given by
p(n)=1—m)n" (n=0,1,2,,...)

This counting probability function satisfies (1) with @ = 7 and b = 0. Thus
(27) gives

S

(pVh)(s)=7 > h(z)(pVh)(s—x) (s=1,2,...)

r=1

As this recursion is in the form (24) with
r(z) =0 a(x) = wh(x) (x=1,2,...)
we can evaluate I'"(p V h) recursively by Theorem 5. We obtain in particular

F(p\/h)(s):1—7T+7ri:1h(:c)f‘(s—x) (s=1,2,..)

15
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M(pVh)(s)=(1—-m)(s+1) +7TZ )2 (s — ) (s=1,2,...)

=1
For recursive evaluation of A’(p V h) Theorem 6 gives
t
A(pVh)(s) = (ZA]h +Zh Atp\/h)(s—x)) (s=1,2,..)

j=1

These recursions for compound geometric distributions can be applied to
obtain upper and lower bounds for the probability of ultimate ruin in the

classical ruin model, cf. e.g. Dickson (1995).
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