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Abstract

For any function f on the non-negative integers, we can evaluate
the cumulative function Γf given by Γf(s) =

∑s
x=0 f(x) from the

values of f by the recursion Γf(s) = Γf(s−1)+f(s). Analogously we
can use this procedure t times to evaluate the t-th order cumulative
function Γtf . As an alternative, in the present paper we shall derive
recursions for direct evaluation of Γtf when f itself satisfies a certain
sort of recursion. We shall also derive recursions for the t-th order tails
Λtf where Λf(s) =

∑∞
x=s+1 f(x). The recursions can be applied for

exact and approximate evaluation of distribution functions and stop-
loss transforms of probability distributions. The class of recursions
for f includes the classes discussed by Sundt (1992), incorporating the
class studied by Panjer (1981). We discuss in particular convolutions
and compound functions.
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1 Introduction

Since the publication of Panjer’s (1981) paper there has grown up an exten-

sive literature on recursive evaluation of the probability function of discrete

compound distributions with severity distributions on the non-negative in-

tegers. Panjer assumed that the probability function p of the counting

distribution satisfies

p(n) =

(
a +

b

n

)
p(n − 1) (n = 1, 2, ...) (1)

for some a and b .

In Sundt (1992) the following generalisation of Panjer’s class of counting

distributions is considered:

p(n) =
k∑

x = 1

(
a(x) +

b(x)

n

)
p(n − x) (n = 1, 2, ...) (2)

for some positive integer k and functions a and b on {1, 2, ..., k} with

p(n) = 0 for n < 0 .

Almost the whole literature on recursive evaluation of probability distri-

butions is restricted to the derivation of recursions for the probability func-

tions. There are only a few references where recursions are considered for the

distribution function and/or the stop-loss transform. A recursive algorithm

for the distribution function of a convolution of discrete uniform distributions

can be found in Sundt (1988). In Sundt (1992) recursions are derived for the

distribution function and the stop-loss transform of a compound distribution

whose counting distribution has a probability function satisfying the recur-

sion (2) with b identical to zero. The compound geometric case is considered

in Sundt (1982). Waldmann (1996) considers a recursion for the distribution

function of compound distributions having a counting distribution satisying

the recursion (1).

In this paper we shall derive recursions for distribution functions and stop-

loss transforms within a general class of discrete probability distributions.

Compound distributions with counting distributions satisfying the recursion

(2) appear as a special case.
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We propose to use the recursions for distribution functions and stop-

loss transforms, rather than using the known recursions for the probability

function and then making the appropriate summations. Although these new

recursions will not always give rise to time-reduction, there is an advantage

in that the distribution function and the stop-loss transform are monotonic

functions which will give some stability advantages for the recursions for

evaluating these values, cf. Waldmann (1996). As an application, we shall

use a result of Panjer & Wang (1993) to derive conditions under which the

recursion for the distribution function of the number of claims in an insurance

portfolio (individual model) is strongly stable.

To allow for application of our results not only to proper probability dis-

tributions, but also to approximations which are not necessarily probability

distributions themselves, we shall derive our results for more general func-

tions.

2 Main result

Let F0 denote the class of functions g on the non-negative integers

with g(0) > 0 . In the remainder of this paper, for any g ε F0, we will

set g(s) = 0 if s < 0. For functions f on the non-negative integers the

summation operator Γ is defined by

Γf(s) =
s∑

x = 0

f(x) (s = 0, 1, ...)

Further, let

Γ0f = f

Γt = Γ
(
Γt−1

)
(t = 1, 2, ...)

Our main result is stated in the following theorem.

Theorem 1 If f ε F0 satisfies the recursion

f(s) =
g(s)

s
+

s∑
x = 1

(
a(x) +

b(x)

s

)
f(s− x) (s = 1, 2, ...) (3)
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then for t = 0, 1, 2, ... , Γtf satisfies the recursion

Γtf(s) =
Γtg(s)

s
+

s∑
x = 1

(
a(x) +

bt(x)

s

)
Γtf(s−x) (s = 1, 2, ...) (4)

with

bt(x) = b(x) + t (1 − Γa(x − 1)) (x = 1, 2, ...)

and a(0) = g(0) = 0 .

Proof. We first prove (4) for t = 1 , that is

sΓf(s) = Γg(s)+
s∑

x = 1

[s a(x) + b(x) + 1 − Γa(x − 1)] Γf(s−x) (s = 1, 2, ...)

(5)

by induction on s .

It is easily shown that (5) holds for s = 1 .

Let us now assume that (5) holds for s = r . By application of (5) and

(3) we obtain

(r + 1)Γf(r + 1)

= (r + 1) (Γf(r) + f(r + 1))

= rΓf(r) + (r + 1)f(r + 1) + Γf(r)

= Γg(r) +
r∑

x = 1

[ra(x) + b(x) + 1 − Γa(x − 1)] Γf(r − x)

+ g(r + 1) +
r + 1∑
x = 1

[(r + 1)a(x) + b(x)] f(r + 1 − x) + Γf(r)

= Γg(r + 1) +
r +1∑
x = 1

[(r + 1)a(x) + b(x) + 1 − Γa(x − 1)] Γf(r + 1 − x) + I

with

I = Γa(r) f(0) +
r∑

x = 1

[Γa(x − 1) f(r + 1 − x) − a(x)Γf(r − x)]

= Γa(r) f(0) +
r∑

x = 1

[Γa(x − 1) f(r + 1 − x) + Γa(x − 1)Γf(r − x)

−Γa(x − 1)Γf(r − x) − a(x)Γf(r − x)]

= Γa(r) f(0) +
r∑

x = 1

[Γa(x − 1)Γf(r + 1 − x) − Γa(x)Γf(r − x)]

= Γa(0)Γf(r)

= 0
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This proves that (5) holds for s = r + 1 . Induction now gives that (5)

holds for all positive integers s , that is, the theorem holds for t = 1.

It remains to show that (4) also holds for t > 1. We once more apply

induction. We assume that (4) holds for t equal to a positive integer r. By

applying the case t = 1 to the function Γrf we now easily obtain that

(4) holds for t = r + 1, and by induction we obtain that (4) holds for all

non-negative integers t .

This completes the proof of the theorem.

Remark that every f ε F0 can always be written in the form (3), and

that such a representation is not unique. Successful use of Theorem 1 and

the other results that we will derive, requires that the functions a, b and g

can be chosen sufficiently ”nice”.

Let us now assume that f ε F0 is the probability function of a random

variable S with a positive probability in zero, and satisfies the recursion (3).

A recursion for the distribution function Γf is given by (4) with t = 1 .

The quantity Γt +1f(s) (t = 0, 1) can be interpreted as the expectation

of a function of S . Indeed, one can prove that

Γt +1f(s − 1) = E
[
(s − S)t+

]
(t = 0, 1; s = 1, 2 ...)

As we have that

E [(S − s)+] = E [(s − S)+] + E [(S − s)]

we find that

E [(S − s)+] = Γ2f(s − 1) + E(S) − s (6)

so that the stop-loss transform f of f defined by

f(s) = E [(S − s)+] (s = 0, 1, ...)

can be evaluated recursively by (4) and (6).

Instead of using (4) and (6) one could also start with evaluating the

probability function from (3) and then using

f(s) = 2 f(s − 1) − f(s − 2) + f(s − 1)
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for s = 2, 3, ... in order to evaluate the stop-loss transform. It is clear

that this way of evaluation will mostly give rise to a computation time of the

same order of magnitude. Nevertheless, if f is a probability function, then

the recursion (4) has, for t ≥ 1 , the nice property of producing increasing

values which will influence the stability of the recursion. Further research

has to be done on this matter. A first attempt is made in Subsection 5.2.

A function p ∈ F0 is said to be in the form Rk[a, b] if it satisfies the

recursion (2), cf. Dhaene & Sundt (1998). In this case we will always silently

assume that a(x) = b(x) = 0 for x > k. From Theorem 1 we immediately

obtain the following corollary.

Corollary 1 If p ∈ F0 is in the form Rk[a, b], then for t = 0, 1, 2, ... Γtp is

in the form R∞[a, bt] with

bt(x) = b(x) + t(1− Γa(x− 1)) (x = 1, 2, ...)

Sundt (1992) considered functions p ∈ F0 that satisfy the recursion

p(s) =
k∑

x=1

(
a(x) +

b(x)

s

)
p(s− x) (s = m+ 1,m+ 2, ...) (7)

which is more general than (2). We easily see that p satisfies the recursion

(3) with

g(s) = s

[
p(s)−

k∑
x=1

(
a(x) +

b(x)

s

)
p(s− x)

]
(s = 1, 2, ...,m)

and g(s) = 0 for s > m. Thus we can apply Theorem 1 for recursive evalua-

tion of Γtp.

3 Convolutions

The convolution of two functions f and g on the non-negative integers is

defined by

(f ∗ g)(x) =
x∑

y=0

f(y)g(x− y) (x = 0, 1, 2, ...)
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and the n-fold convolution f ∗n of f by

f ∗0(x) =


 1 (x = 0)

0 (x = 1, 2, . . .)

f ∗n = f ∗ f ∗(n−1) (n = 1, 2, ...)

For simplicity we restrict to probability functions for the rest of Section

3. However, the results also hold for more general functions.

If a probability function f ∈ F0 is in the form Rk[a, b], then we say that

f is Rk[a, b]; in this case f is uniquely determined by a and b. Sundt (1992)

discussed convolutions of such probability functions. In particular he showed

that the convolution f = ∗m
j=1fj, where fj is Rk[a, bj] (j = 1, ...,m), is

Rk[a, b] with

b(x) = (m− 1)xa(x) +
m∑

j=1

bj(x) (x = 1, 2, ..., k) (8)

By combining (8) with Theorem 1 we can evaluate Γtf recursively.

In particular we see from (8) and Corollary 1 that if f is Rk[a, b], then

Γtf ∗m is R∞[a, bm,t] with

bm,t(x) = mb(x) + (m− 1)xa(x) + t(1− Γa(x− 1)) (x = 1, 2, ...)

Sundt (1992) showed that any probability function f ∈ F0 can be ex-

pressed in the form R∞[a, b] with

a(x) = −f(x)

f(0)
b(x) = 2x

f(x)

f(0)
(x = 1, 2, ...) (9)

By combining (8) and (9) we find that Γtf ∗m is R∞[a, bm,t] with

bm,t(x) =
1

f(0)
[(m+ 1)xf(x) + tΓf(x− 1)] (x = 1, 2, ...)

that is, for any probability function f ∈ F0, Γ
tf ∗m satisfies the recursion

Γtf ∗m(s) =
1

f(0)

s∑
x=1

[(
(m+ 1)

x

s
− 1

)
f(x) +

t

s
Γf(x− 1)

]
Γtf ∗m(s−x) (s = 1, 2, ...)

For t = 0, this recursion was deduced by De Pril (1985).
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4 Compound functions

4.1 The general class

Let F+ denote the class of functions on the positive integers. For p ∈ F0 and

h ∈ F+ we define the compound function p ∨ h ∈ F0 by

(p ∨ h)(s) =
s∑

n=0

p(n)h∗n(s) (s = 0, 1, 2, ...)

If p and h are probability functions, then p∨ h is the probability function of

a compound distribution with counting probability function p and severity

probability function h.

The following theorem is a trivial generalisation of Theorem 3.1 in Sundt,

Dhaene & De Pril (1995).

Theorem 2 If h ∈ F+ and p ∈ F0 satisfies the recursion

p(n) = r(n) +
n∑

x=1

(
a(x) +

b(x)

n

)
p(n− x) (n = 1, 2, ...) (10)

then p ∨ h satisfies the recursion

(p∨h)(s) = (r∨h)(s)+
s∑

x=1

(p∨h)(s−x)
x∑

y=1

(
a(y) +

b(y)

y

x

s

)
h∗y(x) (s = 1, 2, ...)

(11)

We see that the recursion (10) is equivalent with the recursion (3) with

g(s) = sr(s). Furthermore, we also have that the recursion (11) is in the

form (3) as we can rewrite (11) as

(p ∨ h)(s) =
g(s)

s
+

s∑
x=1

(
c(x) +

d(x)

s

)
p(s− x) (s = 1, 2, ...)

with

g(s) = s (r ∨ h)(s) (s = 1, 2, ...) (12)

c(x) =
x∑

y=1

a(y)h∗y(x) (x = 1, 2, ...)

d(x) = x
x∑

y=1

b(y)

y
h∗y(x) (x = 1, 2, ...)

Combining this with Theorem 1 gives the following corollary.
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Corollary 2 If h ∈ F+ and p ∈ F0 satisfies the recursion (10), then for

t = 0, 1, 2, ... Γt(p ∨ h) satisfies the recursion

Γt(p ∨ h)(s) =
Γtg(s)

s
+

s∑
x=1


 x∑

y=1

(
a(y) +

b(y)

y

x

s

)
h∗y(x)

+
t

s


1− x∑

y=1

a(y)Γ(h∗y)(x− 1)




Γt(p ∨ h)(s− x) (s = 1, 2, ...)

with g given by (12).

4.2 Panjer’s class

Let us now consider the special case where p is in the form R1[a, b]. Then we

find from Corollary 2 that Γt(p ∨ h) can be evaluated recursively by

Γt(p∨h)(s) =
s∑

x=1

[(
a+ b

x

s

)
h(x) +

t

s
(1− aΓh(x− 1))

]
Γt(p∨h)(s−x) (s = 1, 2, ...)

(13)

Let us now assume that p and h are probability functions.

When t = 0, (13) reduces to Panjer’s (1981) well-known recursion

(p ∨ h)(s) =
s∑

x=1

(
a+ b

x

s

)
h(x)(p ∨ h)(s− x) (s = 1, 2, ...)

Let us now consider the case t = 1. Then we have for s = 1, 2, .... that

Γ(p∨h)(s) =
s∑

x=1

[(
a+ b

x

s

)
h(x) +

1

s
(1− aΓh(x− 1))

]
Γ(p∨h)(s−x) (14)

A related recursion is presented by Waldmann (1996).

5 The case a ≡ 0

5.1 A general result

It is easy to see that a function f εF0 always satisfies a recursion of the

form

f(s) =
1

s

s∑
x = 1

b(x) f(s − x) (s = 1, 2, ...) (15)
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with the function b uniquely determined by f . Recursions in the form (15)

appear in many areas, in particular in actuarial science where relevant ref-

erences include White & Greville (1959), De Pril (1989), Dhaene & De Pril

(1994), Dhaene & Sundt (1998), Sundt (1995) and Sundt, Dhaene and De

Pril (1998).

As b(x) may alternate between positive and negative values when x

varies, stability problems may arise, see e.g. Panjer & Wang (1993) who also

state a definition of strong stability.

From Theorem 1 we find that Γtf can be evaluated by

Γtf(s) =
1

s

s∑
x = 1

(b(x) + t)Γtf(s − x) (s = 1, 2, ...) (16)

From (16) we see that if b(x) > − t for all x , then the coefficients in

the recursion for Γtf are positive so that this recursion is strongly stable,

see Panjer & Wang (1993). It is interesting to note that the greater t is, the

more likely it is that the recursion for evaluating Γtf is strongly stable.

Moreover, if the recursion for Γtf is strongly stable, then the recursion

for Γsf, s ≥ t is strongly stable. Thus we see that if b is bounded,

then it is always possible to obtain a stable recursion for Γsf by choosing

s sufficiently large. From Γsf we can evaluate Γtf for t < s by

taking differences. The evaluation of these differences will not accumulate

errors, and thus one might feel tempted to conclude that we have also found

a stable way of evaluating Γtf . However, this is not necessarily the case as

the differences would be of a different order of magnitude than Γsf .

5.2 The number of claims in the individual risk theory

model

As an example we will derive stability conditions for the recursions related

to the number of claims in the individual risk theory model, see White &

Greville (1959) and De Pril (1989).

Let N be the number of claims occurred during a certain reference

period in a portfolio consisting of m independent risks, labelled from 1 to

m . Risk i either produces a claim (with probability qi ) or no claim (with
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probability pi = 1 − qi ). We assume that

0 < qi < 1/2 (i = 1, 2, ...,m) (17)

From White & Greville (1959) we find that the probability function f of

the number of claims produced during the reference period can be evaluated

recursively by

f(s) =
1

s

s∑
x = 1

(− 1)x + 1f(s − x)
m∑

i = 1

(
qi

pi

)x

(s = 1, 2, ... , m)

We see that this recursion is of the form (15) with

b(x) = (− 1)x + 1
m∑

i = 1

(
qi

pi

)x

(x = 1, 2, ...) (18)

From (16) we obtain

Γtf(s) =
1

s

s∑
x = 1

[
t + (− 1)x +1

m∑
i = 1

(
qi

pi

)x]
Γtf(s−x) (s = 1, 2, ... , m)

The alternating sign of b may cause stability problems. However, from

(17) and (18) we see that

b(x) ≥ b(2) = −
m∑

i = 1

(
qi

pi

)2

(x = 1, 2, ...)

Hence, if b(2) > −t, or equivalently,
m∑

i = 1

(
qi

pi

)2

< t

then b(x) > −t for x = 1, 2, ..., and the recursion for Γsf is strongly stable

for all integers s ≥ t.

6 Other classes of recursions

6.1 The general case

In the present subsection we shall deduce an alternative to Theorem 1 for

recursive evaluation of Γtf.

11



For functions h on the integers we define the difference operator ∆ by

∆h(x) = h(x)− h(x− 1)

We also introduce the notation

∆0h = h

∆th = ∆(∆t−1h) (t = 1, 2, ...)

Theorem 3 If f ∈ F0 satisfies the recursion

f(s) = r(s) +
s∑

x=1

(
a(x) +

b(x)

s

)
f(s− x) (s = 1, 2, ...) (19)

then for t = 0, 1, 2, ... Γtf satisfies the recursion

Γtf(s) = r(s) +
s∑

x=1

(
∆ta(x) +

∆tb(x)

s

)
Γtf(s− x) (s = 1, 2, ...) (20)

with a(0) = −1, a(x) = 0 for x < 0 and b(x) = 0 for x ≤ 0.

Proof. From (19) we immediately see that (20) holds for t = 0.

Now let us assume that (20) holds for t = u. We shall prove that it also

holds for t = u+ 1. For s = 1, 2, ... we have

Γu+1f(s) = Γu+1f(s− 1) + Γuf(s)

= Γu+1f(s− 1) + r(s) +
s∑

x=1

(
∆ua(x) +

∆ub(x)

s

)
Γuf(s− x)

= Γu+1f(s− 1) + r(s) +
s∑

x=1

(
∆ua(x) +

∆ub(x)

s

)
(Γu+1f(s− x)−

Γu+1f(s− x− 1))

= Γu+1f(s− 1) + r(s) +
s∑

x=1

(
∆ua(x) +

∆ub(x)

s

)
Γu+1f(s− x)−

s∑
x=2

(
∆ua(x− 1) +

∆ub(x− 1)

s

)
Γu+1f(s− x)

= r(s) +
s∑

x=1

(
∆u+1a(x) +

∆u+1b(x)

s

)
Γu+1f(s− x)

that is, (20) holds for t = u+ 1.
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The theorem is now proved by induction.

If a(x) = b(x) = 0 for all x greater than some finite k, then ∆ta(x) =

∆tb(x) = 0 for all x > k + t so that we can rewrite (19) and (20) as

f(s) = r(s) +
k∑

x=1

(
a(x) +

b(x)

s

)
f(s− x) (s = 1, 2, ...) (21)

Γtf(s) = r(s) +
k+t∑
x=1

(
∆ta(x) +

∆tb(x)

s

)
Γtf(s− x) (s = 1, 2, ...) (22)

with Γtf(s) = 0 for all s < 0. On the other hand, a similar property does

not hold for bt defined in Theorem 1 for t > 0, and thus it seems that the

recursion (21) will be more convenient than the recursion (4) if k is small.

With r ≡ 0 we see from (22) that if f is in the form Rk[a, b], then Γtf is

in the form Rk+t[∆
ta,∆tb].

Let us now define the tail operator Λ for functions h on the integers by

Λh(s) =
∞∑

x=s+1

h(x)

assuming that this sum exists and is finite. Further, let

Λ0h = h

Λth = Λ(Λt−1h) (t = 1, 2, ...)

If h is a probability function, then Λh is the tail of the distribution. The stop-

loss transform h is easily found from Λ2h as h = Λ2h(s− 1) for s = 0, 1, ... .

The following theorem gives a similar recursion to (22) for Λtf and can

be proved in the same way as Theorem 3.

Theorem 4 If f ∈ F0 satisfies the recursion

f(s) = r(s) +
k∑

x=1

(
a(x) +

b(x)

s

)
f(s− x) (s = 1, 2, ...)

with k < ∞, then for t = 0, 1, 2, ... Λtf satisfies the recursion

Λtf(s) = (−1)tr(s) +
k+t∑
x=1

(
∆ta(x) +

∆tb(x)

s

)
Λtf(s− x) (s = 1, 2, ...)

(23)

with a(0) = −1, a(x) = 0 for x < 0 and b(x) = 0 for x ≤ 0.
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As Λtf(s) is in general not equal to zero for s < 0, we cannot apply

the recursion (23) to evaluate Λtf when k = ∞. For the same reason, the

assumption that f is in the form Rk[a, b], does not imply that Λtf is in the

form Rk+t[∆
ta,∆tb].

6.2 The case b ≡ 0

Let us now assume that f satisfies the recursion (19) with b ≡ 0 , that is,

f(s) = r(s) +
s∑

x=1

a(x)f(s− x) (s = 1, 2, ...) (24)

We see that in this case the recursion given by Theorem 3 is also in the

form (24). We shall now deduce an alternative recursion for Γtf.

Theorem 5 If f ∈ F0 satisfies the recursion (24), then for t = 0, 1, 2, ...

Γtf satisfies the recursion

Γtf(s) = Γtr(s) +
s∑

x=1

a(x)Γtf(s− x) (s = 1, 2, ...) (25)

with r(0) = f(0).

Proof. The recursion (25) trivially holds for t = 0. Let us now assume

that it holds for t = u. Then, for s = 0, 1, 2, ..., we have

Γu+1f(s) =
s∑

x=0

Γuf(x) = Γur(0) +
s∑

x=1


Γur(x) +

x∑
y=1

a(y)Γuf(x− y)




= Γu+1r(s) +
s∑

y=1

a(y)Γu+1f(s− y)

Thus (25) also holds for t = u + 1, and by induction, it follows that (25)

holds for all t.

We shall now deduce a recursion for the tails Λtf.

Theorem 6 If f ∈ F0 satisfies the recursion (24), then for t = 0, 1, 2, ...

Λtf satisfies the recursion

Λtf(s) = Λtr(s)+Λf(−1)
t∑

j=1

Λja(s)+
s∑

x=1

a(x)Λtf(s−x) (s = 1, 2, ...) (26)
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Proof. We shall prove the special case t = 1; the general case follows

easily by induction. For s = 1, 2, ... we have

Λf(s) =
∞∑

x=s+1

f(x) =
∞∑

x=s+1

[r(x) +
x∑

y=1

a(y)f(x− y)]

= Λr(s) +
∞∑

y=1

a(y)
∞∑

x=max(y,s+1)

f(x− y) = Λr(s) +
∞∑

y=1

a(y)Λf(max(−1, s− y))

= Λr(s) + Λf(−1)Λa(s) +
s∑

y=1

a(y)Λf(s− y)

that is, (26) holds for t = 1. This completes the proof of Theorem 6.

If f ∈ F0 is a probability function, then Λf(−1) = 1.

We now turn to compound functions. If h ∈ F+ and p ∈ F0 satisfies the

recursion (24), then Theorem 2 gives

(p∨h)(s) = (r∨h)(s)+
s∑

x=1

(p∨h)(s−x)
x∑

y=1

a(y)h∗y(x) (s = 1, 2, ...) (27)

This recursion is also in the form (25), and thus we can evaluate Γt(p ∨ h)

and Λt(p ∨ h) by respectively Theorems 5 and 6.

Let us consider the special case of compound geometric distributions, that

is, h and p are probability functions and p is given by

p(n) = (1− π)πn (n = 0, 1, 2, , ...)

This counting probability function satisfies (1) with a = π and b = 0. Thus

(27) gives

(p ∨ h)(s) = π
s∑

x=1

h(x)(p ∨ h)(s− x) (s = 1, 2, ...)

As this recursion is in the form (24) with

r(x) = 0 a(x) = πh(x) (x = 1, 2, ...)

we can evaluate Γt(p∨ h) recursively by Theorem 5. We obtain in particular

Γ(p ∨ h)(s) = 1− π + π
s∑

x=1

h(x)Γ(s− x) (s = 1, 2, ...)

15



Γ2(p ∨ h)(s) = (1− π)(s+ 1) + π
s∑

x=1

a(x)Γ2(s− x) (s = 1, 2, ....)

For recursive evaluation of Λt(p ∨ h) Theorem 6 gives

Λt(p ∨ h)(s) = π


 t∑

j=1

Λjh(s) +
s∑

x=1

h(x)Λt(p ∨ h)(s− x)


 (s = 1, 2, ...)

These recursions for compound geometric distributions can be applied to

obtain upper and lower bounds for the probability of ultimate ruin in the

classical ruin model, cf. e.g. Dickson (1995).
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