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Abstract

In this paper, we consider several types of stochastic annuities, for
which an explicit expression of the distribution function is not avail-
able. We will construct a random variable with the same mean and
which is larger in stop-loss order, for which the distribution function
can easily be obtained.

1 Introduction

In several financial-actuarial problems one is faced with the determination of
the distribution function of non-negative random variables of the form

V =

∫ t

0

γ(τ) e−X(τ)dτ

where γ(τ) is a non-negative deterministic function and X(τ) denotes some
stochastic process, such as a Wiener process e.g. The distribution of such a
random variable can be used in finance in order to determine the price of an
Asian option, see e.g. Geman and Yor (1993). It is also of interest in pension
mathematics where the random variable V can be interpreted as the net
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present value of the cash flow of a pension scheme, see e.g. Dufresne (1990).
The knowledge of the distribution function of such a random variable is also
necessary for the pricing of modern life insurance products in a stochastic
interest rate environment. Another example is financial reinsurance where
one tends to deal with loss reserves as stochastic quantities depending on
random discount factors. In this case the IBNR reserves can be seen as
random variables of this form, see Goovaerts and Redant (1998).

The problem of finding the distribution function of V can be transformed
into a problem consisting in determining the solution of a partial differen-
tial equation, see e.g. De Schepper et al. (1994), Vanneste et al. (1994)
and Goovaerts and Dhaene (1997). Another approach consists in the use of
stochastic differential equations, see e.g. Yor (1992). However, none of these
approaches provides a solution which enables an explicit calculation of the
distribution function valid for all values of t and for all realistic choices of
the function γ(τ). In case of a Wiener process e.g., the only special cases for
which an analytic solution for the distribution function of V is known are
when t = ∞ and γ(τ) = e−δτ (see e.g. Dufresne (1990) and Milevsky (1997),
and also when γ(τ) = δ(τ − τ 0). In the latter case δ denotes the Dirac-delta
function.

In the actuarial literature it is a common feature to replace a risk, i.e. a
nonnegative random variable, by a less favorable risk, which has a simpler
structure, making it easier to determine relevant quantities such as premiums.
In order to clarify what we mean with a less favorable risk, we will make use
of the stop-loss order, which is defined as follows:

Definition 1 A risk V is said to precede a risk W in stop-loss order, written
V ≤sl W , if the respective stop-loss premiums are ordered uniformly:

E
[
(V − d)+

] ≤ E
[
(W − d)+

]
for all retentions d ≥ 0.

A risk W will be said to be less favorable or more risky than a risk V , if
V ≤sl W .

In this paper, we will consider some types of random variables V as
defined above, for which the distribution function cannot be determined ex-
plicitely. We will construct a new risk W with the same expectation, but
which is less favorable in stop-loss order sense, meaning that for each d, the
stop-loss premium with retention d of the risk V is smaller than or equal to
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the corresponding stop-loss premium of W. The risk W will be constructed
in such a way that an expression for its distribution function can easily be
obtained.

2 Supermodular Order

Supermodularity has originally been studied in the applied mathematics and
operations research literature. In recent years, it has received considerable at-
tention in the economics literature. A self-contained and up-to-date overview
of the related economic theory is Topkis (1998).

Let ei denote the i-th n-dimensional unit vector. For x = (x1, · · · , xn)
and an arbitrary function f : Rn → R, we define ∆ε

if(x) = f(x+ε ei)−f(x).

Definition 2 A function f : Rn → R is said to be supermodular if

∆ε
i∆

δ
j f(x) ≥ 0

holds for all xεRn, 1 ≤ i < j ≤ n and all ε, δ > 0.

In order to derive our results, use will be made of the supermodular order,
which is a partial order between multivariate distribution functions. This
order has proved to be a usefull order in the applied probability literature.
For actuarial applications of this order, see Müller (1997) and Bäuerle and
Müller (1998).

Definition 3 A random vector X =(X1, · · · , Xn) is said to be smaller than a
random vector Y =(Y1, · · · , Yn) in the supermodular ordering, written X ≤smY,
if E [f(X)] ≤ E [f(Y)] for all supermodular functions f such that the expec-
tations exist.

Remark that supermodular ordering can only hold if X and Y have the
same marginals, see Müller (1997)or Bäuerle and Müller (1998).

In the following theorem we present a relation between supermodular
order and stop-loss order.

Theorem 1 Let X =(X1, · · · , Xn) and Y =(Y1, · · · , Yn) be n-dimensional
random vectors with X ≤smY. Further, let φ1, · · · φn be non-increasing
non-negative functions. Then

φ1(X1) + · · ·+ φn(Xn) ≤sl φ1(Y1) + · · ·+ φn(Yn).
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Proof. Let g : R → R be an arbitrary non-decreasing convex function and
define the function f : Rn → R by f(x1, · · · , xn) = g (φ1(x1) + · · ·+ φn(xn)).

From the convexity of g we have that

g(x+ α+ β) + g(x) ≥ g(x+ α) + g(x+ β).

for α and β both negative. Now let 1 ≤ i < j ≤ n and ε and δ > 0.
By choosing x = φ1(x1) + · · · + φn(xn), α = φi(xi + εi) − φi(xi) and β =
φj(xj + δj)− φj(xj) and inserting these expressions in the inequality above,
we find that the function f is supermodular. Because X ≤smY, this implies

E [g (φ1(X1) + · · ·+ φn(Xn))] ≤ E [g (φ1(Y1) + · · ·+ φn(Yn))]

for any non-decreasing convex function g for which the expectations exist.
This last implication is equivalent with the stop-loss inequality to be proved,
see e.g. Goovaerts et al. (1986).

Remark that the case that all the functions φi are non-decreasing is con-
sidered in Theorem 3.2.in Müller (1997).

Let X =(X1, · · · , Xn) be a random vector with marginal distribution
functions F1, F2, · · · , Fn and let U be a random variable which is uni-
formly distributed on the interval [0, 1] . It is well-known that the random
vector

(
F−1

1 (U), F−1
2 (U), · · · , F−1

n (U)
)
has the same marginals as the ran-

dom vector X.

Definition 4 Let Y =(Y1, · · · , Yn) be a random vector with marginals Fi,
i = 1, · · · , n. Then Y is said to be comonotonic if Y has the same distribution
function as

(
F−1

1 (U), F−1
2 (U), · · · , F−1

n (U)
)
, where U is a random variable

which is uniformly distributed on the interval [0, 1] .

The concept of comonotonicity was introduced by Schmeidler (1986) and
Yaari (1987) and has since then played an important role in economic theories
of decision under risk and uncertainty. For actuarial applications of the
concept of comonoticity, see e.g. Dhaene and Goovaerts (1996), Wang and
Dhaene (1998) and Dhaene et al. (1998).

From the following theorem, we see that a comonotonic random vector
possesses a very strong form of dependence between its components.

Theorem 2 Let X =(X1, · · · , Xn) be a random vector with marginals Fi,
i = 1, · · · , n, and let U be a random variable which is uniformly distributed
on the interval [0, 1] , then

(X1, · · · , Xn)≤sm

(
F−1

1 (U), F−1
2 (U), · · · , F−1

n (U)
)
.
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This result is due to Tchen (1980). It states that, within the class of
random vectors with given marginals, the comonotonic random vectors are
greater in supermodular order than any other element of this class.

3 Main Result

Let X =(X1, · · · , Xn) be a n-dimensional random vector with marginals
F1, · · · , Fn. Further, let U be a random variable which is uniformly dis-
tributed on the interval [0, 1]. Finally, let φ1, · · · φn be non-negative and
non-increasing functions. Assume that we are faced with a situation where
it is impossible to find an explicit expression for the distribution function
of the risk φ1(X1) + · · · + φn(Xn). In this situation, we could replace the
unknown distribution function by the distribution function of φ1

(
F−1

1 (U)
)
+

· · ·+ φn (F
−1
n (U)). Combining Theorems 4 and 6, we find

φ1(X1) + · · ·+ φn(Xn) ≤sl φ1

(
F−1

1 (U)
)
+ · · ·+ φn

(
F−1

n (U)
)
.

The main advantages of working with φ1

(
F−1

1 (U)
)
+· · ·+φn (F

−1
n (U)) instead

of φ1(X1) + · · ·+ φn(Xn) are threefold :

• In order to compute stop-loss premiums of the random variable in the
right hand side of the inequality, only one integration has to be carried
out (the integration over U), while computing the stop-loss premiums of
the left hand side involves n integrations. This is certainly attractive
for the stochastic processes we will consider later, where n tends to
infinity.

• From the expression of the stop-loss transform of φ1

(
F−1

1 (U)
)
+ · · ·+

φn (F
−1
n (U)), the corresponding distribution function is rather easily

obtained. So we can easily find the distribution function of a random
variable which is more dangerous in stop-loss order than the original
random variable φ1(X1) + · · ·+ φn(Xn).

• Because (X1, · · · , Xn) and
(
F−1

1 (U), F−1
2 (U), · · · , F−1

n (U)
)
have the

same marginals, one gets that φ1(X1)+· · ·+φn(Xn) and φ1

(
F−1

1 (U)
)
+

· · ·+ φn (F
−1
n (U)) have the same mean. As these random variables are

stop-loss ordered, we have that all moments of φ1(X1) + · · · + φn(Xn)
are smaller than or equal to the moments of φ1

(
F−1

1 (U)
)
+ · · · +

φn (F
−1
n (U)), see e.g. Goovaerts et al. (1986).
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In the following theorem, we present an algorithm which allows to deter-
mine the distribution function of φ1

(
F−1

1 (U)
)
+ · · ·+ φn (F

−1
n (U)) .

Theorem 3 Let X =(X1, · · · , Xn) be a n-dimensional random vector with
marginals F1, · · · , Fn. Further, U is a random variable which is uniformly
distributed on the interval [0, 1] and φ1, · · · φn are non-negative and non-
increasing functions. Then

Pr

[
n∑

i=1

φi

(
F−1

i (U)
)
> x

]
= sup

{
uε [0, 1] |

n∑
i=1

φi

(
F−1

i (u)
)
> x

}

Proof. The expression for the tail function follows from

Pr

[
n∑

i=1

φi

(
F−1

i (U)
)
> x

]
=

∫ 1

0

I

[
n∑

i=1

φi

(
F−1

i (u)
)
> x

]
du.

where I(y > x) denotes the indicator function which equals 1 if y > x and 0
otherwise.

Remark that if
∑n

i=1 φi

(
F−1

i (u)
)
is a strictly decreasing and continuous

function of u, then we have

Pr

[
n∑

i=1

φi

(
F−1

i (U)
)
> x

]
= ux

with ux determined by
n∑

i=1

φi

(
F−1

i (ux)
)
= x.

4 The Distribution Function of Annuities

4.1 Discrete Annuities

In the previous sections, we have seen that replacing the distribution function
of the random variable V =

∑n
i=1 φi(Xi) by the distribution function of the

random variable W =
∑n

i=1 φi

(
F−1

i (U)
)
is safe, in the sense that the mean is

unchanged, but the stop-loss premiums (and as a consequence also all higher
order moments) are larger in the latter case.
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Let us now look at the special case that the Xi are all normally dis-
tributed. Hence, assume that

Xi � N(0, σ2
i ) i = 1, · · · , n.

In this case, we have that

F−1
i (u) = σi Φ

−1(u)

where Φ is the distribution function of a standard normal distributed random
variable. Let us now assume that the functions φi are continuous and strictly
decreasing. Then we find

Pr [W > x] = Φ(vx)

with vx defined by
n∑

i=1

φi (σi vx) = x.

Combining the previous results, we find the following theorem for discrete
temporary annuities.

Theorem 4 Consider the annuity

V =
n∑

i=1

αi exp (−δ i−Xi) ,

where δ is the risk free interest intensity, Xi � N(0, σ2
i ), i = 1, · · · , n, and

the αi, i = 1, · · · , n, are non-negative real numbers.
Further, let U be a random variable which is uniformly distributed on the
interval [0, 1] and let W be defined by

W =
n∑

i=1

αi exp
(−δ i− σi Φ

−1(U)
)
.

Then we have that
V ≤sl W.

The distribution function of W is given by

Pr [W > x] = Φ(vx)
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where vx is determined by

n∑
i=1

αi exp [−δ i− σi vx] = x.

From the Theorem above, we immediately find that the density function
of W is given by

fW (x) =
Φ

′
(vx)∑n

i=1 αi σi exp [−δ i− σi vx]
.

The results above can be used to determine stop-loss more dangerous
risks (with the same expectation) for the usual discrete annuities, such as
constant (where V =

∑n
i=1 e−δi−Xi) and increasing annuities (where V =∑n

i=1 i e
−δi−Xi).

4.2 Continuous Annuities

Let us now consider the continuous temporary annuity V defined by

V =

∫ t

0

α(τ) exp [−δ τ − σ X(τ)] dτ

where X(τ) represents a standard Brownian motion, δ is the risk free interest
intensity and α(τ) is a non-negative function of τ .

In order to be able to use the previous theory, we first approximate the
annuity V by

Vn =
n∑

i=1

t

n
α(i

t

n
) exp

[
−δ i

t

n
− σ X(i

t

n
)

]
From our previous results, we find that Vn ≤sl Wn with Wn defined by

Wn =
n∑

i=1

t

n
α(i

t

n
) exp

[
−δ i

t

n
− σ

√
i
t

n
Φ−1(U)

]

with U uniformly distributed on the interval [0, 1] .
The distribution function of Wn follows from

Pr [Wn > x] = Φ(vx)
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with vx defined by

n∑
i=1

t

n
α(i

t

n
) exp

[
−δ i

t

n
− σ

√
i
t

n
vx

]
= x.

Taking limits (n → ∞), we find the following result.

Theorem 5 Consider the annuity

V =

∫ t

0

α(τ) exp [−δ τ − σ X(τ)] dτ

where X(τ) represents a standard Brownian motion, δ is the risk free interest
intensity and α(τ) is a non-negative function of τ .
Further, let U be a random variable which is uniformly distributed on the
interval [0, 1], and let Y be defined by

W =

∫ t

0

α(τ) exp
[−δ τ − σ

√
τ Φ−1(U)

]
dτ .

Then we have that
V ≤sl W.

The distribution function of W is given by

Pr [W > x] = Φ(vx)

where vx is determined by∫ t

0

α(τ) exp
[−δ τ − σ

√
τ vx

]
dτ = x.

From the expression for the tail function in the theorem above, we can
deduce the following expression for the density function of W :

fW (x) =
Φ

′
(vx)∫ t

0
α(τ)σ

√
τ exp [−δ τ − σ

√
τ vx] dτ

.

By choosing α(τ) = 1 or α(τ) = τ , we find expressions for the case of a
constant or an increasing annuity.
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5 Annuities in the C.I.R.-Model.

In this paragraph, we consider the C.I.R.-model, see Cox et al. (1985), where
the instantenous riskless interest rate is assumed to satisfy the differential
equation

dRt = a (b−Rt) dt+ σ
√

RtdXt

where Xt denotes a standard Wiener process. Performing the substitution
Ft =

2
σ

√
Rt, one obtains the following stochastic differential equation:

dFt =

(
2ab

σ2Ft

− aFt

2
− 1

2Ft

)
dt+ dXt

where Xt again denotes a standard Wiener process.
In order to apply this process for describing the discounting factors, we

have to consider exp
(
− ∫ t

0
Rτdτ

)
= exp

(
−σ2

4

∫ t

0
F 2

τ dτ
)
.

The random variable of interest is Vt which is defined as

Vt =

∫ t

0

α(τ) exp

(
−σ2

4

∫ τ

0

F 2
s ds

)
dτ .

Random variables of this type (for α(τ) = 1 and t → ∞) were also considered
by Delbaen (1993). He obtained bounds for the moments E(V n

∞), based on
a classical Kac identity.

In order to apply supermodular order and stop-loss order to the present
situation, we have to evaluate the distributions of Ft at different time points
t.

The transition density can be cast into the form of a Feynman-Kac in-
tegral which is a special case of a more general Feynman-Kac integral pre-
sented in Vanneste et al. (1994). This integral is related to a non-stationary
Calogero model, see Goovaerts (1975).

The following analytical expression in terms of the modified Bessel func-
tion can be obtained for the transition probabilities:

p(0, F0; t, Ft) = e−
√

2γt(
√

1+8g+1)+
√

2γ
2

(F 2
t −F 2

0 )

(
Ft

F0

)√
1+8g+ 1

2
√
2γ

sh
√
2γt

√
F0Ft.

I√1+8g

( √
2γ

sh
√
2γt

FtF0

)
e−

1
2

√
2γ coth

√
2γt(F 2

t +F 2
0 )
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where we introduced the constants g and γ, which are defined as

a = 2
√

2γ,
4ab

σ2
=
√

1 + 8g.

The interested reader is referred to Vanneste et al. (1994).
We will derive the distribution function of a random variable Wt which in

stop-loss order is larger than the original random variable under consideration
Vt. Our results hold for all values of t. As a byproduct, we obtain bounds
for al the moments of the finite or infinite time stochastic annuities moments
of Vt.

We consider the function f defined by

f(Fε, F2ε, · · · , Fnε) =

(
n∑

j=1

ε α(jε)e−
σ2

4

∑j
i=1 ε F 2

iε − s

)
+

.

It is readily verified that f is a supermodular function. Hence, our gen-
eral approach of deriving a distribution function which is more dangerous
in stop-loss order applies and an upperbound for the stop-loss premium of
the random variable Vt is obtained by considering the comonotonic vector
instead of (Fε, F2ε, · · · , Fnε) and by taking the limit for n → ∞ such that
nε = t.

Let us start at F0 = 0, then the transition probabilities can be cast into
the following form:

p(0, 0; t, Ft) = e−
√

2γt(
√

1+8g+1)+
√

2γ
2

F 2
t F

√
1+8g+1

t

( √
2γ

2sh
√
2γt

)√
1+8g+1

.

e−
1
2

√
2γ coth

√
2γtF 2

t
2

Γ
(√

1 + 8g + 1
2

)
Γ
(

1
2

) ∫ +1

−1

(
1− t2

)√1+8g− 1
2 dt

where use has been made of the definition of the modified Bessel function:

Iν(z) =

(
z
2

)ν
Γ
(
ν + 1

2

)
Γ
(

1
2

) ∫ +1

−1

(
1− t2

)ν− 1
2 e−ztdt.

In order to determine the distribution function of Ft at time t, we consider
the c.d.f.∫ F

0

p(0, 0; t, Ft)dFt =
1

Γ
(√

1 + 8g + 1
) ∫ e−

√
2γt√2γF2

2sh
√

2γt

0

x
√

1+8ge−xdx.
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Define
�
F u by means of

1

Γ
(√

1 + 8g + 1
) ∫ �

F u

0

x
√

1+8ge−xdx = u, 0 ≤ u ≤ 1.

One gets that the relevant set of comonotonic risks has components deter-
mined by

F 2
τ (u) =

2sh
√
2γτ√
2γ

e
√

2γτ
�
F u .

Hence,

E
(
(Vt − s)+

) ≤ EU

((∫ t

0

α(τ) e
−F̃U

σ2

4

∫ τ
0

2sh
√

2γτ0√
2γ

e
√

2γτ0dτ0dτ − s

)
+

)
.

The right hand side can be cast into the following form:∫ ∞

0

(∫ t

0

α(τ) e
−k σ2

4

∫ τ
0

e2
√

2γτ0−1√
2γ

dτ0dτ − s

)
+

k
√

1+8ge−k

Γ
(√

1 + 8g + 1
)dk.

Then, of course, Vt ≤sl Wt where the density of Wt is easily determined as
follows:

fWt(s) =
k
√

1+8g
s e−ks

Γ
(√

1 + 8g + 1
) ∫ t

0
α(τ) e

−ks/
√

2γ σ2

4

(
e2

√
2γτ−1

2
√

2γ
−τ

)
σ2

4
1√
2γ

(
e2

√
2γτ−1

2
√

2γ
− τ
)
dτ

where ks is determined by∫ t

0

α(τ) e
−ks/

√
2γ σ2

4

(
e2

√
2γτ−1

2
√

2γ
−τ

)
dτ = s.

6 Upper bounds for the moments of a perpe-

tuity in the C.I.R.-Model.

In this section, we derive upper bounds for the moments of a perpetuity in

the C.I.R.-Model: V∞ =
∫∞

0
exp

(
−σ2

4

∫ τ

0
F 2

s ds
)
dτ . This can easily be done

by deriving upper bounds for the moments of W∞.
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Having performed the substitution k = k(s) (= ks), one gets

E (W n
∞) =

∫ ∞

0

(∫ ∞

0

e
−k/

√
2γ σ2

4

(
e2

√
2γτ−1

2
√

2γ
−τ

)
dτ

)n
k
√

1+8g

Γ
(√

1 + 8g + 1
)e−kdk.

Writing exp(2
√
2γτ) as a Taylor series, the following inequality is ob-

tained:
exp(2

√
2γτ)− 1

2
√
2γ

− τ ≥ 1

2
√
2γ

(
2
√

2γ
)p τ p

p!

where we have selected only one term in the series, p can be choosen to be
any integer larger than 1.
Then the following inequality results:

∫ ∞

0

(∫ ∞

0

e
−k/

√
2γ σ2

4

(
e2

√
2γτ−1

2
√

2γ
−τ

)
dτ

)n

≤
(p!)

1
p

k
1
p

(
2
√
2γ
) 1

p

2
√
2γ

(
2

σ2

) 1
p

Γ(1 +
1

p
)

n

.

Making use of Jensens’ inequality, one obtains

Γ(1 +
1

p
)n ≤

(∫ 1

0

(
ln

1

u

) 1
p

du

)n

≤
∫ 1

0

(
ln

1

u

)n
p

du = Γ(1 +
n

p
).

Hence, as soon as
√
1 + 8g − n

p
> −1, the following inequality holds:

E (W n
∞) ≤ (p!)

n
p

(
2
√
2γ
)n

p(
2
√
2γ
)n ( 2

σ2

)n
p

Γ(1 +
n

p
)
Γ(
√
1 + 8g + 1− n

p
+ 1)

Γ(
√
1 + 8g + 1)

Because the bounds given in Delbaen (1993) have to be seen to hold for large
values of n (otherwise his parameter αn becomes negative), we consider here
the case of n sufficiently large. Making a convenient choice of p, namely p = n
(which is certainly not the best possible one), one finally obtains

E (W n
∞) ≤ 2 n!

(
2
√
2γ
)1−n

σ2
√
1 + 8g

≈ 4
√
2γ

√
2πn

σ2
√
1 + 8g

(
n

2e
√
2γ

)n

.

Remark that Delbaen (1993) proved that there are constants K1 and K2 such
that

E (W n
∞) ≤ K1

(
K2

√
n
)n

.
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In order to compare our moments with those derived by Delbaen (1993), we
made some rough majorization of the integrals appearing in our expression
for E (W n

∞) . Remark that our approach is directed towards the evaluation of
the corresponding density function directly, and from this result the moments
can be obtained. On the other hand, it is not evident to transform the series
of moments into a density function.
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