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Abstract

We introduce the correlation order as a tool for describing and
understanding dependencies in multiple life statuses. This order is
well-known in the economical literature. It is a partial order in the
class of all bivariate lifetime distributions with given marginals. It is
shown that this order is preserved (or reversed) when pricing multiple
life and last survivor insurance and annuity contracts. In particu-
lar, we establish conditions that provide information on phenomenon
of over/underpricing when the usual assumption of mutual indepen-
dency of the life times involved is made. The results can also be used
to establish lower and upper bounds for the single premiums of insur-
ances and annuities on joint-life and last-survivor statuses with given
marginals.
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1 Introduction.

A traditional assumption in the theory of multiple life contingencies is that

the remaining life times of the lives involved are mutually independent. Com-

putational feasability rather than realism seems to be the major reason for

making this assumption. Indeed, a husband and his wife are more or less

exposed to the same risks. The ”broken heart syndrome” causes an increase

of the mortality rate after the mortality of one’s spouse. Such effects may

have a significant influence on present values related to multiple life actuarial

functions.

Carrière and Chan (1986) investigated Fréchet-bounds for pricing joint-

life and last-survivor annuities. Frees, Carrière and Valdez (1996) observed a

portfolio of annuities on coupled lives and concluded that the time-of-death

of the paired lives were highly correlated. Carrière (1997) presents alternative

ways for modeling the dependence of the time-of-deaths of coupled lives and

applies these to a data set from a life annuity portfolio. These papers use

copula functions to build bivariate survivorship functions. For a general

introduction and a historical overview of the development of the theory of

copula functions, we refer to Dall’Aglio, Kotz and Salinetti (1991). The article

of Frees and Valdez (1998) introduces actuaries to the concept of copulas.

The situation where the dependence of lives arises from an exogenous

event that is common to each life, can be described by a ”common shock”

model. A reference to this kind of models is Marshal and Olkin (1988).

To the best of our knowledge, the first actuarial textbook explicitly in-

troducing multiple life models in which the future life time random variables

are dependent is Bowers, Gerber, Hickmann, Jones and Nesbitt (1997). In

Chapter 9 of this book, copula and common shock models are introduced to

describe dependencies in joint-life and last-survivor statuses.

Also other models can be used to incorporate dependencies between life

times, e.g. the frailty models described by Oakes (1989) or Markov models

as described by Norberg (1989). For a more extensive overview of depen-

dency models, we further refer to Frees, Carrière and Valdez (1996) and the
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references in that paper.

Given a certain copula or frailty model, determining the direction and

the extent of over/underpricing by taking the independence assumption is

straightforward. This paper allows the reader to determine this direction for

a general class of models, where the only restriction is that the marginals are

given. The assumption of given marginals is crucial here since our focus will

lie on comparing dependencies only.

We want to compare the riskiness of several dependency relations. More

precisely, we want to compare bivariate distributions with given marginals,

but with different dependency structures. Although there is an extensive

actuarial literature on the theory of ordering of univariate risks, see e.g.

Goovaerts, Kaas, van Heerwaerden and Bauwelinckx (1990), the theory of

ordering of multivariate risks has only recently been considered more ex-

tensively in the actuarial literature, see e.g. Denuit, Lefèvre and Mesfioui

(1997), Müller (1997), Dhaene and Goovaerts (1996), Dhaene, Wang, Young

and Goovaerts (1997), Wang and Dhaene (1997). A general reference to the

theory of ordering of multivariate risks is Shaked and Shanthikumar (1994).

In this paper, we will use some results from Dhaene & Goovaerts (1996)

which were obtained for portfolios where the risks involved are not necessar-

ily mutually independent. We will see that we can use some of these general

results for evaluating the effect of dependencies in case of multiple life func-

tions. We introduce a partial ordering in the class of all bivariate lifetime

distributions with given marginals. It is shown that this ordering is pre-

served (or reversed) when pricing certain multiple life insurance and annuity

contracts. In particular, we establish conditions that provide information on

the phenomenon of over/underpricing when the usual assumption of mutual

independency of the life times involved is made. Combining our results with

the Fréchet bounds, we establish lower and upper bounds for the single pre-

miums of insurances and annuities on multiple life statuses. We will restrict

our discussion to situations involving two lives. Generalisations to situations

with more than two lives involved are possible.
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In section 2, we will give some basic definitions and results. In section 3

these results will be used for deriving ordering relations between single pre-

miums of multiple life insurances and annuities on two lives. In the sections 4

and 5 we derive lower and upper bounds for multiple life single premiums. In

section 6 , we will discuss dependency between stochastically ordered remain-

ing life times. Finally, in section 7 we will give some numerical illustrations

of the results obtained in the previous sections.

2 Correlation order and positive quadrant de-

pendency.

LetR(F,G) be the set of all bivariate distributed random variables (T (x), T (y))

with given marginal distribution functions F and G for T (x) and T (y) re-

spectively. We will interpret T (x) and T (y) as the remaining life times of

persons of age x and y respectively. Consequently, they are assumed to be

nonnegative random variables.

Definition 1 Let (T (x), T (y)) and (S(x), S(y)) be elements of R(F,G). Then

(T (x), T (y)) is said to be less correlated than (S(x), S(y)), written as

(T (x), T (y)) ≤c (S(x), S(y)), if

cov [f(T (x)), g(T (y))] ≤ cov [f(S(x)), g(S(y))]

for all non-decreasing functions f and g for which the covariances exist.

The correlation order is a partial order between the joint distributions

of the remaining life times in R(F,G). It expresses the notion that some

elements of R(F,G) are more positively correlated than others.

The following theorem gives an alternative definition for correlation order

in terms of bivariate distribution functions.

Theorem 1 Let (T (x), T (y)) and (S(x), S(y)) be elements of R(F,G). Then

the following statements are equivalent:
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(a) (T (x), T (y)) ≤c (S(x), S(y)) .

(b) Pr[T (x) ≤ t, T (y) ≤ s] ≤ Pr [S(x) ≤ t, S(y) ≤ s] for all t, s ≥ 0.

A proof of this theorem can be found in Dhaene & Goovaerts (1996). Refer-

ences to the correlation order defined above are Barlow and Proschan (1975)

and Tchen (1980). For economic applications, see also Epstein and Tanny

(1980) and Aboudi and Thon (1993, 1995).

Often certain insured risks tend to act similarly, they possess some ”pos-

itive” dependency. In order to describe such situations we introduce the

well-known notion of ”positive quadrant dependency”, see e.g. Barlow and

Proschan (1975).

Definition 2 Two remaining life times T (x) and T (y) are said to be posi-

tively quadrant dependent, written as PQD (T (x), T (y)), if

Pr [T (x) ≤ t, T (y) ≤ s] ≥ Pr [T (x) ≤ t] Pr [T (y) ≤ s]

for all t, s ≥ 0.

Hence, saying that T (x) and T (y) are positive quadrant dependent means

that the probability that T (x) and T (y) both realize small values is larger

than the corresponding probability in the case of independent remaining life

times. In terms of correlation order (Definition 1), one can say that T (x) and

T (y) are actually more correlated than the corresponding couple consisting

of mutually independent remaining life times. Reversing the inequality in

Definition 2 leads to the notion of negative quadrant dependency (NQD).

We will not use this concept in the remainder of this paper. However, for all

results that we will prove for PQD, it is possible to prove a NQD version.

The notions of correlation order and positive quadrant dependency can

easily be expressed in terms of Archimedean copula functions. Indeed, let

(T (x), T (y)) and (S(x), S(y)) be elements of R(F,G) with respective cop-

ula functions CT (u, v) and CS(u, v). Then (T (x), T (y)) ≤c (S(x), S(y)) is

equivalent with CT (u, v) ≤ CS(u, v) for all u, v ≥ 0. We also have that

PQD (T (x), T (y)) is equivalent with CT (u, v) ≥ u v for all u, v ≥ 0.
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3 Actuarial functions on two dependent lives.

Let the remaining life times of the statuses (x) and (y) as earlier be denoted

by T (x) and T (y) respectively.

The joint-life status (xy) exists as long as (x) and (y) are both alive. Hence,

the remaining life time of (xy) is given by T (xy) = min [T (x), T (y)].

The survival probabilities tpxy of the joint-life status are given by

tpxy = Pr [T (xy) > t] = Pr [T (x) > t, T (y) > t] .

The last-survivor status (xy) exists as long as at least one of (x) and (y) is

alive. Hence, the remaining life time of (xy) is given by T (xy) = max [T (x), T (y)].

The survival probabilities tpxy of the last-survivor status are given by

tpxy = Pr [T (xy) > t] = 1− Pr [T (x) ≤ t, T (y) ≤ t] .

Let T be the remaining life time of a joint-life or last-survivor status. We

will consider life insurances and annuities for which the present value of future

benefits (PVFB) is given by f(T ) with f a non-decreasing or non-increasing

non-negative function. The expectation of f(T ) is the (pure) single premium

for the insurance or annuity under consideration.

Remark that the PVFB of most of the usual joint-life and last-survivor in-

surances and annuities can be written as non-decreasing or non-increasing

functions of the remaining life time of the joint-life or last-survivor status

involved:

The PVFB of pure endowments (nExy, nExy) and whole life annuities

(äxy, äxy, axy, axy, · · ·) are non-decreasing functions of the remaining life

time of the multiple life status involved. The PVFB of whole life insurances(
Axy, Axy, Axy, Axy, · · ·

)
are non-increasing functions of the remaining life

time of the multiple life status involved.

Before stating our main result, we need to introduce the notion of stochas-

tic dominance.

Definition 3 Let T and S be two remaining life times. We say that S

stochastically dominates T , written T ≤st S, if one of the following equivalent
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conditions hold:

(a) E [f(T )] ≤ E [f(S)] for all non-decreasing functions f .

(b) Pr [T ≤ t] ≥ Pr [S ≤ t] for all t.

A proof of the equivalence between the two conditions can be found e.g.

in Goovaerts, Kaas, van Heerwaarden and Bauwelinckx (1990).

Lemma 1 Let (T (x), T (y)) and (S(x), S(y)) be two bivariate remaining life

times, both elements of R(F,G). If (T (x), T (y)) ≤c (S(x), S(y)), then the

following stochastic order relations hold:

T (xy) ≤st S(xy),

S(xy) ≤st T (xy).

Proof. From Theorem 1 we have that

Pr [T (x) ≤ t, T (y) ≤ s] ≤ Pr [S(x) ≤ t, S(y) ≤ s] .

This inequality can be transformed into

Pr [T (x) > t, T (y) > s] ≤ Pr [S(x) > t, S(y) > s] .

Hence, we find

Pr [T (xy) > t] = Pr [T (x) > t, T (y) > t] ≤ Pr [S(x) > t, S(y) > t] = Pr [S(xy) > t] ,

which proves the first stochastic order relation.

The other relation is proven similarly.

In the following theorem, which states our main result, we will consider

two bivariate remaining life times in R(F,G) which are ordered by the cor-

relation order. We will show that a correlation order between these bivariate

remaining life times implies an ordering of the corresponding multiple life

single premiums.
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Theorem 2 Let (T (x), T (y)) and (S(x), S(y)) be two bivariate remaining

life times, both elements of R(F,G). If (T (x), T (y)) ≤c (S(x), S(y)), then

the following inequalities hold for any non-decreasing function f :

E[f(T (xy))] ≤ E[f(S(xy))],

E[f(T (xy))] ≥ E[f(S(xy))].

If f is non-increasing then the opposite inequalities hold.

Proof. From Lemma 1 we have that S(xy) stochastically dominates T (xy)

so that the first inequality is proven.

The proof for the other inequality is similar.

The inequalities for a non-increasing function f follow immediately by

remarking that −f is non-decreasing in this case.

Theorem 2 can be interpreted as follows: Assume that the marginal dis-

tributions of the remaining life times of (x) and (y) are given. If the bivariate

remaining life time of the couple increases in correlation order, then the sin-

gle premiums of endowment insurances and annuities on the joint life status

increase, while the single premiums of endowment insurances and annuities

on the last survivor status decrease. For whole life insurances, the opposite

conclusions hold.

Remark that Theorem 2 can also be used for ordering single premiums of

more complex multiple life functions. Consider e.g. an annuity which pays

one per year while both (x) and (y) are alive, and α per year while (y) is

alive and (x) has died. The discounted value of the benefits involved is given

by

∫ T (xy)

0
vt dt+ α

∫ T (y)

T (xy)
vt dt = (1− α)

∫ T (xy)

0
vt dt+ α

∫ T (y)

0
vt dt.

Under the conditions of Theorem 2, we find from the equality above that

(T (x), T (y)) ≤c (S(x), S(y))implies a(T )
xy + α a

(T )
x|y ≤ a(S)

xy + α a
(S)
x|y , where the

superscript (T ) is used to indicate that the annuity is computed using the

bivariate remaining lifetime (T (x), T (y)).
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A natural measure of dependency between two random variables is the

covariance. So, one could wonder whether cov [T (x), T (y)] ≤ cov [S(x), S(y)]

is a sufficient condition for the ordering relations in Theorem 2 to hold. In

the following example, we will show that the ordering of the covariances is

not a sufficient condition.

Let F be the cumulative distribution function of a remaining life time

that can be equal to 1/2, 3/2 or 5/2, each with probability 1/3. Now, we

consider the couples (T (x), T (y)) and (S(x), S(y)), both elements of R(F, F ).

Further, we assume that T (x) and T (y) are mutually independent, while the

dependency structure of (S(x), S(y)) follows from the following relations:

Pr [S(y) = 1/2 | S(x) = 1/2] = 1,

Pr [S(y) = 3/2 | S(x) = 5/2] = 1,

Pr [S(y) = 5/2 | S(x) = 3/2] = 1.

We have that cov [T (x), T (y)] = 0 and cov [S(x), S(y)] = 1/3. On the

other hand, we find

Pr [T (xy) ≤ t] =




1/9 : t < 3/2,

4/9 : 3/2 ≤ t < 5/2,

1 : t ≥ 5/2.

and

Pr [S(xy) ≤ t] =




1/3 : t < 5/2,

1 : t ≥ 5/2.

From the distribution functions of T (xy) and S(xy) we find that 1E
(T )
xy >

1E
(S)
xy , but 2E

(T )
xy < 2E

(S)
xy .

Although it is customary to compute covariances in relation with depen-

dency considerations, one number alone cannot reveal the nature of depen-

dency adequately. From the example above, we see that the order induced

by comparing only the covariances of (T (x), T (y)) and (S(x), S(y)) will not

imply a consistent ordering between the single premiums of endowment in-

surances on the last-survivor status. Hence, the results of Theorem 2 cannot

be generalized in this way.
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Instead of comparing cov [T (x), T (y)] and cov [S(x), S(y)] one could

compare cov [f(X1), g(X2)] with cov [f(Y1), g(Y2)] for all non-decreasing

functions f and g. The order induced in this way is the correlation order.

As we see from Theorem 2, this generalisztion of an order based on comparing

covariances implies a consistent ordering between single premiums of joint

life and last-survivor annuities and insurances.

More generally, we could wonder if there are other bivariate orderings

which lead to similar results as the one obtained in Theorem 2. Remark that

the condition E[f(T (xy))] ≤ E[f(S(xy))] for all non-decreasing functions

f is equivalent with Pr [T (x) ≤ t, T (y) ≤ t] ≤ Pr [S(x) ≤ t, S(y) ≤ t] for all

t ≥ 0. In view of Theorem 1, we can conclude that the correlation order

seems to be an appropriate choice as bivariate ordering.

4 Fréchet lower and upper bounds for the

single premiums.

In this section we will look at the extremal elements in R(F,G), namely the

one which are smaller or larger in correlation order than any other element

in R(F,G).

Lemma 2 For any element (T (x), T (y)) in R(F,G), we have that

max (F (t) +G(s)− 1, 0) ≤ Pr [T (x) ≤ t, T (y) ≤ s] ≤ min (F (t), G(s))

with the lower and upper bound being bivariate distribution functions of ele-

ments contained in R(F,G).

This result can be found in Fréchet (1951).

Now let (TL(x), TL(y)) and (TU(x), TU(y)) be elements of R(F,G) which

correspond to the lower and the upper Fréchet bound respectively, i.e.

Pr [TL(x) ≤ t, TL(y) ≤ s] = max (F (t) +G(s)− 1, 0) ,
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Pr [TU(x) ≤ t, TU(y) ≤ s] = min (F (t), G(s)) .

We also introduce TL(xy) which is the remaining life time of the joint-life

status associated with (TL(x), TL(y)). After some straightforward computa-

tions, we find

Pr [TL(xy) ≤ t] = min (F (t) +G(t), 1) .

Similarly, we define TU(xy), TL(xy) and TU(xy). The distribution functions

of these statuses are given by

Pr [TL(xy) ≤ t] = max (F (t) +G(t), 1)− 1,

Pr [TU(xy) ≤ t] = max (F (t), G(t)) ,

Pr [TU(xy) ≤ t] = min (F (t), G(t)) .

From Lemma 1 and Lemma 2, we immediately find the following inequal-

ities for (TL(x), TL(y)) , (TU(x), TU(y)) and (T (x), T (y)) in R(F,G):

TL(xy) ≤st T (xy) ≤st TU(xy),

TU(xy) ≤st T (xy) ≤st TL(xy).

Hence, from Theorem 2, we immediately find the following result.

Theorem 3 Let (TL(x), TL(y)) and (TU(x), TU(y)) be elements of R(F,G)

corresponding to the Fréchet bounds. Then the following inequalities hold for

any (T (x), T (y)) ∈ R(F,G) and for any non-decreasing function f :

E [f (TL(xy))] ≤ E [f (T (xy))] ≤ E [f (TU(xy))] ,

E [f (TU(xy))] ≤ E [f (T (xy))] ≤ E [f (TL(xy))] .

If f is non-increasing then the opposite inequalities hold.
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Assume that we are in a situation where we know the marginal distri-

bution functions of T (x) and T (y), but where we have no information con-

cerning the dependency relation between the two remaining life times. From

the theorem above, we can compute lower and upper bounds for the single

premiums of insurances or annuities on the joint-life or last-survivor statuses

involved.

Let us now assume that all elements in R(F,G) are stochastically ordered.

Without loss of generality we can assume that

F (t) ≥ G(t)

for all t ≥ 0. A sufficient condition for this to be true is that the force of

mortality related to F is always greater than or equal to the force of mortality

related to G, see e.g. Goovaerts, Kaas, van Heerwaarden and Bauwelinckx

(1990).

In practice, the condition above could be fullfilled e.g. if we consider a couple

where F (t) is the distribution function of the remaining life time of a husband

which is older than his wife, who has a remaining life time with distribution

function G(t).

Now, let (TU(x), TU(y)) be the element in R(F,G) which corresponds to

the Fréchet upper bound, i.e.

Pr [TU(x) ≤ t, TU(y) ≤ s] = min (F (t), G(s)) .

After some straightforward derivations, we find that in this case

Pr (TU(xy) ≤ t) = F (t)

and

Pr (TU(xy) ≤ t) = G(t).

This means that TU(xy) has the same distribution function as TU(x), and

TU(xy) has the same distribution function as TU(y). Hence, we find that for

any function f the following relations hold:

E [f (TU(xy))] = E [f (TU(x))]
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and similarly,

E [f (TU(xy))] = E [f (TU(y))]

We can conclude that if F (t) ≥ G(t) for all t ≥ 0, or equivalently, T (x) ≤st

T (y) for all (T (x), T (y)) in R(F,G), then the single premiums in Theorem 3

which correspond to the Fréchet upper bound all reduce to single premiums

of single life insurances or annuities.

5 Independent lives versus PQD.

In this section, we will again assume that the marginal distributions of the

remaining life times T (x) and T (y) are given. We will compare the case where

the remaining life times are mutually independent with the case where they

are PQD.

Theorem 4 Assume that the bivariate remaining life times (T (x), T (y)) and

(T ind(x), T ind(y)) have the same marginal distributions. If PQD(T (x), T (y)),

and T ind(x) and T ind(y) are mutually independent, then the following inequal-

ities hold for any non-decreasing function f :

E[f(T ind(xy))] ≤ E[f(T (xy))]

E[f(T (xy))] ≤ E[f(T ind(xy))]

If f is non-increasing then the opposite inequalities hold.

Proof. The proof follows immediately from Definition 2 and Theorem 2.

These inequalities have been derived for some specific types of multiple

life insurances and annuities in Norberg (1989).

As an application of Theorem 4 we find that for PQD [T (x), T (y)], a

whole life insurance on the joint-life status (xy) has a lower single premium

than in the independent case. Similarly, we can conclude that in the case of

positive quadrant dependency, the independence assumption will lead to an
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underestimation of the single premium of an annuity on the joint-life status

(xy).

From the Theorem above we see that when T (x) and T (y) are positive

quadrant dependent, then the bounds in Theorem 3 which corresponds to

the Fréchet lower bound can be improved by considering the independent

case as bound. Remark that in the independent case we have

Pr
[
T ind(xy) ≤ t

]
= F (t) +G(t)− F (t) G(t),

Pr
[
T ind(xy) ≤ t

]
= F (t) G(t).
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6 Numerical illustration.

In this section we will illustrate the bounds derived in the previous sections by

some numerical examples. The technical interest rate equals 4.75%. Further,

(x) and (y) are a male and a female. The marginal distribution functions

of the remaining life times of (x) and (y) follow from the Belgian mortality

tables MR and FR respectively. For the mortality table MR, the Makeham

constants are given by k = 1 000 266.63; s = 0.999 441 703 848; g = 0.999

733 441 115 and c = 1.101 077 536 030. For the mortality table FR, the

Makeham constants are given by k = 1 000 048.56; s = 0.999 669 730 966; g

= 0.999 951 440 172 and c = 1.116 792 453 830.

We assume that the remaining life times of (x) and (y) are positive quad-

rant dependent. In each multiple life status, the first age will be the age of

the male person.

In Table 1 bounds are given for whole life annuities on (xy) and (xy) with

x = y, for different values of x. The bounds follow from Theorems 3 and 4.

Table 1. Bounds for whole life annuities on (xx) and (xx).
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The differences between the upper and lower bounds are relatively small.

Remark that the absolute difference between the upper and the lower bound

increases with the age.
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In Table 2 we compare the single premiums for pure endowment insur-

ances on (25 : 20) and (25 : 20) respectively, for varying durations of the

endowment.

Table 2. Bounds for pure endowment insurances on (25 : 20) and

(25 : 20).

For the joint-life as well as for the last-survivor insurance, the difference

between the upper and the lower bound is an increasing function of the

duration.
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Finally, in Table 3 we compare whole life annuities on (x : 20) and (x : 20)

with x varying from 20 to 55.

Table 3. Bounds for whole life annuities on (x : 20) and (x : 20).

For the last-survivor annuity the lower bound equals ay and hence is

constant. From Table 3 we see that increasing the difference in age between

(x) and (y) decreases the absolute difference between the bounds.
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