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Abstract

In this contribution, the upper bounds for sums of dependent random variablesX1 + X2 + · · · + Xn derived by using
comonotonicity are sharpened for the case when there exists a random variableZ such that the distribution functions of the
Xi , givenZ = z, are known. By a similar technique, lower bounds are derived. A numerical application for the case of
lognormal random variables is given. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In some recent articles, Goovaerts, Denuit, Dhaene, Müller and several others have applied theory originally
studied by Fréchet in the previous century to derive upper bounds for sumsS = X1 + X2 + · · · + Xn of random
variablesX1, X2, . . . , Xn of which the marginal distribution is known, but the joint distribution of the random
vectorX1, X2, . . . , Xn is either unspecified or too cumbersome to work with. These upper bounds are actually
suprema in the sense of convex order. The concept of convex order is closely related to the notion of stop-loss order
which is more familiar in actuarial circles. Both express which of two risks is the more risky one. Assuming that
only the marginal distributions of theXi are given (or used), the riskiest instanceSu of S occurs when the risks
X1, X2, . . . , Xn are comonotonous. This means that they are all non-decreasing functions of one uniform (0, 1)
random variableU , and since the marginal distribution must be Pr[Xi ≤ x] = Fi(x), the comonotonous distribution
is that of the vectorF−1

1 (U), F−1
2 (U), . . . , F−1

n (U).
In this contribution we assume that the marginal distribution of each random variableX1, X2, . . . , Xn is known.

In addition, we assume that there exists some random variableZ, with a known distribution function, such that for
anyi and for anyz in the support ofZ, the conditional distribution function ofXi , givenZ = z, is known. We will
derive upper and lower bounds in convex order forS = X1 +X2 +· · ·+Xn, based on these conditional distribution
functions. Two extreme situations are possible here. One is thatZ = S, or some one-to-one function of it. Then
the convex lower bound forS, which equalsE[S|Z], will just be S itself. The other is thatZ is independent of all
X1, X2, . . . , Xn. In this case we actually do not have any extra information at all and the upper bound forS is just
the same comonotonous bound as before, while the lower bound reduces to the trivial boundE[S]. But in some
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cases, and the lognormal discount process of Section 5 is a good example, a random variableZ can be found with
the property that by conditioning on it we can actually compute a non-trivial lower bound and a sharper upper bound
thanSu for S.

In Section 2, we will present a short exposition of the theory we need. Section 3 gives upper bounds, Section 4
improved upper bounds, as well as lower bounds, both applied to the case of lognormal distributions in Section 5.
Section 6 gives numerical examples of the performance of these bounds, and Section 7 concludes.

2. Some theory on comonotonous random variables

Let F1, F2, . . . , Fn be univariate cumulative distribution functions (cdfs in short). Fréchet studied the class of all
n-dimensional cdfsFX of random vectorsX ≡ (X1, X2, . . . , Xn) with given marginal cdfsF1, F2, . . . , Fn, where
for any real numberx we have Pr[Xi ≤ x] = Fi(x), i = 1, 2, . . . , n. In this paper, we will consider the problem
of determining stochastic lower and upper bounds for the cdf of the random variableX1 + X2 + · · · + Xn, without
restricting to independence between the termsXi . We will always assume that the marginals cdfs of theXi are
given, and that all cdfs involved have a finite mean.

The stochastic bounds for random variables will be in terms of “convex order”, which is defined as follows:

Definition 1. Consider two random variablesX andY . ThenX is said to precedeY in the convex order sense,
notationX ≤cx Y , if and only if for all convex real functionsv such that the expectations exist, we have

E[v(X)] ≤ E[v(Y )].

It can be proven, see e.g. Shaked and Shanthikumar (1994), that the condition in this definition is equivalent with
the following condition:

E[X] = E[Y ], E[X − d]+ ≤ E[Y − d]+ for all d,

whereE[Z]+ is a notation forE[max{Z, 0}].
Using an integration by parts, the ordering condition between the stop-loss premiumsE[X −d]+ andE[Y −d]+

can also be expressed as∫ ∞

d

(1 − FX(x)) dx ≤
∫ ∞

d

(1 − FY (x)) dx for all d.

In caseX ≤cx Y , extreme values are more likely forY than forX. In terms of utility theory,X ≤cx Y entails
that lossX is preferred to lossY by all risk averse decision makers, i.e.E[u(−X)] ≥ E[u(−Y )] for all concave
non-decreasing utility functionsu. This means that replacing the (unknown) distribution function of a lossX by
the distribution function of a lossY can be considered as an actuarially prudent strategy, e.g. when determining
reserves.

From the above relation, we see immediately that

d

dx
{E[X − x]+ − E[Y − x]+} = FX(x) − FY (x).

Thus, two random variablesX andY with equal mean are convex ordered if their cdfs cross once. This last condition
can be observed to hold in most conceivable examples, but it is easy to construct instances withX ≤cx Y where the
cdfs cross more than once.

It follows immediately thatX ≤cx Y implies Var[X] ≤ Var[Y ]. The reverse implication does not hold in general;
for a counterexample, see e.g. Brockett and Garven (1998). Also note thatX ≤cx Y is equivalent to−X ≤cx −Y .
This means that it makes no difference if we interpret the random variables as losses or as gains.
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For any random vectorX with marginal cdfsF1, F2, . . . , Fn the following convex order relation holds:

X1 + X2 + · · · + Xn ≤cx Su
def= F−1

1 (U) + F−1
2 (U) + · · · + F−1

n (U),

whereU is a uniform (0, 1) random variable, and where thepth quantile of a random variableX with cdf FX is, as
usual, defined by

F−1
X (p)

def= inf {x ∈ R|FX(x) ≥ p}, p ∈ [0,1].

Goovaerts et al. (2000) prove this order relation directly, while Müller (1997) derives it as a special case of the concept
of supermodular ordering. This relation can be interpreted as follows: the most risky random vector with given
marginals (in the sense that the sum of their components is largest in the convex order sense) has thecomonotonous
joint distribution, which means that it has the joint distribution ofF−1

1 (U), F−1
2 (U), . . . , F−1

n (U). The components
of this random vector are maximally dependent, all components being non-decreasing functions of the same random
variable.

The inverse cdf of a sum of comonotonous random variables can easily be computed. Indeed, ifSu =d F−1
1 (U)+

F−1
2 (U) + · · · + F−1

n (U), where=d means equality in distribution, then

F−1
Su

(p) =
n∑

i=1

F−1
i (p), p ∈ [0,1].

Recently, the concept of comonotonicity has been considered in many actuarial papers, see e.g. Müller (1997),
Wang and Dhaene (1998) and Dhaene et al. (1998). Dependence in portfolios and related stochastic orders are also
considered in Dhaene and Goovaerts (1996), Denuit and Lefèvre (1997), Dhaene and Goovaerts (1997), Bäuerle
and Müller (1998), Wang and Young (1998), Goovaerts and Redant (1999), Denuit et al. (1999), Dhaene and Denuit
(1999) and others.

3. Comonotonous upper bounds for sums of random variables

The usual definition of the inverse of a cdf is the left-continuous functionF−1
X (p) = inf {x ∈ R|FX(x) ≥ p}.

But if FX(x) = p holds for an interval of values forx, any element of it could serve asF−1
X (p). In this paper, we

introduce a more sophisticated definition which enables us to choose that particular inverse cdf with the property
that for a certaind, the relationF−1

X (FX(d)) = d holds.
Forp ∈ [0, 1], a possible choice for the inverse ofFX in p is any point in the interval

[inf {x ∈ R|FX(x) ≥ p}; sup{x ∈ R|FX(x) ≤ p}].
Here we take inf∅ = +∞ and sup∅ = −∞. Taking the left-hand side border of this interval to be the value of the
inverse cdf atp, we getF−1

X (p). Similarly, we defineF−1•
X (p) as the right-hand side border of the interval

F−1•
X (p) = sup{x ∈ R|FX(x) ≤ p}, p ∈ [0,1].

Note thatF−1
X (0) = −∞ andF−1•

X (1) = +∞, while F−1
X (p) andF−1•

X (p) are finite for allp ∈ (0, 1). For anyα
in [0, 1], we define theα-inverse ofFX as follows:

F
−1(α)
X (p) = αF−1

X (p) + (1 − α)F−1•
X (p), p ∈ (0,1).

For a comonotonous random vector(X1, X2, . . . , Xn), it follows that for allα in [0, 1]

F
−1(α)
X1+X2+···+Xn

(p) =
n∑

i=1

F
−1(α)
Xi

(p), p ∈ (0,1).
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The following result was already mentioned in Section 1. We give a new proof for it, based on theα-inverse just
introduced, because this method of proof leads to new results that we will need in the sequel of this paper.

Proposition 1. Let U be a uniform(0, 1) random variable. For any random vector(X1, X2, . . . , Xn) with marginal
cdfsF1, F2, . . . , Fn, we have

X1 + X2 + · · · + Xn ≤cx F−1
1 (U) + F−1

2 (U) + · · · + F−1
n (U).

Proof. Let S andSu be defined byS = X1 + X2 + · · · + Xn andSu = F−1
1 (U) + F−1

2 (U) + · · · + F−1
n (U),

respectively, withU uniform (0, 1). Then obviouslyE[S] = E[Su]. To prove the stop-loss inequalities needed
to establish convex order, consider an arbitrary fixed real numberd, with 0 < FSu(d) < 1. Let α ∈ [0, 1] be
determined such that

F
−1(α)
Su

(FSu(d)) = d.

Then we have

E[S − d]+ = E[S − F
−1(α)
Su

(FSu(d))]+

= E

[
n∑

i=1

(Xi − F
−1(α)
i (FSu(d)))

]
+

≤
n∑

i=1

E[Xi − F
−1(α)
i (FSu(d))]+.

On the other hand we find

E[Su − d]+ = E[F−1
Su

(U) − d]+ =
∫ 1

0
(F−1

Su
(p) − d)+ dp =

∫ 1

FSu(d)

(F−1
Su

(p) − F
−1(α)
Su

(FSu(d))) dp

=
n∑

i=1

∫ 1

FSu(d)

(F−1
i (p) − F

−1(α)
i (FSu(d))) dp.

One can verify that for anyp ∈ (FSu(d); Fi(F
−1(α)
i (FSu(d)))) we have

F−1
i (p) = F

−1(α)
i (FSu(d)).

This implies

E[Su − d]+ =
n∑

i=1

∫ 1

Fi(F
−1(α)
i (FSu(d)))

(F−1
i (p) − F

−1(α)
i (FSu(d))) dp

=
n∑

i=1

∫ 1

0
(F−1

i (p) − F
−1(α)
i (FSu(d)))+ dp =

n∑
i=1

E[F−1
i (U) − F

−1(α)
i (FSu(d))]+

=
n∑

i=1

E[Xi − F
−1(α)
i (FSu(d))]+,

so we have proven thatE[S − d]+ ≤ E[Su − d]+ holds for all retentionsd with 0 < FSu(d) < 1.
As the stop-loss transform is a continuous, non-increasing function of the retentiond, we find that the result

above implies

E[S − F−1•
Su

(0)]+ ≤ E[Su − F−1•
Su

(0)]+,
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as well as

E[S − F−1
Su

(1)]+ ≤ E[Su − F−1
Su

(1)]+.

SoE[S − d]+ ≤ E[Su − d]+ also holds for retentionsd with FSu(d) = 0 orFSu(d) = 1. �

If d ∈ (F−1•
Su

(0), F−1
Su

(1)), then 0 < FSu(d) < 1, so we find the following corollary from the proof of
Proposition 1.

Corollary 1. Let U be uniform(0, 1) and letSu = F−1
1 (U) + · · · + F−1

n (U). If d ∈ (F−1•
Su

(0), F−1
Su

(1)), then the
stop-loss premium at retention d ofSu is given by

E[Su − d]+ =
n∑

i=1

E[Xi − F
−1(α)
i (FSu(d))]+

with α ∈ [0, 1] determined byF−1(α)
Su

(FSu(d)) = d.

The expression for the stop-loss premiums of a comonotonous sumSu can also be written in terms of the usual
inverse cdfs. Indeed, for any retentiond ∈ (F−1•

Su
(0), F−1

Su
(1)), we have

E[Xi − F
−1(α)
i (FSu(d))]+ = E[Xi − F−1

i (FSu(d))]+ − (F
−1(α)
i (FSu(d)) − F−1

i (FSu(d)))(1 − FSu(d)).

Summing overi, and taking into account the definition ofα, we find the expression derived in Dhaene et al. (1998),
where the random variables are assumed to be non-negative

E[Su − d]+ =
n∑

i=1

E[Xi − F−1
i (FSu(d))]+ − (d − F−1

Su
(FSu(d)))(1 − FSu(d)).

From Corollary 1, we can conclude that any stop-loss premium of a sum of comonotonous random variables can
be written as the sum of stop-loss premiums for the individual random variables involved. Corollary 1 provides an
algorithm for directly computing stop-loss premiums of sums of comonotonous random variables, without having
to compute the entire cdf of the sum itself. Indeed, in order to compute the stop-loss premium with retentiond, we
only need to knowFSu(x) for x equal tod. The cdf atx follows from

FSu(x) = sup

{
p ∈ [0,1]|

n∑
i=1

F−1
i (p) ≤ x

}
.

Now assume that the marginal cdfsFi are continuous onR and strictly increasing on(F−1•
i (0), F−1

i (1)). Then one
can verify thatFSu is also continuous onR and strictly increasing on(F−1•

Su
(0), F−1

Su
(1)), and thatF−1

Su
is strictly

increasing and continuous on(0, 1). Hence, for anyx ∈ (F−1•
Su

(0), F−1
Su

(1)), the valueFSu(x) can be obtained
unambiguously from

n∑
i=1

F−1
i (FSu(x)) = x.

In this case, we also find

E[Su − d]+ =
n∑

i=1

E[Xi − F−1
i (FSu(d))]+,

which holds for any retentiond ∈ (F−1•
Su

(0), F−1
Su

(1)).
Corollary 1 can be used for deriving upper bounds for the price of an Asian option, see Simon et al. (2000).
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4. Improved bounds for sums of random variables

4.1. Upper bounds

As (F−1
1 (U), F−1

2 (U), . . . , F−1
n (U)) is a random vector with marginalsF1, . . . , Fn, the upper boundSu =

F−1
1 (U)+F−1

2 (U)+· · ·+F−1
n (U) is the best that can be derived under the conditions stated in Proposition 1; it is

a supremum in terms of convex order. Let us now assume that we have complete (or partial) information, more than
just the marginal distributions, concerning the dependence structure of the random vector(X1, X2, . . . , Xn), but
that exact computation of the cdf of the sumS = X1 +X2 +· · ·+Xn is not feasible. In this case, we will show that
it is possible to derive improved upper bounds forS, and also non-trivial lower bounds, based on the information we
have on the dependence structure. This is accomplished by conditioning on a random variableZ which is assumed
to be some function of the random vectorX. We will assume that we know the distribution ofZ, and also the
conditional cdfs, givenZ = z, of the random variablesXi . A suitable example is to useZ = ∑

logXi when theXi

are lognormal. In the following proposition, we introduce the notationF−1
Xi |Z(U) for the random variablefi(U, Z),

where the functionfi is defined byfi(u, z) = F−1
Xi |Z=z(u).

Proposition 2. Let U be uniform(0, 1), and consider a random variable Z which is independent of U. Then we
have

X1 + X2 + · · · + Xn ≤cx S′
u

def= F−1
X1|Z(U) + F−1

X2|Z(U) + · · · + F−1
Xn|Z(U).

Proof. From Proposition 1, we get for any convex functionv,

E[v(X1 + · · · + Xn)] =
∫ ∞

−∞
E[v(X1 + · · · + Xn)|Z = z] dFZ(z)

≤
∫ ∞

−∞
E[v(f1(U, z) + · · · + fn(U, z))] dFZ(z) = E[v(f1(U, Z) + · · · + fn(U, Z))]

from which the stated result follows directly. �

Note that the random vector(F−1
X1|Z(U), F−1

X2|Z(U), . . . , F−1
Xn|Z(U)) has marginalsF1, F2, . . . , Fn, because

Fi(x) = Pr[Xi ≤ x] =
∫ ∞

−∞
Pr[Xi ≤ x|Z = z] dFZ(z) =

∫ ∞

−∞
Pr[F−1

Xi |Z=z(U) ≤ x] dFZ(z)

=
∫ ∞

−∞
Pr[fi(U, z) ≤ x] dFZ(z) = Pr[fi(U, Z) ≤ x].

In view of Proposition 1 this implies

F−1
X1|Z(U) + F−1

X2|Z(U) + · · · + F−1
Xn|Z(U) ≤cx F−1

1 (U) + F−1
2 (U) + · · · + F−1

n (U).

The left-hand side of this relation isS′
u; the right-hand side isSu. In order to obtain the distribution function ofS′

u,
observe that given the eventZ = z, this random variable is a sum of comonotonous random variables. Hence

F−1
S′

u|Z=z
(p) =

n∑
i=1

F−1
Xi |Z=z(p), p ∈ [0,1].

If the marginal cdfsFXi |Z=z are strictly increasing and continuous, so isFS′
u|Z=z, and thenFS′

u|Z=z(x) follows by
solving

n∑
i=1

F−1
Xi |Z=z(FS′

u|Z=z(x)) = x.
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The cdf ofS′
u then follows from

FS′
u
(x) =

∫ ∞

−∞
FS′

u|Z=z(x) dFZ(z).

Application of Proposition 2 to lognormal marginalsXi is considered in Section 5, but see also the simple examples
with n = 2 at the end of this section. Note that ifZ is independent of allX1, X2, . . . , Xn, upper boundS′

u reduces
to Su.

4.2. Lower bounds

Let X be a random vector with marginalsF1, F2, . . . , Fn, and assume that we want to find a lower boundSl , in
the sense of convex order, forS = X1 + X2 + · · · + Xn. We can obtain such a bound by conditioning on some
random variableZ, again assumed to be a function of the random vectorX.

Proposition 3. For any random vectorX and random variable Z, we have

Sl
def= E[X1|Z] + E[X2|Z] + · · · + E[Xn|Z] ≤cx X1 + X2 + · · · + Xn.

Proof. By Jensen’s inequality, we find that for any convex functionv, the following inequality holds:

E[v(X1 + X2 + · · · + Xn)] = EZE[v(X1 + X2 + · · · + Xn)|Z] ≥ EZ[v(E[X1 + X2 + · · · + Xn|Z])]

= EZ[v(E[X1|Z] + · · · + E[Xn|Z])].

This proves the stated result. �

Note that ifZ andS are mutually independent, Proposition 3 leads to the trivial lower boundE[S] ≤cx S. On the
other hand, ifZ andS have a one-to-one relation, the lower bound in Proposition 3 coincides withS. Note further that
E[E[Xi |Z]] = E[Xi ] always holds, but Var[E[Xi |Z]] < Var[Xi ] unlessE[Var[Xi |Z]] = 0 which means thatXi ,
givenZ = z, is a constant for eachz. This implies that the random vector(E[X1|Z], E[X2|Z], . . . , E[Xn|Z]) will
in general not haveF1, F2, . . . , Fn as its marginal distribution functions. But if the conditioning random variable
Z has the property that all random variablesE[Xi |Z] are non-increasing functions ofZ (or all are non-decreasing
functions ofZ), the lower bound in Proposition 3 has the form of a sum ofn comonotonous random variables. The
cdf of this sum is then obtained by the results of Section 2. An application of Proposition 3 in the case of lognormal
marginalsXi is considered in Section 5.

With S = X1 + X2 + · · · + Xn, the lower boundSl in Proposition 3 can be written asE[S|Z]. To judge the
quality of this stochastic bound, we might look at its variance. To maximize it, the mean value of Var[S|Z = z]
should be minimized. Thus, for the best lower bound,Z andS should be as alike as possible.

Let us further assume that the random variableZ is such that allE[Xi |Z] are non-increasing continuous functions
of Z. The quantiles of the random variableE[S|Z] then follow from

F−1
E[S|Z](p) =

n∑
i=1

F−1
E[Xi |Z](p) =

n∑
i=1

E[Xi |Z = F−1
Z (1 − p)], p ∈ (0,1).

In order to derive the above result, we used the fact that for a non-increasing continuous functionf , we have

F−1
f (S)(p) = f (F−1

S (1 − p)), p ∈ (0,1).

Similarly, for a non-decreasing continuous functionf , we have

F−1
f (S)(p) = f (F−1

S (p)), p ∈ (0,1).
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If we now in addition assume that the cdfs of the random variablesE[Xi |Z] are strictly increasing and con-
tinuous, then the cdf ofE[S|Z] is also strictly increasing and continuous, and we get for allx ∈ (F−1•

E[S|Z](0),

F−1
E[S|Z](1)),

n∑
i=1

F−1
E[Xi |Z](FE[S|Z](x)) = x,

or equivalently,

n∑
i=1

E[Xi |Z = F−1
Z (1 − FE[S|Z](x))] = x,

which unambiguously determines the cdf of the convex order lower boundE[S|Z] for S in case allE[Xi |Z = z]
are non-increasing inz.

The stop-loss premiums ofE[S|Z] can be computed as follows:

E[E[S|Z] − d]+ =
n∑

i=1

{E[Xi |Z] − E[Xi |Z = F−1
Z (1 − FE[S|Z](d))]}+,

which holds for all retentionsd ∈ (F−1•
E[S|Z](0), F−1

E[S|Z](1)).
The technique for deriving lower bounds as explained in this section is also considered (for some special cases)

in Vyncke et al. (2000). The idea of this technique stems from mathematical physics, and was applied by Rogers
and Shi (1995) to derive approximate values for the value of Asian options.

4.3. Some simple examples

Let X, Y be independentN(0, 1) random variables, and consider random variables of the typeZ = X + aY for
some reala. We want to derive stochastic bounds forS = X + Y . The conditional distribution ofX, givenZ = z,
is, as is well-known,

N

(
µX + ρX,ZσX

σZ

(z − µZ), σ 2
X(1 − ρ2

X,Z)

)
= N

(
z

1 + a2
,

a2

1 + a2

)
.

But this means that for the conditional expectationE[X|Z] and for the random variableF−1
X|Z(U), with U uniform

(0, 1) and independent ofZ, we get

E[X|Z] = Z

1 + a2
, F−1

X|Z(U) = E[X|Z] + |a|Φ−1(U)

(1 + a2)1/2
.

In line with E[X + aY|Z] ≡ Z, we also get

E[Y |Z] = aZ

1 + a2
, F−1

Y |Z(U) = E[Y |Z] + Φ−1(U)

(1 + a2)1/2
.

It can be shown that bothF−1
X|Z(U) andF−1

Y |Z(U) haveN(0, 1) distributions. TheirU -dependent parts are comono-
tonous. For the lower and upper bounds derived above we get

S = X + Y ∼ N(0,2),

Sl = E[X + Y |Z] = 1 + a

1 + a2
Z ∼ N

(
0,

(1 + a)2

1 + a2

)
,
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S′
u = 1 + a

1 + a2
Z + 1 + |a|

(1 + a2)1/2
Φ−1(U) ∼ N

(
0,

(1 + a)2 + (1 + |a|)2

1 + a2

)
,

Su =d 2X ∼ N(0,4).

For some special choices ofa, we get the following distributions for the lower and upper boundsSl andS′
u:

a = 0 : N(0,1) ≤cx S ≤cx N(0,2),

a = 1 : N(0,2) ≤cx S ≤cx N(0,4),

a = −1 : N(0,0) ≤cx S ≤cx N(0,2),

|a| → ∞ : N(0,1) ≤cx S ≤cx N(0,2).

Note that the actual distribution ofS is N(0, 2), so the best convex lower bound(a = 1) and the best upper bound
(a ≤ 0 or a → ∞) coincide withS. Of course taking|a| → ∞ gives the same results as takingZ = Y . The
variance ofSl can be seen to have a maximum ata = +1, a minimum ata = −1. On the other hand, Var[S′

u] also
has a maximum ata = 1, and minima ata ≤ 0 anda → ∞. So the best lower bound in this case is attained for
Z = S, the worst forZ andS independent. The best improved upper bound is found by takingZ = X, Z = Y , or
anya < 0, including the casea = −1 with Z andS independent; the worst, however, by takingZ = S.

To compare the variance of the stochastic upper boundS′
u with the variance ofS boils down to comparing

cov(F−1
X|Z(U), F−1

Y |Z(U)) with cov(X, Y ). It is clear that, in general, the optimal choice for the conditioning random
variableZ will depend on the correlation ofX andY . If this correlation equals 1, anyZ results inS =d S′

u =d S. In
our case whereX andY are mutually independent, the optimal choice proves to be takingZ ≡ X or Z ≡ Y , thus
ensuring thatS andS′

u coincide.
As a second example, consider a simple special case of the theory dealt in the next section. We present it here for

the reader’s convenience, just as an illustration. TakeY1 andY2 be independentN(0, 1) random variables. Look at
the sum ofX1 = eY1 ∼ lognormal(0, 1), andX2 = eY1+Y2 ∼ lognormal(0, 2). TakeZ = Y1 + Y2. For the lower
boundSl , note thatE[X2|Z] = eZ, while Y1|Y1 + Y2 = z ∼ N(1

2z, 1
2), hence

E[eY1|Y1 + Y2 = z] = m(1; 1
2z, 1

2),

wherem(t; µ, σ 2) = exp(µt + 1
2σ 2t2) is theN(µ, σ 2) moment generating function. This leads to

E[eY1|Z] = exp(1
2Z + 1

4).

So the lower bound is

Sl = E[X1 + X2|Z] = exp(1
2Z + 1

4) + eZ.

Upper boundSu has(X1, X2) =d (eW, e
√

2W) for W ∼ N(0, 1). The improved upper boundS′
u has as a second

term again eZ, and as first term exp(1
2Z + 1

2

√
2W), with Z andW mutually independent. All terms occurring in the

bounds given above are lognormal random variables, so the variances of the bounds are easy to compute. Note that
to compare variances is meaningful when comparing stop-loss premiums of stop-loss ordered random variables, see,
e.g., Kaas et al. (1994, p. 68). The following relation, which can be proven using partial integration, links variances
and stop-loss premiums:

1

2
Var[X] =

∫ ∞

−∞
{E[X − t ]+ − (E[X] − t)+} dt,

from which we deduce that ifX ≤cx Y , thusE[Y − t ]+ ≥ E[X − t ]+ for all t , then

1

2
{Var[Y ] − Var[X]} =

∫ ∞

−∞
{E[Y − t ]+ − E[X − t ]+} dt
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Thus, half the variance difference between two convex ordered random variables equals the integrated difference
of their stop-loss premiums. This implies that ifX ≤cx Y and in addition Var[X] = Var[Y ], thenX andY must
necessarily be equal in distribution. Moreover, the ratio of the variances is roughly equal to the ratio of the stop-loss
premiums, minus their minimal possible value for random variables with the same mean. We have, as the reader
may verify,

E[S]2 = e1 + 2e5/2 + e4,

E[S2
l ] = e3/2 + 2e5/2 + e4,

E[S2] = E[S
′2
u ] = e2 + 2e5/2 + e4,

E[S2
u] = e2 + 2e3/2+√

2 + e4.

Hence

Var[E[S]] = 0, Var[Sl ] = 1.763, Var[S] = Var[S′
u] = 4.671, Var[Su] = 17.174.

So an improved stochastic lower boundSl for S is obtained by conditioning onY1 + Y2, and the improved upper
boundS′

u for this case proves to be very good indeed, having in fact the same distribution asS.

5. Present values — lognormal discount process

5.1. General result

Consider a series of deterministic paymentsα1, α2, . . . , αn, of arbitrary sign, that are due at times 1, 2, . . . , n,
respectively. The present value of this series of payments equals

S =
n∑

i=1

αi exp(−(Y1 + Y2 + · · · + Yi)).

Assume that(Y1, Y2, . . . , Yn) has a multivariate normal distribution. We introduce the random variablesXi and
Y (i) defined by

Y (i) = Y1 + Y2 + · · · + Yi; Xi = αi e−Y (i).

thenS = X1 + X2 + · · · + Xn.
For some given choice of theβi , consider a conditioning random variableZ defined as follows:

Z =
n∑

i=1

βiYi,

For a multivariate normal distribution, every linear function of its components has a univariate normal distribution,
soZ is normally distributed. Also,(Y (i), Z) has a bivariate normal distribution. Conditionally givenZ = z, Y (i)

has a univariate normal distribution with mean and variance given by

E[Y (i)|Z = z] = E[Y (i)] + ρi

σY(i)

σZ

(z − E[Z]),

and

Var[Y (i)|Z = z] = σ 2
Y (i)(1 − ρ2

i ),

whereρi is the correlation betweenZ andY (i).
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Proposition 4. LetS, Sl, S
′
u andSu be defined as follows:

S =
n∑

i=1

αi exp(−(Y1 + Y2 + · · · + Yi)),

Sl =
n∑

i=1

αi exp(−E[Y (i)] − ρiσY(i)Φ
−1(U) + 1

2(1 − ρ2
i )σ 2

Y (i)),

S′
u =

n∑
i=1

αi exp(−E[Y (i)] − ρiσY(i)Φ
−1(U) + sign(αi)

√
1 − ρ2

i σY (i)Φ
−1(V )),

Su =
n∑

i=1

αi exp(−E[Y (i)] + sign(αi)σY(i)Φ
−1(U)),

where U and V are mutually independent uniform(0, 1) random variables, andΦ is the cdf of theN(0, 1)distribution.
Then we have

Sl ≤cx S ≤cx S′
u ≤cx Su.

Proof.
1. If a random variableX is lognormal(µ, σ 2), thenE[X] = exp(µ + 1

2σ 2). Hence, forZ = ∑n
i=1βiYi , we find

that, takingU = Φ((Z − E[Z])/σZ), soU ∼ uniform(0, 1),

E[Xi |Z] = αi exp(−E[Y (i)] − ρiσY(i)Φ
−1(U) + 1

2(1 − ρ2
i )σ 2

Y (i)),

From Proposition 3, we findSl ≤cx S.
2. If a random variableX is lognormal(µ, σ 2), then we haveF−1

αX(p) = α exp(µ + sign(α)σΦ−1(p)). Hence, we
find that

F−1
Xi |Z(p) = αi exp(−E[Y (i)] − ρiσY(i)Φ

−1(U) + sign(αi)

√
1 − ρ2

i σY (i)Φ
−1(p)).

From Proposition 2 we find thatS ≤cx S′
u.

3. The stochastic inequalityS′
u ≤cx Su follows from Proposition 1.

�
In order to compare the cdf ofS = ∑n

i=1αi exp(−(Y1 + Y2 + · · · + Yi)) with the cdfs ofSl, S
′
u andSu, especially

their variances, we need the correlations of the different random variables involved. We find the following results
for the lognormal discount process considered in this section:

corr[Xi, Xj ] = ecov[Y (i),Y (j)] − 1

(eσ2
Y (i) − 1)1/2(eσ2

Y (j) − 1)1/2
;

corr[E[Xi |Z], E[Xj |Z]] = eρiρj σY(i)σY (j) − 1

(eρ2
i σ2

Y (i) − 1)1/2(eρ2
j σ2

Y (j) − 1)1/2
;

corr[F−1
Xi |Z(U), F−1

Xj |Z(U)] =
exp([ρiρj + sign(αiαj )(1 − ρ2

i )1/2(1 − ρ2
j )1/2]σY(i)σY (j)) − 1

(eσ2
Y (i) − 1)1/2(eσ2

Y (j) − 1)1/2
;

corr[F−1
Xi

(U), F−1
Xj

(U)] = esign(αiαj )σY(i)σY (j) − 1

(eσ2
Y (i) − 1)1/2(eσ2

Y (j) − 1)1/2
.
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From these correlations, we can for instance deduce that if all paymentsαi are positive and corr[Y (i), Y (j)] = 1
for all i andj , thenS =d Su. In practice, the discount factors will not be perfectly correlated. But for any realistic
discount process, corr[Y (i), Y (j)] = corr[Y1 + · · · + Yi, Y1 + · · · + Yj ] will be close to 1 provided thati andj

are close to each other. This gives an indication that the cdf ofSu might perform well as approximation for the cdf
of S for such processes. This is indeed the case in the numerical illustrations in Goovaerts et al. (2000). A similar
reasoning leads to the conclusion that the cdf ofSu will not perform well as a convex upper bound for the cdf of
S if the paymentsαi have mixed signs. This phenomenon will indeed be observed in the numerical illustrations in
Section 6.

It remains to derive expressions for the cdfs ofSl, S
′
u andSu.

5.2. The cdf and the stop-loss premiums ofSu

The quantiles ofSu follow from Goovaerts et al. (2000)

F−1
Su

(p) =
n∑

i=1

αi exp(−E[Y (i)] + sign(αi)σY(i)Φ
−1(p)), p ∈ (0,1).

Also, FSu(x) follows implicitly from solving

n∑
i=1

αi exp(−E[Y (i)] + sign(αi)σY(i)Φ
−1(FSu(x))) = x.

It is straightforward to derive expressions for the stop-loss premiums in this case

E[Su − d]+ =
n∑

i=1

|αi | e−E[Y (i)]E[sign(αi)(Zi − exp(sign(αi)σY(i)Φ
−1(FSu(d))))]+,

where theZi are lognormal(0, σ 2
Y (i)) random variables.

In order to derive an explicit expression for the stop-loss premiumsE[Su − d]+, we first mention the following
result, which can easily be proven, e.g. by using(d/dt)E[X − t ]+ = FX(t) − 1.

Proposition 5. If Y is lognormal(µ, σ 2), then for anyd > 0 we have

E[Y − d]+ = exp(µ + 1
2σ 2)Φ(d1) − dΦ(d2), E[Y − d]− = exp(µ + 1

2σ 2)Φ(−d1) − dΦ(−d2),

whered1 andd2 are determined by

d1 = µ + σ 2 − ln(d)

σ
, d2 = d1 − σ.

At d ≤ 0, the stop-loss premiums are trivially equal toE[Y ] − d. The following expression results for the
stop-loss premiums atd > 0:

E[Su − d]+ =
n∑

i=1

αi e−E[Y (i)]{exp(1
2σ 2

Y (i))Φ(sign(αi)di,1)

−exp(sign(αi)σY(i)Φ
−1(FSu(d)))Φ(sign(αi)di,2)}

with di,1 anddi,2 given by

di,1 = σY(i) − sign(αi)Φ
−1(FSu(d)), di,2 = −sign(αi)Φ

−1(FSu(d)).
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Using the implicit definition forFSu(d) leads to the following expression for the stop-loss premiums:

E[Su − d]+ =
n∑

i=1

αi exp(−E[Y (i)] + 1
2σ 2

Y (i))Φ[sign(αi)σY(i) − Φ−1(FSu(d))] − d(1 − FSu(d)).

5.3. The cdf and the stop-loss premiums ofSl

In general,Sl will not be a sum ofn comonotonous random variables. But in the remainder of this subsection,
we assume that allαi ≥ 0 and allρi = cov[Y (i), Z]/σY(i)σZ ≥ 0. These conditions ensure thatSl is the sum ofn
comonotonous random variables.

Taking into account thatZ = ∑n
i=1βiYi is normally distributed, we find that

F−1
Z (1 − p) = E[Z] − σZΦ−1(p),

and hence

F−1
Sl

(p) =
n∑

i=1

F−1
E[Xi |Z](p) =

n∑
i=1

E[Xi |Z = FZ(1 − p)]

=
n∑

i=1

αi exp(−E[Y (i)] + ρiσY(i)Φ
−1(p) + 1

2σ 2
Y (i)(1 − ρ2

i )), p ∈ (0,1).

FSl
(x) can be obtained from

n∑
i=1

αi exp(−E[Y (i)] + ρiσY(i)Φ
−1(FSl

(x)) + 1
2σ 2

Y (i)(1 − ρ2
i )) = x.

We have

E[Sl − d]+ =
n∑

i=1

E[E[Xi |Z] − F−1
E[Xi |Z](FSl

(d))]+.

After some straightforward computations, one finds that an explicit expression for the stop-loss premiums is given by

E[Sl − d]+ =
n∑

i=1

αi exp(−E[Y (i)] + 1
2σ 2

Y (i))Φ[ρiσY(i) − Φ−1(FSl
(d))] − d(1 − FSl

(d)).

5.4. The cdf ofS′
u

SinceFS′
u|U=u is a sum ofn comonotonous random variables, we have

F−1
S′

u|U=u
(p) =

n∑
i=1

F−1
Xi |U=u(p) =

n∑
i=1

αi exp(−E[Y (i)] − ρiσY(i)Φ
−1(u) + sign(αi)

√
1 − ρ2

i σY (i)σΦ−1(p)).

FS′
u|U=u also follows implicitly from

n∑
i=1

αi exp(−E[Y (i)] − ρiσY(i)Φ
−1(u) + sign(αi)

√
1 − ρ2

i σY (i)Φ
−1(FS′

u|U=u(x))) = x.

The cdf ofS′
u then follows from

FS′
u
(x) =

∫ 1

0
FS′

u|U=u(x) du.
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6. Numerical illustration

In this section, we will numerically illustrate the bounds we derived forS = ∑n
i=1αi exp(−(Y1+Y2+· · ·+Yi)).

We will taken = 20. In order to be able to compare the distribution functions of the stochastic boundsSl, S
′
u andSu

with the distribution function ofS, we will completely specify the multivariate distribution function of the random
vector(Y1, Y2, . . . , Y20). In particular, we will assume that the random variablesYi are i.i.d. andN(µ, σ 2). This
will enable us to simulate the cdfs in case there is no way to compute them analytically. The conditioning random
variableZ is defined as before

Z =
20∑
i=1

βiYi .

In this case, we find

E[Y (i)] = iµ, Var[Y (i)] = iσ 2, Var[Z] = σ 2
20∑

k=1

β2
k , ρi = cov[Y (i), Z]

σY(i)σZ

=
∑i

k=1βk√
i
∑20

k=1β
2
k

.

In our numerical illustrations, we will choose the parameters of the normal distribution involved as follows:

µ = 0.07, σ = 0.1.

We will compute the lower bound and the upper bound for the following choice of the parametersβi :

βi =
20∑

j=i

αj e−jµ, i = 1, . . . , 20.

By this choice, the lower bound will perform well in these cases. This is due to the fact that this choice makesZ a
linear transformation of a first-order approximation toS. This can be seen from the following computation, which
depends onσ , and henceYi − µ, being “small”:

S =
n∑

j=1

αj exp


−jµ −

j∑
i=1

(Yi − µ)


 ≈

n∑
j=1

αj e−jµ


1 −

j∑
i=1

(Yi − µ)




= C −
n∑

j=1

αj e−jµ

j∑
i=1

Yi = C −
n∑

i=1

Yi

n∑
j=i

αj e−jµ,

whereC is the appropriate constant. By the remarks in Section 4,Sl will then be “close” toS.
Fig. 1 shows the cdfs ofS, Sl, S

′
u andSu for the following payments:

αk = 1, k = 1, . . . , 20.

SinceSl ≤cx S ≤cx S′
u ≤cx Su, and the same ordering holds for the tails of their distribution functions which can be

observed to cross only once, we can easily identify the cdfs. We see that the cdf ofSl is very close to the distribution
of S, which was expected because of the choice ofZ. Note that in this caseSl is a sum of comonotonous random
variables, so its quantiles can be computed easily. The cdf ofSu also performs rather well, as was observed in
Goovaerts et al. (2000). We find that the improved upper boundS′

u is very close to the comonotonous upper bound
Su. This is due to the fact that cov(F−1

Xi |Z(U), F−1
Xj |Z(U)) is close to cov(Xi, Xj ) for any pair(i, j) with i 6= j .
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Fig. 1. Payments: 20× 1; Z is such that the lower bound is optimized.

Fig. 2 shows the cdfs ofS, Sl, S
′
u andSu for the following payments:

αk =
{ −1, k = 1, . . . , 5,

1, k = 6, . . . , 20.

Note that the cdf of the lower boundSl cannot be computed exactly in this case; it is obtained by simulation. In this
case, we see that the lower boundSl still performs very well. The comonotonous upper boundSu performs very

Fig. 2. Payments: 5× (−1), 15× 1; Z is such that the lower bound is optimized.
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Fig. 3. Payments: 5× (−1), 15× 1; Z is such that it is an approximation to the discounted total of the negative payments.

badly in this case, as was to be expected from the observations in Section 5.1. The improved upper bound performs
better.

In Fig. 3, we consider the same series of payments as in Fig. 2. We consider the cdf of the improved upper bound
for a different choice of the conditioning random variableZ. We chooseZ such that it is an approximation to the
discounted total of the five negative payments:

βi =
{ ∑5

j=iαj e−jµ, i = 1, . . . , 5,

0, i = 6, . . . , 20.

The (simulated) cdf ofS is the dotted line. Note that the upper boundS′
u is much improved, the lower bound is

worse.

7. Conclusions and related research

In this contribution we considered the problem of deriving stochastic lower and upper bounds, in the sense of
convex order, for a sumS = X1 + X2 + · · · + Xn of possibly dependent random variablesX1, X2, . . . , Xn. We
assumed that, as is often the case, the marginal distribution of each random variableX1, X2, . . . , Xn is known. The
problem of deriving a convex upper bound without using additional information about the dependency structure
was considered in Müller (1997) and Goovaerts et al. (2000). In this paper, we additionally assumed that there
exists some random variableZ, with a computable distribution, such that for anyi and for anyz in the support
of Z, the conditional distribution function ofXi , given Z = z, is also computable. Based on this, we derived
random variablesSl andS′

u, the cdfs of which are known to be less and larger than the one ofS in convex order,
meaning that the tails ofSl are thinner, the ones ofS′

u are thicker in general. Though it is not guaranteed that
two convex ordered cdfs cross only once, in the majority of examples they do so. Thus, we obtain a band of
possible values of Pr[S ≤ x] which might provide more, and more reliable, information than a point estimate
as obtained from a number of simulations. This is especially the case when the inverse cdf is sought, such as
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when one wants to determine fair values and supervisory values. But note that Pr[S ≤ x] cannot be guaranteed
to be between Pr[Sl ≤ x] and Pr[S′

u ≤ x]. It has been argued before, see e.g. Kaas (1994), that actuaries should
not be focused on probabilities and quantiles, but rather on stop-loss premiums, since it is not the probability of
exceeding a thresholdd that matters, but the amount by which this happens, of which the expected value is just the
stop-loss premium atd. And for stop-loss premiums, the propertyE[Sl − d]+ ≤ E[S − d]+ ≤ E[S′

u − d]+ does
hold.

It should be noted that the upper boundS′
u is no longer a supremum (in the sense of convex order) over the set of

all random vectors with fixed marginals, and that the lower boundSl is not a sum of terms with the proper marginal
distributions. This follows from the fact that the bounds that we derived take into account the dependency structure
of the random vector under consideration.

It should also be noted that our results actually do not require the complete dependency structure, but only the
distribution ofZ and the conditional distributions ofXi givenZ = z. In Section 6 we chose an example where
the distribution of the random vector was completely known, in order to be able to compare the bounds with the
(simulated) exact cdf.

A topic for future research is the determination of the optimal conditioning random variableZ for the improved
upper boundS′

u, in the spirit of the remarks made at the end of Section 4.3. Another item for future research is the
extension of the results of this paper to the case where also the cash flows are stochastic, hence to find improved
upper bounds and lower bounds forS = X1Y1 + X2Y2 + · · · + XnYn. Another idea that we intend to pursue is
conditioning on more than one random variableZ.
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