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Abstract

In this contribution, the upper bounds for sums of dependent random varigplésX, + - - - + X,, derived by using
comonotonicity are sharpened for the case when there exists a random varglth that the distribution functions of the
X;, given Z = z, are known. By a similar technique, lower bounds are derived. A numerical application for the case of
lognormal random variables is given. © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Dependent risks; Comonotonicity; Convex order; Cash-flows; Present values; Stochastic annuities

1. Introduction

In some recent articles, Goovaerts, Denuit, Dhaene, Muller and several others have applied theory originally
studied by Fréchet in the previous century to derive upper bounds for Sum&; + X2 + - - - + X,, of random
variablesX1, Xo, ..., X,, of which the marginal distribution is known, but the joint distribution of the random
vector X1, X, ..., X, is either unspecified or too cumbersome to work with. These upper bounds are actually
suprema in the sense of convex order. The concept of convex order is closely related to the notion of stop-loss order
which is more familiar in actuarial circles. Both express which of two risks is the more risky one. Assuming that
only the marginal distributions of th¥; are given (or used), the riskiest instanf;eof S occurs when the risks
X1, X2, ..., X, are comonotonous. This means that they are all non-decreasing functions of one uniform (0, 1)
random variablé/, and since the marginal distribution must beXrk x] = F; (x), the comonotonous distribution
is that of the vector; 2(U), F; 1(U), ..., F,1(U).

In this contribution we assume that the marginal distribution of each random vakiahk, . . ., X,, is known.

In addition, we assume that there exists some random vaighléth a known distribution function, such that for
anyi and for anyz in the support ofZ, the conditional distribution function of;, givenZ = z, is known. We will
derive upper and lower bounds in convex orderSfee X1+ X»+ - - -+ X,,, based on these conditional distribution
functions. Two extreme situations are possible here. One ishatS, or some one-to-one function of it. Then
the convex lower bound faf, which equalsE[S|Z], will just be S itself. The other is thaZ is independent of all
X1, X2, ..., X,. In this case we actually do not have any extra information at all and the upper boun fioist
the same comonotonous bound as before, while the lower bound reduces to the trivialHjdluirnBlut in some
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cases, and the lognormal discount process of Section 5 is a good example, a random X¥aréabbe found with
the property that by conditioning on it we can actually compute a non-trivial lower bound and a sharper upper bound
thans, for S.

In Section 2, we will present a short exposition of the theory we need. Section 3 gives upper bounds, Section 4
improved upper bounds, as well as lower bounds, both applied to the case of lognormal distributions in Section 5.
Section 6 gives numerical examples of the performance of these bounds, and Section 7 concludes.

2. Some theory on comonotonous random variables

Let Fy, F», ..., F, be univariate cumulative distribution functions (cdfs in short). Fréchet studied the class of all
n-dimensional cdf#y of random vectorX = (X1, Xo, ..., X,) with given marginal cdfg, Fo, ..., F,, where
for any real numbex we have Prk; < x] = F;(x),i = 1,2,...,n. In this paper, we will consider the problem
of determining stochastic lower and upper bounds for the cdf of the random vaXiahteX, + - - - + X,,, without
restricting to independence between the tepmsWe will always assume that the marginals cdfs of ¥eare
given, and that all cdfs involved have a finite mean.

The stochastic bounds for random variables will be in terms of “convex order”, which is defined as follows:

Definition 1. Consider two random variables andY. ThenX is said to preced®& in the convex order sense,
notationX <¢ Y, if and only if for all convex real functions such that the expectations exist, we have

E[v(X)] = E[v(V)].

It can be proven, see e.g. Shaked and Shanthikumar (1994), that the condition in this definition is equivalent with
the following condition:

E[X] = E[Y].,  E[X—d]; <E[Y —d], foralld,

whereE[Z] is a notation forE[max{Z, 0}].
Using an integration by parts, the ordering condition between the stop-loss premjiinsd] . andE[Y —d]+
can also be expressed as

/00(1_ Fx(x))dx < /00(1— Fy(x))dx foralld.
d d

In caseX < Y, extreme values are more likely far than for X. In terms of utility theory,X <. Y entails
that lossX is preferred to losg by all risk averse decision makers, i€lu(—X)] > E[u(-Y)] for all concave
non-decreasing utility functions. This means that replacing the (unknown) distribution function of a Jo&y
the distribution function of a los¥ can be considered as an actuarially prudent strategy, e.g. when determining
reserves.

From the above relation, we see immediately that

d
E{E[X —x]4+ — E[Y —x]4+} = Fx(x) — Fr(x).

Thus, two random variables andY with equal mean are convex ordered if their cdfs cross once. This last condition
can be observed to hold in most conceivable examples, but it is easy to construct instanéeswithi where the
cdfs cross more than once.

It follows immediately tha <cx Y implies Var[X] < Var[Y]. The reverse implication does not hold in general;
for a counterexample, see e.g. Brockett and Garven (1998). Also notk that Y is equivalentto-X <cx —Y.
This means that it makes no difference if we interpret the random variables as losses or as gains.
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For any random vectoX with marginal cdfsFy, F», ..., F, the following convex order relation holds:

X1+ Xo4 -+ Xy <ex S0 & FLYO) + By NU) + -+ FAW),
whereU is a uniform (0, 1) random variable, and where gtk quantile of a random variablé with cdf Fx is, as
usual, defined by

Flp) Einfx e RIFx(x) > p}, pe[0.1].

Goovaerts etal. (2000) prove this order relation directly, while Mller (1997) derives it as a special case of the concept
of supermodular ordering. This relation can be interpreted as follows: the most risky random vector with given
marginals (in the sense that the sum of their components is largest in the convex order sensepmasrtbmnous
joint distribution, which means that it has thejointdistributiongTl(U), F{l(U), . F,;l(U). The components
of this random vector are maximally dependent, all components being non-decreasing functions of the same random
variable.

The inverse cdf of a sum of comonotonous random variables can easily be computed. In§jeed, H’l‘l(U) +

Fz_l(U) 4+ 4 Fn—l(U), where=q4 means equality in distribution, then

FAp =Y FYp). peloll
i=1

Recently, the concept of comonotonicity has been considered in many actuarial papers, see e.g. Miller (1997),
Wang and Dhaene (1998) and Dhaene et al. (1998). Dependence in portfolios and related stochastic orders are also
considered in Dhaene and Goovaerts (1996), Denuit and Lefévre (1997), Dhaene and Goovaerts (1997), Bauerle
and Miiller (1998), Wang and Young (1998), Goovaerts and Redant (1999), Denuit et al. (1999), Dhaene and Denuit
(1999) and others.

3. Comonotonous upper bounds for sums of random variables

The usual definition of the inverse of a cdf is the left-continuous fUﬂ(‘ﬂ?ﬁ(p) = inf{x € R|Fx(x) > p}.

But if Fx(x) = p holds for an interval of values for, any element of it could serve aﬁ;}l(p). In this paper, we
introduce a more sophisticated definition which enables us to choose that particular inverse cdf with the property
that for a certainl, the reIationF;l(Fx(d)) = d holds.

For p € [0, 1], a possible choice for the inverse Bf in p is any point in the interval

[inf {x € R|Fx(x) > p}; supx € R|Fx(x) < p}].

Here we take infl = 400 and sup) = —oo. Taking the left-hand side border of this interval to be the value of the

inverse cdf ap, we getF;l(p). Similarly, we defineF;l'(p) as the right-hand side border of the interval

Fy'*(p) = supx € R|Fx(x) < p}, pel01].

Note thatF; *(0) = —oco and Fx **(1) = +oo, while Fy*(p) and F **(p) are finite for allp € (0, 1). For anya
in [0, 1], we define thex-inverse ofFx as follows:

1 - —1e
Fy M (p) = aF () + A — ) Fg*(p),  p € (01).
For a comonotonous random vectofs, Xo, ..., X,), it follows that for alle in [0, 1]

n
-1 -1
Fy i iy, () = _Fx " (p). pe©D.
i=1



154 R. Kaas et al./Insurance: Mathematics and Economics 27 (2000) 151-168

The following result was already mentioned in Section 1. We give a new proof for it, based @fintherse just
introduced, because this method of proof leads to new results that we will need in the sequel of this paper.

Proposition 1. Let U be a uniform(0, 1) random variable. For any random vect@X1, X, ..., X,) with marginal
cdfsFq, F», ..., F,, we have

X1+ Xo4 -+ Xy <ex F{HU) + F 2 U) + -+ F7LHU).

Proof. Let S andS, be defined bys = X1 + Xp +--- + X, andS, = F; }(U) + F; X U) + --- + F7L(U),
respectively, withU uniform (0, 1). Then obvioushE[S] = E[S,]. To prove the stop-loss inequalities needed
to establish convex order, consider an arbitrary fixed real nuripeith 0 < Fs (d) < 1. Leta € [0, 1] be
determined such that

Fy X (Fs, (d)) = d.
Then we have

E[S — d]4 = E[S — Fg " (Fs, (d)]+
=E [Z(Xi — F O (Fs, (d)))} < Y E[X; — F; Y (Fs, (@)
i=1 + i=1
On the other hand we find
1 1
EIS, = dly = EFM0) ~dls = [ (5t —dhidp = | () = P s @

Fg,(d
n

1
= Z/F (d)(Fi_l(P) - Fi_l(“)(FSu (d))) dp.
i=1Y "Su

One can verify that for any € (Fs, (d); F,-(Fi_l(“)(Fgu (d)))) we have
FH(p) = F 1 (Fs, ().
This implies
1

n
E[S,—dly =) / e (F7Mp) — F ) (Fs, @) dp
I F(FTH Y (Fyy (@)

n 1 n
=> /0 (F7Y(p) — F Y9 (Fs, @)y dp = > E[FHU) — F 19 (Fs, )]+
i=1 i=1

n
=Y E[X; — F; Y (Fs, @)+
i=1
so we have proven thd#t[S — d]+ < E[S, — d]+ holds for all retentiong with 0 < Fs,(d) < 1.

As the stop-loss transform is a continuous, non-increasing function of the retentioa find that the result
above implies

E[S — Fg*(0)]4 < E[S, — F5 *(0)]4.
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as well as
E[S — Fg* (D] < E[Sy — F5 '(D]4-
SO E[S —d]+ < E[S, — d]+ also holds for retentions with Fs, (d) = 0 or Fs, (d) = 1. O

If d e (stll’(O), FSjll(l)), then 0 < Fs,(d) < 1, so we find the following corollary from the proof of
Proposition 1.

Corollary 1. Let U be uniform©, 1) and letS, = F; *(U) + - + F;X(U). If d € (F3 *(0), Fg (1), then the
stop-loss premium at retention d §f is given by

E[S, —dly = Y E[X; — F, Y (Fs, )]+
i=1

with € [0, 1] determined byFy X (Fs, (d)) = d.

The expression for the stop-loss premiums of a comonotonousSgwan also be written in terms of the usual
inverse cdfs. Indeed, for any retentidne (FS‘ul'(O), Fs_ul(l)), we have

E[X; — F Y (Fs, )]y = E[X; — FY(Fs, (@)]+ — (F, " (Fs,(d)) — F7 X (Fs,(d)))(1 — Fs, (d)).

Summing over, and taking into account the definition®fwe find the expression derived in Dhaene et al. (1998),
where the random variables are assumed to be non-negative

n
E[S, —d]y = Y _E[X; — F{ *(Fs,(d)]y — (d — Fg ' (Fs,(d)))(1 - Fs,(d)).
i=1
From Corollary 1, we can conclude that any stop-loss premium of a sum of comonotonous random variables can
be written as the sum of stop-loss premiums for the individual random variables involved. Corollary 1 provides an
algorithm for directly computing stop-loss premiums of sums of comonotonous random variables, without having
to compute the entire cdf of the sum itself. Indeed, in order to compute the stop-loss premium with retenwgon
only need to knowFs, (x) for x equal tod. The cdf atx follows from

n
Fs,(x) = sup{p e[0.1]1) Ft(p) < x} .
i=1
Now assume that the marginal cdfsare continuous oR and strictly increasing o(F;l'(O), F;l(l)). Thenone
can verify thatFs, is also continuous o and strictly increasing onFS‘ul‘ 0, Fszl(l)), and thatFS‘u1 is strictly

increasing and continuous df, 1). Hence, for anyx € (FS‘ul'(O), Fszl(l)), the valueFy, (x) can be obtained
unambiguously from

ZF;l(FSu (x)) = x.

i=1
In this case, we also find
n
E[S, —d]y = Y _E[X; — F{ }(Fs,(d))]4.
i=1

which holds for any retentiod € (stll'(O), Fgul(l)).
Corollary 1 can be used for deriving upper bounds for the price of an Asian option, see Simon et al. (2000).
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4. Improved bounds for sums of random variables

4.1. Upper bounds

As (F7HU), FyHU), ..., F7A(U)) is a random vector with marginalgy, . .., F,, the upper bound, =
Fl_l(U) + Fz_l(U) 4+ 4 Fn‘l(U) is the best that can be derived under the conditions stated in Proposition 1; it is
a supremum in terms of convex order. Let us now assume that we have complete (or partial) information, more than
just the marginal distributions, concerning the dependence structure of the random(Xact®p, . . ., X,,), but
that exact computation of the cdf of the s¥m= X1+ X2+ - - - + X, is not feasible. In this case, we will show that
it is possible to derive improved upper bounds$oand also non-trivial lower bounds, based on the information we
have on the dependence structure. This is accomplished by conditioning on a random Vawaixté is assumed
to be some function of the random vectr We will assume that we know the distribution Bf and also the
conditional cdfs, giverX = z, of the random variableX;. A suitable example is to usé = > log X; when theX;
are lognormal. In the following proposition, we introduce the notaﬂQﬁZ(U) for the random variablg; (U, Z),

where the functiory; is defined byf; (u, z) = F);,-::-Z:z ).

Proposition 2. Let U be uniform(0, 1), and consider a random variable Z which is independent of U. Then we
have

def _ _ -
X1+ X2+ + Xn Sex Sy = Fy1,(U) + Fyip(U) + -+ Fy 1, (U).
Proof. From Proposition 1, we get for any convex functian

o]

Efv(X1+4 -+ Xn)] = / E[v(X1+4 -+ X,)|Z = z]dFz(2)

S/ E[v(faiU,2) + -+ fuU,2)]dFz(2) = E[v(f2(U, Z) + - - + fu(U, 2))]

—00
from which the stated result follows directly. O
Note that the random vect()FglllZ(U), F;zllz(U), s anllz(U)) has marginals, Fo, ..., F,, because

Fi(x) = PrX; <x] = / TPHX; < x1Z = ddF () = / T PrEgL,_ () < xdF2)

—00

- / PILA (U, 2) < x]dF2(2) = Prlfi(U. 7) < .

In view of Proposition 1 this implies
Fil,U) + Fyiy(U) + -+ Fy 5 (U) <ex F{HU) + FyNU) + -+ + FHU).

The left-hand side of this relation & ; the right-hand side is,,. In order to obtain the distribution function 6§,
observe that given the everit= z, this random variable is a sum of comonotonous random variables. Hence

n
FS_Z;\lZ=z(p) = ZBETZ:Z(P), p €[0,1].
i=1

If the marginal cdfsFx,|z—, are strictly increasing and continuous, s&ig z—., and thenF|z_. (x) follows by
solving

n
ZF)?I'}Z=Z(FSL/4‘Z:Z(X)) = X.
i=1
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The cdf ofS/, then follows from

o

Fg (x) Zf Fg1z=;(x) dFz(z).
—00

Application of Proposition 2 to lognormal margin&{s is considered in Section 5, but see also the simple examples

with n = 2 at the end of this section. Note thatdfis independent of alk1, X, ..., X,, upper bound’, reduces

to S,.

4.2. Lower bounds

Let X be a random vector with marginalg, F», ..., F,, and assume that we want to find a lower bosndn
the sense of convex order, f6r= X1 + X» + --- + X,,. We can obtain such a bound by conditioning on some
random variableZ, again assumed to be a function of the random vexXtor

Proposition 3. For any random vectoX and random variable Z, we have

51 € E[X1/Z] + E[X2|Z] + -+ + E[Xa|Z] <ox X1+ Xo+ - + Xa.

Proof. By Jensen’s inequality, we find that for any convex functiothe following inequality holds:

E[viX1+ X2+ -+ X)) =EzE[v(X1+ X2+ -+ X)IZ] = Ez[v(E[X1+ X2+ -+ X, Z])]
= Ez[v(E[X1]|Z] +--- + E[Xa|Z])].

This proves the stated result. O

Note that ifZ and S are mutually independent, Proposition 3 leads to the trivial lower b@]igl <.« S. On the

other hand, iZ andS have a one-to-one relation, the lower bound in Proposition 3 coincideswitbte further that
E[E[X;|Z]] = E[X;] always holds, but Va#£[X;|Z]] < Var[X;] unlessE[Var[X;|Z]] = 0 which means thax;,

givenZ = z, is a constant for each This implies that the random vectQE[X1|Z], E[X2|Z], ..., E[X,|Z]) will

in general not havé", Fo, ..., F, as its marginal distribution functions. But if the conditioning random variable

Z has the property that all random variablefX; | Z] are non-increasing functions @f (or all are non-decreasing
functions ofZ), the lower bound in Proposition 3 has the form of a sum odbmonotonous random variables. The

cdf of this sum is then obtained by the results of Section 2. An application of Proposition 3 in the case of lognormal
marginalsX; is considered in Section 5.

With § = X1+ X> + --- + X,,, the lower bounds; in Proposition 3 can be written &s[S|Z]. To judge the
quality of this stochastic bound, we might look at its variance. To maximize it, the mean value §fX/af 7]
should be minimized. Thus, for the best lower bouridind S should be as alike as possible.

Let us further assume that the random variable such that alE[ X; | Z] are non-increasing continuous functions
of Z. The quantiles of the random varial#i¢ S| Z] then follow from

n n
Fatsn® = Fiix () = Y EIXi|Z = F;*A-p). pe©D).
i=1 i=1
In order to derive the above result, we used the fact that for a non-increasing continuous fyhet®have
Fi () = f(Fg'L—p)), pe©D.

Similarly, for a non-decreasing continuous functipywe have

Fi () = f(FgH(p), pe©l).
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If we now in addition assume that the cdfs of the random variablgs;|Z] are strictly increasing and con-
tinuous, then the cdf of[S|Z] is also strictly increasing and continuous, and we get forad (FE*[15'|Z] 0,

Fisizz(D),

n
Y Futx iz (FELsiz1(0) = x,
i=1

or equivalently,
n
Y E[Xi|Z = F; (1~ Fesiz(x)] = x,
i=1

which unambiguously determines the cdf of the convex order lower bali§Z] for S in case allE[X;|Z = 7]
are non-increasing ip.
The stop-loss premiums @[ S|Z] can be computed as follows:

E[E[S|Z] —d)y = Y {E[Xi|Z) — E[X:|Z = F;*(1 - Fepsiz3(@)]}+
i=1

which holds for all retentiong e (Fb?15°|z] 0, Fg[ls|Z](1)).

The technique for deriving lower Lounds as explained in this section is also considered (for some special cases)
in Vyncke et al. (2000). The idea of this technique stems from mathematical physics, and was applied by Rogers
and Shi (1995) to derive approximate values for the value of Asian options.

4.3. Some simple examples
Let X, Y be independerw (0, 1) random variables, and consider random variables of theZypeX + aY for

some reak. We want to derive stochastic bounds fo&= X + Y. The conditional distribution ok, givenZ = z,
is, as is well-known,

2
PX, 20X < a
N(uer oy (Z_HZ)»U)%(l_P)Z(,Z)) =N< )

1+a?’ 1+ a?

But this means that for the conditional expectatigfrk'| Z] and for the random variabIE);IlZ(U), with U uniform
(0, 1) and independent &f, we get

~ N jale~ (V)
E[X|Z] = m, FX|Z(U)—E[X|Z]+ (1+a2)l/2'
In line with E[X + aY|Z] = Z, we also get
az 1 oY)

It can be shown that botﬁ;llz(U) andFY‘é(U) haveN (0, 1) distributions. TheitU-dependent parts are comono-
tonous. For the lower and upper bounds derived above we get

S=X+Y~N(QO2),

l+a (1+a)?
S = E[X +Y|Z] = 1+a22~N(0, )
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L+a)2+ 1+ |a|)2)

1+a 1+ |al
z 2
1+a

1+a2” " 1+ad)12
Su =d 2X ~ N(0,4).

/
Su -

oY U)~N (o,

For some special choices @f we get the following distributions for the lower and upper bousidsnd s,
a=0: N1 < S <ex N(0,2),
a=1: N(@,2) <cx S <cx N(0,4),
a=-1: N(0,0) <¢x S <ex N(0,2),
la] > o00: N(0,1) <¢x S <ex N(0,2).

Note that the actual distribution &fis N (0, 2), so the best convex lower bouid = 1) and the best upper bound
(a < 0ora — o0) coincide withS. Of course takinda| — oo gives the same results as takidg= Y. The
variance ofS; can be seen to have a maximunuat +1, a minimum atz = —1. On the other hand, Vas]] also
has a maximum at = 1, and minima at: < 0 anda — o0. So the best lower bound in this case is attained for
Z = S, the worst forZ and S independent. The best improved upper bound is found by takiegX, Z = Y, or
anya < 0, including the case = —1 with Z andS independent; the worst, however, by takidg= S.

To compare the variance of the stochastic upper basjnaith the variance ofS boils down to comparing
cov(F);'lZ(U), Fy_llz(U)) with cov(X, Y). Itis clear that, in general, the optimal choice for the conditioning random
variableZ will depend on the correlation of andY . If this correlation equals 1, ar results inS =g S, =4 S. In
our case wher& andY are mutually independent, the optimal choice proves to be takiagX or Z = Y, thus
ensuring thas ands;, coincide.

As a second example, consider a simple special case of the theory dealt in the next section. We present it here for
the reader’s convenience, just as an illustration. TakendY» be independenw (0, 1) random variables. Look at
the sum ofX; = e'* ~ lognormal0, 1), andX, = e'1t¥2 ~ lognormal0, 2). TakeZ = Y1 + Y». For the lower
bounds;, note thate[ X»|Z] = €7, while Y1|Y1 + Y2 = z ~ N(3z, 3), hence

E[e"Y1+ Y2 =2z] =m(L; 32, 3).

wherem(1; p, 02) = exp(ut + 3021?) is the N (i1, 0?) moment generating function. This leads to
E[e"z] =exp3Z + D).

So the lower bound is
$i = E[X1+ X2|Z] = exp(3Z + 3) + €”.

Upper boundsS, has(X1, X») =¢ (€Y, e‘/éW) for W ~ N(0O, 1). The improved upper boung, has as a second

term again é, and as first term exéZ + %\/EW), with Z andW mutually independent. All terms occurring in the

bounds given above are lognormal random variables, so the variances of the bounds are easy to compute. Note that
to compare variances is meaningful when comparing stop-loss premiums of stop-loss ordered random variables, see,
e.g., Kaas et al. (1994, p. 68). The following relation, which can be proven using partial integration, links variances
and stop-loss premiums:

1 o0
Svarlx] = / (ELX — 114 — (E[X] — 1)) dr.

—00
from which we deduce that X <cx Y, thusE[Y —¢]+ > E[X — ¢t] for all ¢, then

oo

%{Var[Y] —Var[X]} = / {E[Y —t]+ — E[X —t]4} dt
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Thus, half the variance difference between two convex ordered random variables equals the integrated difference
of their stop-loss premiums. This implies thatXif <cx Y and in addition Vark] = Var[Y], thenX andY must
necessarily be equal in distribution. Moreover, the ratio of the variances is roughly equal to the ratio of the stop-loss
premiums, minus their minimal possible value for random variables with the same mean. We have, as the reader
may verify,

E[S]? = et + 2€/2 + &,
E[SH] =¥ + 2% 1 &,
E[$?] = E[S?] = & +2¢/? + &,
E[$?] = € + 263212 4 ¢,
Hence
Var[E[S]] =0, Var[S;] = 1.763 Var[S] = Var[S/] = 4.671, Var[S,] = 17.174

So an improved stochastic lower bousidfor S is obtained by conditioning ofi; + Y2, and the improved upper
bounds], for this case proves to be very good indeed, having in fact the same distribution as

5. Present values — lognormal discount process
5.1. General result

Consider a series of deterministic paymemtsao, .. ., «,, of arbitrary sign, that are due at times21... ., n,
respectively. The present value of this series of payments equals

n
S=Y aiexp(—(Y1+ Yo+ + ).
i=1

Assume tha(Yy, Y2, ..., ¥,) has a multivariate normal distribution. We introduce the random variabjeend
Y (i) defined by
Yi)=Y1+Yo+---+Y; Xi=a;e’®,

thenS = X1+ Xo 4+ --- + X,,.
For some given choice of thg, consider a conditioning random variat#edefined as follows:

n
Z= Z,Biyi,
i—1

For a multivariate normal distribution, every linear function of its components has a univariate normal distribution,
so Z is normally distributed. Also(Y (i), Z) has a bivariate normal distribution. Conditionally givén= z, Y (i)

has a univariate normal distribution with mean and variance given by

940)

E[Y()IZ =z] = E[Y ()] +pi?

and
var[Y(i)|Z =z] = ‘73(1')(1 - ,0,-2),

wherep; is the correlation betwees andY (i).
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Proposition 4. Let S, S, S, and S, be defined as follows:

161

n
S=) aiexp—(Y1+ Yo+ -+ 1)),
i=1

n
S =Y i exp(—E[Y ()] — pioy( @ "(U) + 3(1— pP)ot ;).
i=1

S, =Y i &XU—E[Y ()] — pioy(y® H(U) + sign(e;) /1 — p2oy i@ H(V)),
i=1

Su= Y o exp(—E[Y (0)] + sign(e; oy (@ 1)),
i=1

where U and V are mutually independent unifafinl) random variables, and is the cdf of thev (0, 1) distribution.
Then we have

Si <ex S <cx S,; <cx Su.

Proof.
1. If a random variabl€ is lognormalfe, o2), thenE[X] = exp(u + %02). Hence, forz = >"!_,8;Y;, we find
that, takingU = @ ((Z — E[Z])/oz), soU ~ uniform(0, 1),
E[X;|Z] = a; exp(—E[Y ()] — pioy i@ '(U) + 31 = pP)of ).
From Proposition 3, we find; <¢x S.

2. If arandom variabl€ is lognormalft, o2), then we haveVojxl(p) = aexp(u + sign(a)o ®~1(p)). Hence, we
find that

Fy'l,(p) = i exp(—E[Y ()] — pioy @~ H(U) + sign(e),/1 — pZoy i@ (p)).

From Proposition 2 we find that <¢x S),.
3. The stochastic inequality/, <« S, follows from Proposition 1.
O
In order to compare the cdf of = > ;o; exp(— (Y1 + Y2 + - - - + ¥;)) with the cdfs ofS;, S/, andS,, especially

their variances, we need the correlations of the different random variables involved. We find the following results
for the lognormal discount process considered in this section:

gCovY (). Y ()] _ 1
corr[X;, X ;1=

2 2 ;
(€1 — DY2(Evi) — 1)1/2
ePiPjoYHoY () — 1

corr[E[X;|Z], E[X;|Z]] = —— 2,2 ;
(€ %vo — Y2l — 1)1/2

_ _ exp([pip;j + sign(e;aj) (1 — pHY2(1 - pH Yoy ioy () — 1
corr[Fy 1, (U), Fle‘Z(U)] = ’ / ;

)

(e”)%(i) _ 1)1/2(6"13(,‘) _ 1)1/2
eSign(@ia)oyioy() — 1

corr[FyX(U), FyL(U)] = )
Xi X (e”% - 1)1/2(9"3@) — 112
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From these correlations, we can for instance deduce that if all paymeats positive and corf{(i), Y (j)] = 1
for all i andj, thenS =4 S,. In practice, the discount factors will not be perfectly correlated. But for any realistic
discount process, col¥[i), Y (j)] = corr[Yy + --- + Y¥;, Y1+ --- 4+ Y;] will be close to 1 provided thatand j
are close to each other. This gives an indication that the c8lf afight perform well as approximation for the cdf
of S for such processes. This is indeed the case in the numerical illustrations in Goovaerts et al. (2000). A similar
reasoning leads to the conclusion that the cdf,ofvill not perform well as a convex upper bound for the cdf of
S if the paymentsy; have mixed signs. This phenomenon will indeed be observed in the numerical illustrations in
Section 6.

It remains to derive expressions for the cdfsSofs;, andS,,.

5.2. The cdf and the stop-loss premiums,pf

The quantiles of, follow from Goovaerts et al. (2000)

Fyl(p) = Y i exp(—E[Y ()] + signei)oy (@ X(p)),  p € (O.1).
i=1

Also, Fs, (x) follows implicitly from solving

> o exp(—E[Y ()] + sign(@;)oy ) @ (Fs, (x))) = x.
i=1

It is straightforward to derive expressions for the stop-loss premiums in this case

E[S, —d]y = Y lajl e FV O E[sign(a; ) (Z; — expisign(e)oy i @ 1 (Fs, ()]

i=1
where theZ; are IognormaI(Oaf(l.)) random variables.
In order to derive an explicit expression for the stop-loss premiffi$§ — d]-, we first mention the following

result, which can easily be proven, e.g. by usidgds) E[X — t]+ = Fx(t) — 1.
Proposition 5. If Y is lognormal(u, o2), then for anyd > 0 we have

E[Y —dls = exp(u + 30)@(d1) —dP(d2),  E[Y —d]- = exp(u + 30°)P(=d1) — d®(~dy),
whered; andd, are determined by

2 _Ind
g = o=@
o

At d < 0, the stop-loss premiums are trivially equal Y] — d. The following expression results for the
stop-loss premiums at > O:

E[S, —d]y =) o; e FV Ol exp(3od ;) @ (sign(ei)d; 1)
i=1

—exp(sign(a;)ay i) @ L (Fs, ()@ (Sign(a; )d; 2)}
with d; 1 andd, » given by

di1 = oyqy — sign(e) @ (Fs,(d),  di2 = —sign(a;)® 1(Fs,(d)).
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Using the implicit definition forFs, (d) leads to the following expression for the stop-loss premiums:

E[S, —d]y = ) _ei eXp(—E[Y ()] + 307 ®[sign(e;)oy ) — @ (Fs,(d)] — d(1 - Fs,(d)).
i=1

5.3. The cdf and the stop-loss premiums;of

In general,S; will not be a sum of: comonotonous random variables. But in the remainder of this subsection,
we assume that all; > 0 and allp; = cov[Y (i), Z]/oy)oz > 0. These conditions ensure ttfatis the sum of:
comonotonous random variables.

Taking into account tha = )", 8;Y; is normally distributed, we find that

F;'(1—p) = E[Z] — 020~ (p),
and hence

Fi p) =) Fufx,n(P) = Y_EIXi|Z = Fz(1- p)]
i=1 i=1

=Y o exp(—E[Y ()] + pioy @ H(p) + 3053, (L— p?).  p e (0.
i=1

Fg,(x) can be obtained from

n
> o exp(—E[Y ()] + pioyi® H(Fs, () + 305, (1 — p?) = x.
We hlaz\je
n
E[Si —d). = ) _E[E[Xi|Z] = Fgx, 7 (Fs,(d)]+.
i=1
After some straightforward computations, one finds that an explicit expression for the stop-loss premiums is given by

E[S) —d]y = ) i exp(—E[Y ()] + 307 Plpiove) — @~ (Fs5(d)] —d(1— Fs,(d)).
i=1

5.4. The cdf of),

SinceFy jy=y is @ sum ofs comonotonous random variables, we have

n n
Folu—d(P) = D Fxjy=(p) = ) _ai eX=E[Y ()] = pioys® ™ (u) + sign()/1 — pPoy 5o @ ~*(p)).
i=1 i=1

Fg/\u=u also follows implicitly from

n

Z“i exp(—E[Y ()] — pioyi® 1 (u) + sign(e;),/1 — piZGY(i)<1>_l(Fs;,|U=u(X))) =x.
i=1

The cdf ofS), then follows from

1
Fg; (x) = fo Fyy 10— () .
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6. Numerical illustration

In this section, we will numerically illustrate the bounds we derivedsfer >/ ja; exp(—(Y1+ Yo+ -+ Y;)).
We will taken = 20. In order to be able to compare the distribution functions of the stochastic b§usfsnds,,
with the distribution function of, we will completely specify the multivariate distribution function of the random
vector (Y, Ya, ..., Y20). In particular, we will assume that the random variaffesre i.i.d. andV (i, o2). This
will enable us to simulate the cdfs in case there is no way to compute them analytically. The conditioning random
variableZ is defined as before

20
Z:Z,B,-Y,-.
i=1

In this case, we find

20 . i
E[Y()] =ip,  Vary()] =ioc?,  Var[z] =02 pf, i=COV[Y(l)’Z]= Li=1hr .
[YO] =in arlY (i)] = io ar[Z] =o k:1:3k o - 2

In our numerical illustrations, we will choose the parameters of the normal distribution involved as follows:
w = 0.07, o =0.1.

We will compute the lower bound and the upper bound for the following choice of the pararfeters
20 '
Bi=> ajelt, i=1..,20
j=i

By this choice, the lower bound will perform well in these cases. This is due to the fact that this choicedreakes
linear transformation of a first-order approximationstor his can be seen from the following computation, which
depends ow, and hence’; — u, being “small”:

n J n J
S=) ajexp| —ju—Y (Yi—w |~ Y aje 1= (¥i—p
j=1 i=1 j=1 i=1

J
=C — ji:dj e_f“ji:lﬁ =C - jg:)%zi:aj e_/“,
j=1 i=1

i=1 j=i

whereC is the appropriate constant. By the remarks in Sectidf @ill then be “close” toS.
Fig. 1 shows the cdfs of, S;, S, ands, for the following payments:

=1 k=1,...,20

SincesS; <cx S <cx S), <ex Sy, and the same ordering holds for the tails of their distribution functions which can be
observed to cross only once, we can easily identify the cdfs. We see that theSgdf wéry close to the distribution

of S, which was expected because of the choic& oNote that in this cas§; is a sum of comonotonous random
variables, so its quantiles can be computed easily. The cdf @lso performs rather well, as was observed in
Goovaerts et al. (2000). We find that the improved upper b&ijrid very close to the comonotonous upper bound
S,. This is due to the fact that COF)ETZ(U), F;jﬁZ(U)) is close to covX;, X ;) for any pair(i, j) with i # j.
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Upper, Lower & Better Upper Bound vs. Empirical Distribution

1.0

0.8

0.6

cum. distr.

0.4

0.2

0.0

1

T

15 20 25

present value

(]
-
o

Fig. 1. Payments: 2& 1; Zis such that the lower bound is optimized.
Fig. 2 shows the cdfs df, 5;, S, ands, for the following payments:

(-1, k=1,....5
“% =11, k=6s,...,20

Note that the cdf of the lower bourfil cannot be computed exactly in this case; it is obtained by simulation. In this
case, we see that the lower bougydstill performs very well. The comonotonous upper bouhdperforms very

Upper, Lower & Better Upper Bound vs. Empirical Distribution

1.0

0.8

0.6

cum. distr.

0.4

0.2

0.0
1

present value

Fig. 2. Payments: X (—1), 15 x 1; Zis such that the lower bound is optimized.
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Upper, Lower & Better Upper Bound vs. Empirical Distribution

1.0

0.8

cum. distr.

0.4

0.2

0.0

present value

Fig. 3. Payments: & (—1), 15 x 1; Zis such that it is an approximation to the discounted total of the negative payments.

badly in this case, as was to be expected from the observations in Section 5.1. The improved upper bound performs
better.

In Fig. 3, we consider the same series of payments as in Fig. 2. We consider the cdf of the improved upper bound
for a different choice of the conditioning random variadleWe chooseZ such that it is an approximation to the
discounted total of the five negative payments:

5 .
b = Zj:,-aje mooi=1...,5
0, i=6,...,20
The (simulated) cdf of is the dotted line. Note that the upper bousjdis much improved, the lower bound is
worse.

7. Conclusions and related research

In this contribution we considered the problem of deriving stochastic lower and upper bounds, in the sense of
convex order, for a su§ = X1 + X» + - -- + X, of possibly dependent random variablés, X, ..., X,,. We
assumed that, as is often the case, the marginal distribution of each random \&jiakle . . ., X,, is known. The
problem of deriving a convex upper bound without using additional information about the dependency structure
was considered in Muller (1997) and Goovaerts et al. (2000). In this paper, we additionally assumed that there
exists some random variable with a computable distribution, such that for angind for anyz in the support
of Z, the conditional distribution function oX;, givenZ = ¢z, is also computable. Based on this, we derived
random variables; and S/, the cdfs of which are known to be less and larger than the ofeirotonvex order,
meaning that the tails of; are thinner, the ones o, are thicker in general. Though it is not guaranteed that
two convex ordered cdfs cross only once, in the majority of examples they do so. Thus, we obtain a band of
possible values of P§[ < x] which might provide more, and more reliable, information than a point estimate
as obtained from a number of simulations. This is especially the case when the inverse cdf is sought, such as
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when one wants to determine fair values and supervisory values. But note thiat Pf] cannot be guaranteed
to be between P8} < x] and Pr[S;, < x]. It has been argued before, see e.g. Kaas (1994), that actuaries should
not be focused on probabilities and quantiles, but rather on stop-loss premiums, since it is not the probability of
exceeding a thresholéithat matters, but the amount by which this happens, of which the expected value is just the
stop-loss premium at. And for stop-loss premiums, the prope#ysS; — d]+ < E[S —d]+ < E[S], — d]+ does
hold.

It should be noted that the upper bousjgdis no longer a supremum (in the sense of convex order) over the set of
all random vectors with fixed marginals, and that the lower basjrisinot a sum of terms with the proper marginal
distributions. This follows from the fact that the bounds that we derived take into account the dependency structure
of the random vector under consideration.

It should also be noted that our results actually do not require the complete dependency structure, but only the
distribution of Z and the conditional distributions df; given Z = z. In Section 6 we chose an example where
the distribution of the random vector was completely known, in order to be able to compare the bounds with the
(simulated) exact cdf.

A topic for future research is the determination of the optimal conditioning random va#dblethe improved
upper bounds/,, in the spirit of the remarks made at the end of Section 4.3. Another item for future research is the
extension of the results of this paper to the case where also the cash flows are stochastic, hence to find improved
upper bounds and lower bounds for= X1Y; + X»>Y2> + --- + X, Y,,. Another idea that we intend to pursue is
conditioning on more than one random varialle
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