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Abstract
Using some results from risk theory on stop-loss order and comono-

tone risks, we show in this paper that the price of an arithmetic Asian
option can be bounded from above by the price of a portfolio of Eu-
ropean call options.
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1 Introduction

We consider a securities market consisting of one risky asset S(t) and a risk-
less money-market account in which money can be invested at a fixed spot-
rate r. The risky asset S(t) is assumed to be defined on a filtered probability
space (Ω,Ft, P ) with Ft the filtration generated by S(t). Furthermore, we
assume there exists a single equivalent martingale measure Q, i.e. that we are
dealing with a complete and arbitrage free market, see Harrison and Kreps
(1979) and Harrison and Pliska (1981). An arithmetic Asian call option with
exercise date T , n averaging dates and exercise price K generates a pay-off[

1
n

∑n−1
i=0 S(T − i) −K

]
+

at T , and will as such trade at t against a price
given by:

AA(t, S(t), n,K, T, r) = e−(T−t)rEQ

([
1

n

n−1∑
i=0

S(T − i) −K

]
+

|Ft

)
(1)
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However, in most cases this pricing formula is hard to evaluate. For
instance, the distribution of

∑n−1
i=0 S(T − i) is not known when the price

process S(t) is an exponential Brownian motion. One can use Monte-Carlo
simulation techniques to obtain a numerical estimate of the price, see Kemna
and Vorst (1990) and F.J. Vázquez-Abad (1998), or one can numerically solve
a parabolic partial differential equation, see Rogers (1995). But as both
approaches are rather time consuming, it would be more than interesting to
have an accurate, easily computable approximation of this price.

A very accurate lower bound was obtained in Rogers (1995). In Jacques
(1996) an approximation is obtained by approximating the distribution of∑n−1

i=0 S(T − i) by a more tractable one. We will follow this last approach,
using results from actuarial risk theory on comonotone risks to obtain an
accurate upper bound for the price of the Asian option.

2 Options and Stop-loss Transforms

In actuarial science one often compares risks, i.e. nonnegative random vari-
ables, by means of their stop-loss premiums/stop-loss transforms. We will
use stop-loss transforms of distribution functions that are concentrated on
the positive half line. For the sake of completeness, we give the following
definition.

Definition 1 For a distribution function F (x) with a support D ⊆ R
+, the

stop-loss transform ΨF (r) is given by:

ΨF : R
+ �→ R

+ : r → ΨF (r) =

∫
[r,+∞[∩D

(x− r) dF (x) (2)

Now, we can define the stop-loss order for distribution functions, and
therefore as well of random variables, as:

Definition 2 Of distribution functions F (x) and G(x), both with their sup-
port in R

+, F (x) is said to precede G(x) in stop-loss order, written F ≤sl G,
if:

∀r ∈ R
+ : ΨF (r) ≤ ΨG(r). (3)
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If we combine equalities 1 and 2, we see that the pay-off of an arith-
metic Asian option can be written using the stop-loss transform of Wn(T ) =∑n−1

i=0 S(T − i). First we can rewrite equation 1 as:

AA(t, S(t), n,K, T, r) =
e−(T−t)r

n
EQ

t

[
n−1∑
i=0

S(T − i) − nK |Ft

]
+

(4)

For a given value s of S(t), we have immediately:

AA(t, s, n,K, T, r) =
e−(T−t)r

n
ΨF s

Wn(T )
(nK)

With: F s
Wn(T )(x) = Q (Wn(T ) ≤ x |S(t) = s)

The problem of pricing an arithmetic Asian option therefore turns out to
be equivalent to calculating the stop-loss transform of a sum of dependent
risks. And as such we can apply results on bounds for stop-loss transforms
to the option pricing problem.

3 Bounds for Stop-loss Transforms

In this section we will discuss some results from actuarial science on bounds
for stop-loss transforms of sums of dependent stochastic variables. Let us
first return to the pricing of an arithmetic Asian option. As explained in the
introduction, the main problem we are confronted with in pricing this type
of options, is that we, in general, do not know the distribution of the sum∑n−1

i=0 S(T − i). However, we do know the distribution of every term in this
sum, i.e. of every S(T − i). The stop-loss bounds that we will introduce
in this section will be based on these marginal distributions. Let us first
introduce the concept of a Fréchet class.

Definition 3 The Fréchet class Rn(F1, ..., Fn)determined by n (monovari-
ate) distribution functions, F1, ...Fn, is the class of all n-variate distribution
functions F with F1, ...Fn as marginal distributions.

Notation:
By (X1, ..., Xn) ∼ Rn(F1, ..., Fn), we mean that the marginal distributions

of this random vector are given by F1 to Fn, i.e.: FX ∈ Rn (F1, ..., Fn)
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We will now introduce the concept of comonotone risks, which we will
need to construct the upper bound for an Asian option. For more results
on comonotone risks in the actuarial field, we refer the interested reader to
Dhaene et al.(1997) and Wang and J.Dhaene (1997). We use the following
definition from Dhaene et al. (1997):

Definition 4 A positive random vector (X1, ..., Xn) is said to be comonotone
(the positive random variables X1, ..., Xn are said to be mutually comonotone)
if any of the following equivalent conditions hold:

1. For the n-variate distribution function we have:

FX1,...Xn(x1, ..., xn) = min (F1(x1), ..., Fn(xn)) ∀x,, ..., xn ≥ 0. (5)

2. There exist a random variable Z and non-decreasing functions g1, ..., gn

on R, such that:

(X1, ..., Xn)
D
= (g1(Z), ..., gn(Z))

3. For any random variable U uniformly distributed on [0, 1], we have:

(X1, ..., Xn)
D
=
(
F−1

1 (U), ..., F−1
n (U)

)
From the first condition in the above definition it is clear that for a given

Fréchet class Rn (F1, ..., Fn) the distribution of a comonotone random vector
(X1, ..., Xn) ∼ Rn (F1, ..., Fn) is uniquely defined.

Remark 1 For a given Fréchet class Rn (F1, ..., Fn), the n-variate distribu-
tion in the right-hand side of equation 5 is called the upper Fréchet bound of
Rn (F1, ..., Fn), we write:

WR(x1, ..., xn) = min (F1(x1), ..., Fn(xn))

Definition 5 Let a Fréchet class Rn(F1, ..., Fn) be given and let (X1, ..., Xn) ∼
Rn (F1, ..., Fn) be a given comonotone vector. We define the distribution func-
tion FR as:

FR(x) = P

(
n∑

i=1

Xi ≤ x

)
. (6)
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Note that as the distribution of the comonotone vector (X1, ..., Xn) is
uniquely defined, equality 6 uniquely defines the distribution FR(x).

We have the following result, a prove can be found in Dennenberg (1994):

Proposition 1 For any given Fréchet class Rn (F1, ..., Fn) , we have:

F−1
R (x) =

n∑
i=1

F−1
i (x) (7)

Goovaerts and Dhaene (1999) prove a more general version of the follow-
ing result on Fréchet classes:

Proposition 2 For a given Fréchet class Rn(F1, ..., Fn) we have:

∀r ∈ R
+ ΨFR

(r) =
n∑

i=1

ΨFi

[
F−1

i (FR (r))
]

(8)

Note that we only have to calculate FR for one value r, and that this
can be done using expression 7. Combining these two results, we obtain an
upper bound for the stop-loss transform of any sum

∑n
i=1 Xi, when only the

marginal distributions are known.

Proposition 3 Let a Fréchet class Rn(F1, ..., Fn) be given. For all non-
negative random vectors (X1, ..., Xn) ∼ Rn(F1, ..., Fn) we have:

FW ≤sl FR (9)

With: W =
∑n

i=1 Xi. That is:

∀d ∈ R
+ E

[
n∑

i=1

Xi − d

]
+

≤
n∑

i=1

E [Xi − d∗i ]+ (10)

With:
d∗i = F−1

i (FR (d)) (11)

Proof:
Because of formula 8 the right-hand side of inequality 10 is indeed equal

to ΨFR
(d). And from formula 11 and formula 7 we have that

∑n
i=1 d

∗
i = d,

and therefore inequality 10 holds.
�

Moreover, the choice of the retention levels as in formula 11 turns out to
be optimal, as stated in the following theorem.
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Theorem 4 Given a Fréchet class Rn(F1, ..., Fn) and a non-negative ran-
dom vector (X1, ..., Xn) ∼ Rn(F1, ..., Fn) we have that for any retention level
d ∈ R

+ and for any choice of the retention levels d1, ..., dn ∈ R
+ such that∑n

i=1 di = d we have:

n∑
i=1

E [Xi − d∗i ]+ ≤
n∑

i=1

E [Xi − di]+ (12)

with:
d∗i = F−1

i (FR (d))

Proof:
For d1, ..., dn ∈ R

+ such that
∑n

i=1 di = d we have:

E

[
n∑

i=1

Xi − d

]
+

≤
n∑

i=1

E [Xi − di]+ (13)

However, under the assumption of comonotonicity, which leaves the right-
hand side unchanged, the left hand side is given by:

n∑
i=1

E [Xi − d∗i ]+

Which proves inequality 12.
�

4 Application to Asian Options, the General

Case

Here we will apply the results of the previous section to the option pricing
formula 1 for the price AA(t, s, n,K, T, r) at time t of an arithmetic Asian
option with exercise date T , exercise price K and n averaging dates when
S(t) = s, with the securities market as described above. By F (x2, t2, x1, t1)
we will denote the conditional distribution of S(t2) under the equivalent
martingale measure Q, i.e.:

F (x2, t2, x1, t1) = Q (S(t2) ≤ x2 |S(t1) = x1 ) , t2 ≥ t1
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Let us first assume that at time t the averaging has not yet started. In
this case the n variables S(T −n+1), ..., S(T ) are still unknown, i.e. random
and the n distribution functions F (x, T − n + 1, s, t), ..., F (x, T, s, t) deter-
mine a Fréchet class Rn (F (x, T − n+ 1, s, t), ..., F (x, T, s, t)). As discussed
in section 2 we have:

AA(t, s, n,K, T, r) =
e−(T−t)r

n
ΨFWn

(nK)

By proposition 3 we obtain:

AA(t, S(t), n,K, T, r) ≤ e−(T−t)r

n
ΨFR

(nK)

With FR being defined with respect to the Fréchet class
Rn (F (x, T − n+ 1, s, t), ..., F (x, T, s, t)) along definition 5. By proposition
3 we obtain the following inequality:

AA(t, n,K, T, r) ≤ e−(T−t)r

n

n−1∑
i=0

ΨF (·,T−i,s,t)

[
F−1 (FR (K) , T − i, s, t)

]

Where, F−1(x2, t2, x1, t1) is the inverse of F (x2, t2, x1, t1) with respect to
x2.

Until now, we assumed that t < T − n+ 1. We will now turn to the case
that t ≥ T − n + 1. Let i∗ be such that: T − i∗ ≤ t < T − i∗ + 1, then we
know the first n − i∗ prices and only the last i∗ prices: S(T − i∗), ..., S(T ),
remain random. Therefore we obtain:

AA(t, n,K, T, r)

=
e−(T−t)r

n
EQ

[
i∗−1∑
i=0

S(T − i) −
(
nK −

n−1∑
i=i∗

S(T − i)

)
|Ft

]
+

=
e−(T−t)r

n
EQ

[
i∗−1∑
i=0

S(T − i) −Ki∗ |Ft

]
+

With: Kj = nK −∑n−1
i=j S(T − i) for j < n, and Kn = nK.

First, let us assume that Ki∗ > 0. Under this assumption we can apply
the same method to obtain upper bounds as in the case t < T − n+ 1. But

7



we are now working in the Fréchet class: Ri∗ (FT−i∗ , ..., FT ) and that K has
been replaced by the adjusted exercise price Ki∗ . As such we obtain:

AA(t, s, n,K, T, r)

≤ e−(T−t)r

n

i∗−1∑
i=0

ΨF (·,T−i,s,t)

[
F−1 (FR (Ki∗) , T − i, s, t)

]
If we define κi as:

κi = F−1 (FR (Ki∗) , T − i, s, t) , i = 0, ...i∗. (14)

Then we obtain:

AA(t, s, n,K, T, r) ≤ e−(T−t)r

n

i∗−1∑
i=0

ΨF (·,T−i,s,t) (κi)

We will now look at what happens when Ki∗ is equal to or smaller then
zero. In this case, we can not use the bounds from the previous section.
However we have:

EQ [Wi∗ −Ki∗ ]+

= EQ [Wi∗ ] −Ki∗

=
i∗−1∑
i=0

EQS(T − i) −Ki∗

As the discounted price process e−trS(t) is a martingale under Q, the
above expression is equal to:

S(t)
i∗−1∑
i=0

e(T−i−t)r −Ki∗

If we combine this result with the option pricing formula 1, we obtain, in
case of a negative Ki∗ :

AA(t, s, n,K, T, r) =
e−(T−t)r

n

(
S(t)

i∗−1∑
i=0

e(T−i−t)r −Ki∗

)

=
1

n

[
S(t)

i∗−1∑
i=0

e−ir + e−(T−t)r

n−1∑
i=i∗

S(T − i)

]
− e−(T−t)rK
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If we denote with EC (t, T,K, r) the price of a European call option with
exercise date T and exercise price K, we obtain the following result:

Theorem 5 In a securities market as described above, the following result
holds for AA(t, s, n,K, T, r)

1. If Ki∗ > 0 :

AA(t, s, n,K, T, r)

≤ e−(T−t)r

n

i∗−1∑
i=0

ΨF (·,T−i,s,t) (κi)

=
1

n

i∗−1∑
i=0

e−irEC (t, s, κi, T − i, r) (15)

Where: κi = F−1 (FR (Ki∗) , T − i, s, t) , i = 0, ...i∗. With the exercise
prices κi, i = 0, ...i∗ being optimal in the sense of theorem 1.

2. If Ki∗ ≤ 0 :

AA(t, s, n,K, T, r)

=
1

n

[
S(t)

i∗−1∑
i=0

e−ir + e−(T−t)r

n−1∑
i=i∗

S(T − i)

]
− e−(T−t)rK (16)

As such, we have shown (for Ki∗ > 0) that the price of an arithmetic
Asian option is bounded from above by the price of a portfolio of European
call options. And we have found the exercise prices for the European options
that optimize this bound.

5 Application in a Black and Scholes Setting

Here we assume that the price process of the underlying asset S(t) follows
an exponential Brownian motion with constant coefficients, i.e.:

dS(t) = S(t) [µdt+ σdB(t)] .
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Which enables us to use the well known Black and Scholes pricing formula
for European call options. Combining the Black and Scholes formula with
formula 15 yields:

AA(t, s, n,K, T, r) ≤ 1

n

i∗−1∑
i=0

e−irEC
(
t, s,Γ−1

i (Ki∗ , s), T − i, r
)

=
1

n

i∗−1∑
i=0

e−ir
[
sN (di,1) − κi e

−r(T−i−t)N (di,2)
]

where d1 and d2 are given by:

di,1 =
log (s/κi) + (r + σ2/2)(T − i− t)

σ
√
T − i− t

and:

di,2 = di,1 − σ
√
T − i− t.

As such, the main difficulty is to calculate the different strike prices κi.
The distribution function F (x2, t2, x1, t1) = Q (S(t2) ≤ x2 |S(t1) = x1 ) is now
given by:

F (x2, t2, x1, t1) = LN
(
x2; ln(x1) + (r − σ2/2)(t2 − t1), σ

√
(t2 − t1)

)
Where LN(x;µ, σ) is the lognormal distribution with mean µ and stan-

dard deviation σ. Using formula 7 we can rewrite equation 14 as:

Ki∗ =
i∗−1∑
k=0

F−1 (F (κi, T − i, S, t) , T − k, S, t) .

It is easily verified that this is equivalent to:

i∗−1∑
k=0

S

(
1−
√

T−k−t
T−i−t

)
κ

√
T−k−t
T−i−t

i e
µ
(√

(T−k−t)(T−i−t)−(T−k−t)
)

= Ki∗ . (17)

If we define αk(i) and βk(i, s) as:

αk(i) = e
µ
(√

(T−k−t)(T−i−t)−(T−k−t)
)

and βk(i) =

√
T − k − t

T − i− t
,
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then we can rewrite equation 17 as:

Γi(κi, S) = Ki∗ (18)

where:

Γi(x, s) =
i∗−1∑
k=0

αk(i) s
1−βk(i)xβk(i). (19)

6 Numerical Example and testing

In this section we will give a numerical example of the Black and Scholes
case. We will compare our results with those of Jacques (1996) where the
distribution of the arithmetic Asian option was approximated by means of
a lognormal (LN) and the inverse Gaussian (IG) distribution. Therefore the
parameters that were used to generate the results given in table 1 were given
the same values as in Jacques (1996) : an initial stock price S(0) = 100, an
annual interest rate of 9%, i.e. the daily rate r = ln(1+0.09)/365, a maturity
of 120 days, an averaging period of 30 days and three values: 0.2, 0.3 and
0.4 for the volatility b.

6.1 Evaluating the Upper Bound

Here we will look how sharp the upper bound is. Table 1 gives the values
obtained by Jacques and compares them with our results. The last two
columns give the relative difference between the price obtained by means
of the bound and the lognormal and the inverse Gaussian approximation
respectively.

We see that the prices obtained by means of the comonotone approxi-
mation are relatively close to the values obtained by either the lognormal as
well as the inverse Gaussian approximation. Furthermore, the results suggest
that the upper bound is sharper for options for which the exercise price K
is smaller than the initial stock price. The effect of the volatility level is less
clear as this seems to be intertwined with the effect of the exercise price.
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Table 1
Comparing copula results with LN and IG

b K LN IG Upper Bound Upper Bound vs LN Upper Bound vs IG
0.2 90 12.68 12.68 12.72 0.32% 0.32%

100 5.46 5.46 5.56 1.83% 1.83%
110 1.63 1.63 1.71 4.91% 4.91%

0.3 90 13.85 13.85 13.95 0.72% 0.72%
100 7.48 7.49 7.62 1.87% 1.74%
110 3.48 3.49 3.62 4.02% 3.72%

0.4 90 15.36 15.37 15.51 0.98% 0.91%
100 9.51 9.53 9.70 2.00% 1.78%
110 5.48 5.49 5.67 3.47% 3.82%

In table 2 we compare the upper bound with a price obtained by gener-
ating 10000 paths. This was done for three different options: the first with
a maturity of 120 days and 30 averaging dates, the second with a maturity
of 60 days and 30 averaging dates and the third one with again a maturity
of 120 days but only 10 averaging dates. In each case we considered the 5
following exercise prices: 80, 90, 100, 110 and 120.

Table 2
Comparing the upper bound with the simulated price, M = 120, N = 30

K Bound Simulation Relative Error
80 21.9269 21.9315 0.02%
90 12.7207 12.6907 0.24%

100 5.5563 5.4971 1.08%
110 1.7077 1.5839 7.82%
120 0.3675 0.3155 16.48%
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Table 3
Comparing the upper bound with the simulated price, M = 60, N = 30

K Bound Estimate Relative Error
80 20.7845 20.7334 0.25%
90 11.0601 10.9259 1.23%

100 3.3452 3.1357 6.68%
110 0.4084 0.3487 17.12%
120 0.0185 0.0066 178.58%

Table 4
Comparing the upper bound with the simulated price, M = 120, N = 10

K Bound Estimate Relative Error
80 22.1735 22.1013 0.33%
90 13.0233 13.0363 0.10%

100 5.8934 5.8885 0.08%
110 1.9442 1.8853 3.12%
120 0.4666 0.4292 8.72%

Again, we see that the upper bound is close to the estimated true price
for options that are in the money. The price estimate even exceeds the
upper bound for K = 90 in two cases: for M = 120, N = 10 and for
M = 120, N = 30. However, for options that are out of the money, the
upper bound becomes less accurate.

Note that the upper bound performs best for the option with M = 120
and N = 10 and worst when M = 60 and N = 30. This is probably due to
the fact that the upper Fréchet bound is a better model for the dependency
between the averaging values S(T − i), for small values of N and large values
of T .

7 Conclusion

Using some results from risk theory on comonotone risks and stop-loss order,
we were able to show that the price of an arithmetic Asian option can be
bounded from above by the price of a portfolio of European call options. The
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upper bound appears to be rather sharp if compared to simulated prices.
Furthermore, we showed that the exercise prices we derived optimize this
portfolio of European options.

References

D. DENNENBERG, ’Non-Additive Measure and Integral’, Kluwer Academic
Publishers, Boston, 1994

J. DHAENE, S. WANG, V. YOUNG, M. GOOVAERTS, Comonotonicity
and Maximal Stop-loss Premiums, submitted

M.J. GOOVAERTS and J. DHAENE, Supermodular Ordering and Stochas-
tic Annuities, accepted for publication in Insurance Mathematics and Eco-
nomics

M.J. GOOVAERTS, J. DHAENE and A. DE SCHEPPER, Stochastic Bounds
for Present Value Functions, Research Report 9914, Department of Applied
Economics K.U.Leuven

J. HARRISON and D. KREPS, Martingales and Arbitrage in Multiperiod
Securities Markets, Journal of Economic Theory 20 (1979), 381-408

J. HARRISON and R.PLISKA, Martingales and Stochastic Integrals in the
Theory of Continuous Trading, Stochastic Processes and their Applications
11 (1981), 215-260

M. JACQUES, On the Hedging Portfolio of Asian Options, ASTIN Bulletin
26 (1996), 165-183

A.G.Z. KEMNA and A.C.F. VORST, A Pricing Method for Options Based
on Average Asset Values, Journal of Banking and Finance 14 (1990), 113-129

D. LAMBERTON and B. LAPEYRE,’Introduction to Stochastic Calculus
Applied to Finance’ Chapman & Hall, London, 1996

L.C.G. ROGERS and Z. SHI, The Value of an Asian Option, Journal of
Applied Probability 32 (1995), 1077-1088

F.J. VAZQUEZ-ABAD and D. DUFRESNE, Accelerated Simulation For
Pricing Asian Options, Research Paper Nr 62, Centre for Actuarial Stud-
ies, The University of Melbourne

S. WANG and J. DHAENE, Comonotonicity, Correlation Order and Pre-
mium Principles

14


