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Abstract

This paper examines an integrated ratemaking scheme including a priori risk classification
and a posteriori experience rating. In order to avoid the high penalties implied by the
quadratic loss function, the symmetry between the overcharges and the undercharges is bro-
ken by introducing parametric loss functions of exponential type.

Key words and phrases: Bonus-Malus system, quadratic loss function, exponential loss func-
tion, credibility estimation, explanatory variables, experience rating, risk classification



1 Introduction and Motivation

One of the main tasks of the actuary is to design a tariff structure that will fairly distribute
the burden of claims among policyholders. If the risks in the portfolio are not all equal
to each other (which means that they have different distribution functions), it is fair to
partition all policies into homogeneous classes with all policyholders belonging to the same
class paying the same premium. The classification variables introduced to partition risks into
cells are called a priori variables (as their values can be determined before the policyholder
starts to drive); in automobile third-party liability insurance, they commonly include the
age, gender and occupation of the policyholders, the type and use of their car, the place
where they reside and sometimes even the number of cars in the household, marital status,
smoking behavior or the color of the vehicle. It is convenient to achieve a priori classification
by resorting on generalized linear models; see e.g. Renshaw (1994) or Pinquet (1997,1999)
for applications in actuarial sciences, and Mc Cullagh and Nelder (1989), Dobson (1990) or
Fahrmeir and Tutz (1994) for a general overview of the statistical theory.

However, many important factors cannot be taken into account at this stage; think for
instance of swiftness of reflexes, aggressiveness behind the wheel or knowledge of the highway
code. Consequently, tariff cells are still quite heterogeneous despite of the use of many a
priori variables. However, these hidden features are usually impossible to measure and to
incorporate in a price list. But it is reasonable to believe that these characteristics are
revealed by the number and sizes of claims reported by the policyholders over the successive
insurance periods. Hence the adjustment of the premium based on the individual claims
experience in order to restore fairness among policyholders.

It is interesting to mention that in North America, emphasis has traditionally been laid
on a priori ratings using many classifying variables whereas in continental Europe just a few
a priori variables were chosen and much importance was placed on the a posteriori evaluation
of drivers. However, European directives have introduced complete rating freedom since July
1994. Insurance companies operating in EU countries are now (theoretically) free to set up
their own rates, select their own classification variables and design their own Bonus-Malus
system. In most European countries, companies have taken advantage of this freedom by
introducing more rating variables. Indeed, in a competitive environment, the trend is towards
a portfolio segmentation spiral: because of commercial pressure, insurers tend to make use
of all available relevant information to match the premium as closely as the rating structure
used by competitors. Since the only item of interest is in fact the distribution function of
the claim amount produced by the driver during the year, which is impossible to measure,
it seems fair to correct the inadequacies of the a priori system by using an adequate Bonus-
Malus system. Such an experience rating system should be better accepted by policyholders
than arbitrary a priori classifications.

Rating systems that penalize insureds responsible for one or more accidents by pre-
mium surcharges (or maluses), and that reward claim-free policyholders by awarding them
discounts (or bonuses) are now in force in many developed countries. This a posteriori
ratemaking is a very efficient way of classifying policyholders into cells according to their
risk. As pointed out by Lemaire (1995), if insurers were allowed to use only one rating
variable, it should be some form of merit rating: the best predictor of the number of claims
incurred by a driver in the future is not age or car but past claims behavior. Besides encour-
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aging policyholders to drive carefully (i.e. counteracting moral hazard), they aim to better
assess individual risks, so that everyone will pay in the long run a premium corresponding
to his own claim frequency. Such systems are called no-claim discounts, experience rating,
merit rating, or Bonus-Malus systems. We will adopt here the latter terminology. For a thor-
ough presentation of the techniques relating to Bonus-Malus systems, we refer the interested
reader to Lemaire (1995).

The discussion in the remainder of this section is inspired from the paper by De Wit
and Van Eeghen (1984). Consider a portfolio of n policies from automobile third-party
liability insurance. The random variable Y models a quantity of actuarial interest for a
policy taken at random from the portfolio (for instance the amount of a claim, the aggre-
gate claims in one period, or the number of accidents at fault reported by the policyholder
during one period). In order to explain the outcomes of Y , the actuary has observable
covariates X = {X1, X2, . . . } at his disposal (e.g. age, gender and occupation of the pol-
icyholder, the place where he resides, type and use of his car, or even his marital status,
smoking behaviour or color of the car). However, Y also depends on a sequence of unknown
characteristics Z = {Z1, Z2, . . . } (e.g. annual mileage (that is, risk exposure), accuracy of
judgment, aggressiveness behind the wheel, drinking behaviour, etc.). Some of these quan-
tities are unobservable, others cannot be measured in a cost efficient way. The risk factors
for this policyholder are

Ω = X ∪ Z.

The “true” premium for this policyholder is E[Y |Ω]; it is worth mentioning that this premium
is a random variable but much less dispersed than Y itself, making insurance policies worth
to be bought. The situation can be summarized as described in Table 1.1. In this case, the
policyholder keeps the variations of the premiums due to the modifications in his personal
characteristics Ω and transfers to the company the purely random fluctuations of Y (that
is, the variance of the outcomes of Y once the personal characteristics X and Z have been
taken into account). As mentioned in Bowers et al. (1997), “In a competitive economy,
market forces will encourage insurers to price short-term policies so that deviations from
expected value will behave as independent random variables. Deviations should exhibit no
pattern that might be exploited by the insured or insurer to produce consistent gains. Such
consistent deviations would indicate inefficiencies in the insurance market”. Consequently,
the trend is towards a premium amount E[Y |Ω].

Carried by Carried by
the policyholder Insurer

Risk E[Y |Ω] Y − E[Y |Ω]
Expectation E[Y ] 0

Variance Var
{
E[Y |Ω]

}
E
{
Var[Y |Ω]

}

Table 1.1: Risk transfer between insurance company and policyholder in case of full infor-
mation.

Of course, since the elements of Z are unknown to the insurer, the situation described in
Table 1.1 is purely theoretical. Since the company only knows X, the reality of insurance
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business is rather as depicted in Table 1.2. Now, let us write

Var[Y |X] = E[Y 2|X]−
{
E[Y |X]

}2

= E
[
E[Y 2|Ω]

∣∣∣X
]
−
{
E
[
E[Y |Ω]

∣∣∣X
]}2

= E
[
Var[Y |Ω]

∣∣∣X
]

+ Var
[
E
[
E[Y |Ω]

∣∣∣X
]]
,

so that
E
{
Var[Y |X]

}
= E

{
Var[Y |Ω]

}
+ E

{
Var

[
E
[
E[Y |Ω]

∣∣∣X
]}
.

The first term in the latter sum, i.e. E{Var[Y |Ω]}, represents the purely random fluctuations
of the risk and is supported by the insurance company in virtue of the very basic principle
of insurance. On the contrary, the second term represents the variations of the expected
claims due to the unknown risk characteristics Z. This quantity should be corrected by an
experience rating mechanism.

Carried by Carried by
the policyholder Insurer

Risk E[Y |X] Y − E[Y |X]
Expectation E[Y ] 0

Variance Var
{
E[Y |X]

}
E
{
Var[Y |X]

}

Table 1.2: Risk transfer between insurance company and policyholder in case of partial
information.

Now, assume the insurance company incorporates more a priori variables in its tariff
structure, that is, X̃ is substituted for X with X ⊂ X̃; then

E
{
Var

[
E[Y |Ω]

∣∣∣X̃
]}
≤ E

{
Var

[
E[Y |Ω]

∣∣∣X
]}
,

that is, the residual heterogeneity in the portfolio is reduced. Consequently, the variance of
the insurer’s result is also reduced, i.e.

E
{
Var[Y |X̃]

}
≤ E

{
Var[Y |X]

}
.

The severity of the a posteriori corrections thus decreases as the information used by the
insurer increases.

Now, the idea behind experience rating is that past claims experience reveals the hidden
features Z. Let Y← denotes the past claims experience available about Y . The idea is that
the information contained in (X,Y←) becomes comparable to Ω as time goes on. Therefore,
the a posteriori premium is

E[Y |X,Y←].

Experience rating is based on the following mechanism:
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1. claim-free policyholders are rewarded by premium discounts called bonuses;

2. policyholders reporting one or more accidents at fault are penalized by premium sur-
charges called maluses.

The very aim of this paper is to examine the interaction between a priori ratemaking (i.e.
identification of the best predictors X and of the risk premium E[Y |X]) and a posteriori
ratemaking (i.e. premium corrections according to past claims history Y← in order to reflect
the unavalaible information contained in Z).

The paper is organized as follows. In Section 2, we briefly review the current methodology
of automobile ratemaking (at least in European countries), considering risk classification and
credibility as two different problems. This approach has flaws, as it will be demonstrated
further. The main reason is that experience rating aims to reduce the residual heterogeneity
of the portfolio, which obviously depends on the degree of a priori segmentation. Therefore,
a priori and a posteriori ratemaking have to be integrated in a continuous risk evaluation
mechanism. In Section 3, we present the results of Dionne and Vanasse (1989, 1992) and
Gisler (1996), as well as an alternative approach based on an exponential loss function. Such
loss functions have been considered by Ferreira (1977), Lemaire (1979), Young (1996) and
Denuit and Dhaene (2001), among others. All the methods examined in the present paper
are illustrated on the basis of a pedagogical example using a Spanish insurance portfolio.
This example takes only two risk factors into account and allows a deep understanding of
all the technical mechanisms. Adaptations of the methodology to real-life portfolio is then
straightforward. Several optimization programs will be extensively used throughout this
paper. Some of them are standard in actuarial sciences, others are less common. The reader
will find in an Appendix a description of all these results, together with proofs for the sake
of completeness.

2 Current Methodology

2.1 The model

Consider an automobile portfolio consisting of n policies. The amount of premium paid by
the policyholder depends on the rating factors of the current period (think for instance of the
type of the car or of the occupation of the policyholder) but also on the claim history. The
insurance premium is the product of a base premium and of a bonus-malus coefficient. The
base premium is a function of the current rating factors whereas the bonus-malus coefficient
only depends on the history of reported claims at fault.

The usual methodology can be described as follows. First, the insurance company
achieves risk classification using generalized linear models (Poisson or logistic regressions,
for instance), as explained e.g. in Renshaw (1994). This yields a partition of the portfolio
in disjoint risk classes RC1, RC2, . . . , RCK. In each risk class, the policies are identical
from the company point of view, whereas policies in different risk classes have distinct risk
profiles. A base premium BPi is set for each risk class RCi; the amount BPi is charged to
a new policyholder entering in RCi.
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Of course, inside each risk class, the policies are not identical stricto sensu. Therefore,
the premium is adjusted over time using a Bonus-Malus factor BMF (k, t) depending on
the number of years t the policy is in force and on the number of claims k reported during
this period; this factor is computed from a mixed Poisson distribution (usually the Negative
Binomial) estimated over the entire portfolio.

The base premium varies from a risk class to another and the same Bonus-Malus factor
is applied to all drivers. Methodologically, this approach is of course erroneous. Indeed, the
Bonus-Malus system has to correct the amounts of premium for the residual heterogeneity
existing in the different risk classes. Therefore, the severity of a Bonus-Malus system depends
on the risk class occupied by policyholders. Moreover, a company using many a priori risk
factors will have to apply softer Bonus-Malus coefficients than a company resorting on just
a few risk factors. Uniform Bonus-Malus systems imposed by regulatory authorities (as it is
the case in Belgium or in France) creates cross-subzidiation in insurance portfolios.

In order to determine the Bonus-Malus coefficients, the ith policy of the portfolio, i =
1, 2, . . . , n, is represented by a sequence (Θi, Ki1, Ki2, Ki3, . . . ) where Kij, j = 1, 2, . . . ,
represents the number of claims incurred by this policyholder during the jth year the policy
is in force, i.e. during the period (j − 1, j). Let

Ki•(t) =

t∑

j=1

Kij

be the number of claims reported during the first t years of insurance.
At the portfolio level, the sequences (Θi, Ki1, Ki2, Ki3, . . . ) are assumed to be independent

and identically distributed for i = 1, 2, . . . , n. The risk parameter Θi represents the risk
proneness of policyholder i, i.e. unknown risk characteristics of the policyholder having a
significant impact on the occurrence of claims; it is regarded as a random variable. Given
Θi = θ, the random variables Ki1, Ki2, Ki3, . . . are assumed to be independent and identically
distributed. Unconditionally, these random variables are dependent.

Let us denote as Zijk, k = 1, 2, . . . , Kij the amounts of the Kij claims reported by the
ith policyholder during the jth year provided policyholder i has been involved in at least
one claim (i.e. Kij ≥ 1). The total claim amount for this risk in year j is

Sij =

Kij∑

k=1

Zijk.

The severities Zijk, i = 1, 2, . . . , n, j, k ∈ N0, are assumed to be independent and identically
distributed, and independent of the claim frequencies Kij, j ∈ N0; it is worth mentioning
that this assumption has been questioned by several authors. It essentially states that the
cost of an accident is for the most part beyond the control of a policyholder. The degree of
care exercised by a driver mostly influences the number of accidents, but in a much lesser way
the cost of these accidents. Nevertheless, this assumption seems acceptable in third-party
liability insurance, e.g. because the payments of the insurance company are determined by
third-party characteristics. Note that the severities {Zijk, j, k ∈ N0} are also independent
of Θi
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We put EZijk ≡ 1, which means that the expected claim amount is chosen as monetary
unit. The pure premium for policy i in year j is then given by

E[Sij|Θi = θ] = E[Kij|Θi = θ] = θ;

A priori (i.e. without information about claims history), an identical amount of premium
EΘi is charged to new policyholders.

The annual numbers of claims [Ki1|Θi = θ], [Ki2|Θi = θ], . . . of the policyholder i are
assumed to be independent and to conform to a Poisson distribution with mean θ, i.e.

P[Kij = k|Θi = θ] = exp(−θ)θ
k

k!
, k ∈ N, j ∈ N0;

θ is the claim frequency of this policyholder and is assumed to be constant over time. Usually,
the common cumulative distribution function FΘ of the Θi’s, often called the structure
function, belongs to the two-parameter Gamma family, i.e.

dFΘ(θ) ≡ dΓ(θ|a, τ) =
τa exp(−τθ)θa−1

Γ(a)
dθ, a, τ > 0, θ ∈ R+. (2.1)

Henceforth, Γ(.|a, τ) denotes the cumulative distribution function associated to the Gamma
distribution with mean a/τ and variance a/τ 2. Under (2.1), it is well-known that the number
of claims for a policyholder randomly drawn from the portfolio follows a Negative Binomial
distribution, i.e. for any i = 1, 2, . . . , n,

P[Kij = k] =

(
k + a− 1

k

)(
τ

1 + τ

)a(
1

1 + τ

)k
, k ∈ N, j ∈ N0;

the Kij’s are thus identically distributed (but not independent, since they are generated by
the same policyholder, and thus contingent on the same risk parameter Θi).

2.2 A posteriori premiums

Now, suppose that policy i has been observed for t years and that ki•(t) claims have been
reported during this period. Classically, the premium for year t+ 1 is defined as a function
of the claims reported during the years 1, 2, . . . , t, Ψ(ki1, ki2, . . . , kit), say; the function Ψ is
determined by minimizing EL{θi−Ψ(ki1, ki2, . . . , kit)} for some loss function L, taken to be
non-negative, convex and such that L(0) = 0. The losses considered in this paper are the
standard quadratic loss where L(x) = x2 and the exponential loss with positive parameter c
where L(x) = exp(−cx). From the results recalled in Appendix, we easily get the following
results.

Proposition 2.1. (i) Under a quadratic loss function, the best estimator of the pure pre-
mium Θi under (2.1) is given by

W quad
t+1 =

a

τ
(1− ρquad) +

ki•(t)

t
ρquad with ρquad =

t

τ + t
.
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(ii) Under an exponential loss function with parameter c > 0, the best estimator of the pure
premium Θi under (2.1) is given by

W exp
t+1 =

a

τ

(
1− ρexp(c)

)
+
ki•(t)

t
ρexp(c) with ρexp(c) =

t

c
ln

(
1 +

c

τ + t

)
,

Proof. It suffices to invoke Proposition 4.1, noticing that in the Poisson-Gamma model, a
posteriori structure functions are still Gamma with updated parameters, i.e.

FΘ(.|Ki1 = k1, Ki2 = k2, . . . , Kit = kt) = Γ(.|a+ ki•(t), τ + t).

Considering Proposition 2.1, W quad
t+1 is a convex combination of the portfolio mean a/τ

and the observed average number of claims ki•(t)/t over the period [0, t]. The weight ρquad
given to the past claims tends to 1 as the length t of the observation period grows to +∞.
Similarly, W exp

t+1 is a convex combination of the theoretical mean a/τ and the average number
of claims ki•(t)/t per year over the period [0, t]. The weight ρexp(c) given to claim history
with the exponential loss function is smaller than that with a quadratic loss function; indeed,

ρexp(c) =
t

c
ln

(
1 +

c

τ + t

)
≤ t

τ + t
= ρquad.

The credibility factor being smaller, more weight is put on the overall mean a/τ and the a
posteriori premiums are less variable.

It is worth mentioning that in the Poisson-Gamma model, the Bayesian approach coin-
cides with the linear credibility estimator. In other words, Proposition 2.1 can be interpreted
in a semiparametric framework, as in the classical Bühlmann-Straub approach.

Remark 2.2. Let us examine the consequences of a variation of the parameter c involved.
Letting c tend to 0 yields

lim
c→0

W exp
t+1 = W quad

t+1 ;

when c tends to 0, we thus find the a posteriori premium associated with the quadratic loss.
Let us examine the limiting case c→ +∞: we have that

lim
c→+∞

ρexp(c) = 0 so that W exp
t+1 → a/τ.

This provides an intuitive meaning of the parameter c: if c increases, then the a posteriori
merit-rating scheme becomes less severe, and at the limit, the premium no more depends on
the incurred claims. Moreover, routine calculations show that

d

dc
ρexp(c) < 0,

so that the weight given to the observed average claim number decreases as c increases. The
credibility factor ρexp(c) decreases from ρquad when c = 0 to 0 as c→ +∞.
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Let Ii(t) denote the index of the risk class occupied by policyholder i during year t. Now,
the classical a posteriori premium for year t + 1 charged to policyholder i having reported
ki•(t) claims during the first t years is given by

P quad
t+1 (ki•(t), t) = BPIi(t+1)BMF quad(ki•(t), t) with

BMF quad(ki•(t), t) =
W quad
t+1

EΘi
=
a+ ki•(t)

τ + t
× τ

a
(2.2)

under a quadratic loss. Under an exponential loss, we get

P exp
t+1(ki•(t), t) = BPIi(t+1)BMF exp(ki•(t), t) with

BMF exp(ki•(t), t) =
W exp
t+1

EΘi

= 1− t

c
ln

(
1 +

c

τ + t

)
+ ln

(
1 +

c

τ + t

)
ki•(t)

c

τ

a
. (2.3)

These premiums appear thus as the product between a base premium BPIi(t+1) depending
on the personal characteristics of policyholder i at time t+ 1 and a Bonus-Malus coefficient
deduced from Proposition 2.1 (i.e. disregarding the partition of the portfolio in different risk
classes). The model used to determine the Bonus-Malus coefficients indeed assumes that all
the risks of the portfolio have the same a priori claim frequency and that the differences in
the claim frequency between the risks are only due to the individual risk characteristics Θi.
Hence, the model implicitly assumes that the tariff takes into account differences in claim
frequencies only by the Bonus-Malus and that such differences are not reflected, not even to
some extent, in the base premiums.

Now, let us briefly explain the reason why this approach is erroneous. The aim of the
Bonus-Malus system is to adjust the amount of premium according to past claim experience,
in order to reduce the residual heterogeneity in the different risk classes of the portfolio. Since
Bonus-Malus coefficients of Proposition 2.1 do not take into account explanatory variables,
they are function of the total heterogeneity of the portfolio, before tariff segmentation. In
other words, the Bonus-Malus factors penalize once again bad risks and reward once again
good risks.

2.3 Numerical illustration

In this section, we exemplify the traditional way of calculating credibility premiums. The
results of this section will be compared to those of Section 3.4. Let us consider the following
example involving data from a Spanish insurance company. As it can be seen from Table
2.1, policies have been categorized according to the age of the driver (three classes, namely
“less than 35 years”, “between 36 and 49 years” and “more than 50 years”) and the power
of the car (four classes, namely “less than 53 hp”, “between 54 hp and 75 hp”, “between 76
and 118 hp” and “more than 119 hp”). Each of the 12 cells in Table 2.1 gives the observed
mean claim frequency for the risk classes RC1, RC2, . . . , RC12. The complete structure
of the portfolio is described in Tables 2.2 and 2.3. One can find there the observed claim
distribution in each of the 12 risk classes. The symbols used are as follows: nik represents
the number of policies reporting k claims in RCi, k = 0, 1, 2, . . . , k

(i)
max, i = 1, 2, . . . , 12, and

ni• =

k
(i)
max∑

k=0

nik
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is the number of policies in RCi, i = 1, 2, . . . , 12.

Age
Power ≤ 35 35 < . ≤ 49 ≥ 50
≤ 53 0.1866 0.1572 0.1283

54 ≤ . ≤ 75 0.2685 0.2279 0.1986
76 ≤ . ≤ 118 0.2992 0.2526 0.2386
≥ 119 0.3217 0.2846 0.2483

Table 2.1: Observed mean claim frequencies according the classification factors Age and
Power.

We assume that the total number of claims Tij reported by policyholder j in RCi during
one period follows a Poisson distribution with mean λi. Moreover, the random variables
Ti1, Ti2, . . . are assumed to be independent. Therefore, the total number of claims Ti• =∑ni•

j=1 Tij reported by the ni• policyholders in RCi conform to a Poisson distribution with

mean ni•λi. The realisation of Ti• is ti• =
∑k

(i)
max

k=1 knik. Let us introduce the indicator
variables J2 and J3 such that

Jk =

{
1 if the policyholder is in Age category k
0 otherwise

k = 2, 3. Similarly, let us define L2, L3 and L4 as

Lk =

{
1 if the policyholder drives a car in category k
0 otherwise

k = 2, 3, 4. Each individual is represented by a vector

Xi = (1, j2, j3, `2, `3, `4);

the corresponding vector of parameters is

η = (ε, γ2, γ3, δ2, δ3, δ4).

When the counts are small, which is typically the case in automobile insurance, the
normal approximation is poor and fails to account for the discreteness of the data. Normal
regression should be avoided in this case. Generalized linear models provide an appropriate
framework for the analysis of count data. A linear model for the logarithm of the λi’s is often
used in actuarial science (see e.g. Pinquet (1997)). This provides a regression model for count
data analogous to the usual normal regression for continuous data According to standard
methodology of generalized linear models, the logarithmic function is also the natural link
for the Poisson distribution (see e.g. Dobson (1990)). We specify our model by a relation of
the form

lnλi + lnni• = ηtXi = ε +

3∑

k=2

γkJk +

4∑

k=2

δkLk. (2.4)
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≤ 35 35 < . ≤ 49 ≥ 50

≤ 53 k n1k k n2k k n3k

0 3,316 0 7,797 0 10,437
1 548 1 1,063 1 1,159
2 61 2 140 2 143
3 15 3 17 3 15
4 4 4 6 4 2
5 1 ≥ 5 0 5 1
≥ 6 6 1

≥ 7 0
n1• = 3,945 n2• = 9,023 n3• = 11,758
t1• = 736 t2• = 1,418 t3• = 1,509
x1 = 0.1866 x2 = 0.1751 x3 = 0.1283
s2

1 = 0.227 s2
2 = 0.1828 s2

3 = 0.1501

54 ≤ . ≤ 75 k n4k k n5k k n6k

0 9,470 0 21,031 0 22,788
1 1,916 1 3,775 1 3,766
2 445 2 720 2 591
3 84 3 143 3 109
4 21 4 36 4 24
5 7 5 11 5 5
6 0 6 2 6 4
7 1 7 1 ≥ 7 0
8 3 ≥ 8 0
≥ 9 0
n4• = 11,947 n5• = 25,719 n6• = 27,287
t4• = 3,208 t5• = 5,862 t6• = 5,420
x4 = 0.2685 x5 = 0.2279 x6 = 0.1986
s2

4 = 0.3635 s2
5 = 0.2946 s2

6 = 0.2451

Table 2.2: Observed claims distributions in the risk classes.
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≤ 35 35 < . ≤ 49 ≥ 50

76 ≤ . ≤ 118 k n7k k n8k k n9k

0 6,570 0 15,702 0 15,158
1 1,423 1 3,112 1 2,848
2 321 2 603 2 510
3 89 3 148 3 123
4 33 4 31 4 33
5 6 5 11 5 11
6 3 6 2 6 1
7 1 ≥ 7 0 7 3
8 1 0 8 1
≥ 9 0 ≥ 9 0
n7• = 8,447 n8• = 19,609 n9• = 18,688
t7• = 2,527 t8• = 4,953 t9• = 4,459
x7 = 0.2992 x8 = 0.2526 x9 = 0.2386
s2

7 = 0.4322 s2
8 = 0.3288 s2

9 = 0.3200

≥ 119 k n10;k k n11;k k n12;k

0 1,125 0 4,554 0 4,680
1 274 1 902 1 900
2 69 2 224 2 187
3 9 3 55 3 25
4 7 4 15 4 12
5 1 5 9 5 5
6 1 6 2 6 1
≥ 7 0 7 0 7 1

8 1 8 1
≥ 9 0 ≥ 9 0

n10• = 1,486 n11• = 5,762 n12• = 5,812
t10• = 478 t11• = 1,640 t12• = 1,443
x10 = 0.3217 x11 = 0.2846 x12 = 0.2483
s2

10 = 0.4376 s2
11 = 0.4214 s2

12 = 0.3408

Table 2.3: Observed claims distributions in the risk classes.
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In order to determine the maximum likelihood estimator of the paramete η, we have to
maximize

L(η) =

12∏

i=1

exp(−λini•)
(λini•)ti•

ti•!
.

The regularity conditions satisfied by the Poisson distribution ensure that the global maxi-
mum of the log-Likelihood function lnL is given uniquely by the solutions of ∂ lnL/∂η = 0.
It is easy to check that the maximum likelihood estimator η̂ of the parameter η are the
solutions of

12∑

i=1

(Ti• − ni•λi)Xij = 0, j = 1, 2, . . . , 6,

where Xij is the jth component of Xi. As pointed out by Pinquet (1997), this can be
interpreted as an orthogonality relation between the residuals and the covariates. Since the
rating factors have a finite number of levels and the explanatory variables are indicators of
these levels, this equation means that, for every sub-portfolio corresponding to a given level,
the sum of the premiums is equal to the total number of claims. Consequently, such a system
has the financial stability property. We finally get the results displayed in Table 2.4.

Parameter η Estimate η̂ Standard deviation Confidence interval 95%
ε -1.7219 0.0198 [−1.7607;−1.6831]
γ2 -0.1634 0.0147 [−0.1922;−0.1345]
γ3 -0.2800 0.0149 [−0.3093;−0.2508]
δ2 0.3987 0.0185 [0.3625; 0.4350]
δ3 0.5324 0.0189 [0.4953; 0.5694]
δ4 0.6150 0.0236 [0.5688; 0.6611]

Table 2.4: Estimation of the paramters in (2.4).

The vector η̂ is approximately gaussian for large sample sizes, with mean η and variance-
covariance matrix the inverse of the information matrix I. Let us recall that the element
(j, k) of I is

Ijk =

12∑

i=1

XijXikni•λi.

Computing the variance-covariance matrix yields

Î−1 =




0.000392 −0.000144 −0.000151 −0.000277 −0.000277 −0.000265
−0.000144 0.000217 0.000145 0.000002 0.000000 −0.000014
−0.000151 0.000145 0.000223 0.000008 0.000009 −0.000006
−0.000277 0.000002 0.000008 0.000342 0.000274 0.000273
−0.000277 0.000000 0.000009 0.000274 0.000357 0.000273
−0.000265 −0.000014 −0.000006 0.000273 0.000273 0.000555



.

Considering Table 2.4 all the parameters are significantly different from 0 (since no confi-
dence interval overlap 0), so that all the covariates are statistically significant. The expected
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claim numbers for each of the 12 cells are given in Table 2.5 (it is interesting to compare the
fitted results to their empirical counterparts given in Table 2.1). Table 2.5 thus gives the
base premiums attached to each of the 12 risk classes.

Age
Power ≤ 35 35 < . ≤ 49 ≥ 50
≤ 53 0.1787 0.1518 0.1351

54 ≤ . ≤ 75 0.2663 0.2262 0.2013
76 ≤ . ≤ 118 0.3044 0.2585 0.2300
≥ 119 0.3306 0.2808 0.2498

Table 2.5: Expected mean claim frequencies according the classification factors Age and
Power in the model 2.4.

In order to get the Bonus-Malus factors, let us consider the claim distribution corre-
sponding to the whole portfolio; it is given in Table 2.6. The Negative Binomial fit using
Maximum Likelihood is displayed in the third column. The a posteriori premiums are then
given by (2.2) and (2.3) with the estimated values of a and τ given by â = 0.8665 and
τ̂ = 3.9097.

k nk Neg. Bin. fit
0 122,628 122,713
1 21,686 21,656
2 4,014 4,116
3 832 801
4 224 158
5 68 31
6 17 6
7 7 1
8 7 0
≥ 9 0 0

Table 2.6: Observed claim distribution corresponding to the data in Table 2.1 together with
a fit to the Negative Binomial distribution with parameters â = 0.8665 and τ̂ = 3.9097.

Consider for instance a 30-year-old driver whose car is in the category “≤ 53”. His a
priori expected number of accidents is 0.1787 for the first 5 periods. In period 5, he reaches
35 years old, and his expected number of accidents becomes 0.1518. In the first half of
Table 2.7, one can see the bonus-malus coefficients and premiums for that individual. The
second column (entitled “BPt”) represents the expected number of accidents (i.e. the base
premium) for each period. The third column (entitled “BMF”) represents the bonus-malus
factor in case the policyholder does not cause any claims during (0, t) computed on the basis
of (2.2). Column 4 gives the total corresponding premium (product of elements of 2nd and
3d column). The two other blocks are analogous, for policyholders having reported 1 or
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2 claims during this period. Consider now a 30-year-old policyholder driving a car in the
category “≥ 119”. His expected claim frequency for the first five periods is 0.3306, and
0.2808 after. The second part of Table 2.7 shows the evolution of the premium amounts for
this individual. The bonus-malus factors are identical in the two tables but the premiums
differ substantially.

Car in category “≤ 53”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.1787 0.7963 0.1423 1.7154 0.3065 2.6344 0.4708
2 0.1787 0.6616 0.1182 1.4251 0.2547 2.1887 0.3911
3 0.1787 0.5658 0.1011 1.2189 0.2178 1.8719 0.3345
4 0.1787 0.4943 0.0883 1.0648 0.1903 1.6352 0.2922
5 0.1787 0.4388 0.0784 0.9453 0.1689 1.4517 0.2594
6 0.1518 0.3945 0.0599 0.8499 0.1290 1.3052 0.1981
7 0.1518 0.3584 0.0544 0.7720 0.1172 1.1856 0.1800
8 0.1518 0.3283 0.0498 0.7072 0.1073 1.0860 0.1649
9 0.1518 0.3028 0.0460 0.6524 0.0990 1.0019 0.1521
10 0.1518 0.2811 0.0427 0.6055 0.0919 0.9299 0.1412

Car in category “≥ 119”
0 Claim during (0, t) 1 Claim during (0, t) 2 Claims during (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.3306 0.7963 0.2633 1.7154 0.5671 2.6344 0.8709
2 0.3306 0.6616 0.2187 1.4251 0.4711 2.1887 0.7236
3 0.3306 0.5658 0.1871 1.2189 0.4030 1.8719 0.6189
4 0.3306 0.4943 0.1634 1.0648 0.3520 1.6352 0.5406
5 0.3306 0.4388 0.1451 0.9453 0.3125 1.4517 0.4799
6 0.2808 0.3945 0.1108 0.8499 0.2386 1.3052 0.3665
7 0.2808 0.3584 0.1006 0.7720 0.2168 1.1856 0.3329
8 0.2808 0.3283 0.0922 0.7072 0.1986 1.0860 0.3050
9 0.2808 0.3028 0.0850 0.6524 0.1832 1.0019 0.2813
10 0.2808 0.2811 0.0789 0.6055 0.1700 0.9299 0.2611

Table 2.7: Bonus-Malus coefficients and a posteriori premiums (2.2) for a 30-year-old poli-
cyholder.

Table 2.8 is the analog of Table 2.7 for an exponential loss. The Bonus-Malus factors
in column 3 are computed from (2.3). The value 12.93 for the parameter c has been set in
such a way that the variance of the a posteriori premiums paid by a policyholder during
the first 10 years represents 50% of the variance if the premiums were computed under a
quadratic loss; for more details, see Denuit and Dhaene (2001). It is interesting to compare
the Bonus-Malus factors in Tables 2.7 and 2.8. When an exponential loss is used, the size of
the maluses is reduced. Since the system is financially balanced, this implies that the size of
the bonuses is also reduced.
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Car in category “≤ 53”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.1787 0.9002 0.1609 1.3505 0.2413 1.8007 0.3218
2 0.1787 0.8207 0.1467 1.2253 0.2190 1.6299 0.2913
3 0.1787 0.7553 0.1350 1.1234 0.2007 1.4915 0.2665
4 0.1787 0.7003 0.1251 1.0384 0.1856 1.3765 0.2460
5 0.1787 0.6533 0.1167 0.9662 0.1727 1.2791 0.2286
6 0.1518 0.6125 0.0930 0.9039 0.1372 1.1953 0.1815
7 0.1518 0.5768 0.0876 0.8496 0.1290 1.1224 0.1704
8 0.1518 0.5452 0.0828 0.8017 0.1217 1.0583 0.1606
9 0.1518 0.5170 0.0785 0.7591 0.1152 1.0013 0.1520
10 0.1518 0.4916 0.0746 0.7210 0.1095 0.9504 0.1443

Car in category “≥ 119”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.3306 0.9002 0.2976 1.3505 0.4465 1.8007 0.5953
2 0.3306 0.8207 0.2713 1.2253 0.4051 1.6299 0.5388
3 0.3306 0.7553 0.2497 1.1234 0.3714 1.4915 0.4931
4 0.3306 0.7003 0.2315 1.0384 0.3433 1.3765 0.4551
5 0.3306 0.6533 0.2160 0.9662 0.3194 1.2791 0.4229
6 0.2808 0.6125 0.1720 0.9039 0.2538 1.1953 0.3356
7 0.2808 0.5768 0.1620 0.8496 0.2386 1.1224 0.3152
8 0.2808 0.5452 0.1531 0.8017 0.2251 1.0583 0.2972
9 0.2808 0.5170 0.1452 0.7591 0.2132 1.0013 0.2812
10 0.2808 0.4916 0.1381 0.7210 0.2025 0.9504 0.2669

Table 2.8: Bonus-Malus coefficients and a posteriori premiums (2.3) for a 30-year-old poli-
cyholder, with c = 12.93.

3 Integrated Ratemaking

3.1 Claim frequency model

In seminal papers, Dionne and Vanasse (1989, 1992) proposed a Bonus-Malus system which
integrates a priori and a posteriori information on an individual basis. These authors in-
troduced a regression component in the Poisson counting model in order to use all available
information in the estimation of accident frequency.

Let us assume that the number of claims Kit for the ith policyholder of the portfolio dur-
ing the year t conforms to a Poisson distribution with mean λIi(t), where Ii(t) is the index
of the risk class occupied by policyholder i in year t. A common problem for count data is
that, even after allowing for important explanatory variables using the Poisson regression
model, the fits obtained are rather poor. This indicates that, conditional upon the explana-
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tory variables included in the final model, the variance of an observation is greater than its
mean, implying that the Poisson assumption is incorrect. Most often, this is due to the fact
that important explanatory variables may not have been measured and are consequently
incorrectly excluded from the regression relationship.

A convenient way to take this phenomenon into account is to introduce a random effect
in this model; see e.g. Pinquet (1999). We assume that Kit follows a Poisson distribution
with mean λIi(t)Θi, where Θi conforms to a Gamma distribution with unit mean, i.e. with
parameters (α, α). Then, Kit follows a Negative Binomial law, i.e.

P[Kit = k|Ii(t)] =

(
α + k − 1

k

)(
λIi(t)

α + λIi(t)

)k (
α

α + λIi(t)

)α
, k ∈ N.

The meaning of Θi is that of an error term; Θi represents the impact on the mean claim
frequency of all the policyholders’ characteristics not taken into account a priori. On average,
Θi has no impact on the claim frequency since EKit = λIi(t). Let us now derive the a posteriori
distribution of Θi.

Lemma 3.1. If the distribution function of Θi is Γ(.|α, α) then the distribution function of
[Θi|Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit] is Γ(.|α + ki•(t), α + λi•(t)) where

ki•(t) =

t∑

j=1

kij and λi•(t) =

t∑

j=1

λIi(j).

Proof. Bayes theorem yields

dP[Θi ≤ θ|Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit]

=
P[Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit|Θi = θ]dP[Θi ≤ θ]

P[Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit]

=
θki•(t) exp(−θλi•(t))ααθα−1 exp(−αθ)dθ
αα
∫
ξ∈ �

+ ξki•(t)+α−1 exp(−αλi•(t)ξ)dξ
,

as announced.

In order to estimate the parameter α describing the residual heterogeneity of the portfolio,
we use the Maximum Likelihood method. Precisely, we maximize

L(α) =

12∏

i=1

k
(i)
max∏

k=0

{(
α+ k − 1

k

)(
λi

α + λi

)k (
α

α+ λi

)α}nik

;

this yields α̂ = 0.8157.

3.2 A posteriori premium using a quadratic loss

In the model described in the preceding section, Dionne and Vanasse (1989,1992) and Gisler
(1996) have obtained the following result; it can be seen as a direct consequence of Proposi-
tion 4.1 and its proof is thus omitted.
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Proposition 3.2. Assume that the distribution function of Θi is Γ(α, α). Under a quadratic
loss, the a posteriori premium for policyholder i is given by

P quad
t+1 = λIi(t+1)BMF quad(ki•(t), λi•(t)),

where the Bonus-Malus coefficient is given by

BMF quad(ki•(t), λi•(t)) =
α+ ki•(t)

α + λi•(t)
= (1− ρquad)× 1 + ρquad

ki•(t)

λi•(t)

with

ρquad =
λi•(t)

α + λi•(t)
.

The a posteriori premium P quad
t+1 can be considered as the product of a base premium λi;t+1

and a bonus-malus coefficient BMF quad(ki•(t), λi•(t)). Note that the greater the variance
of Θi (i.e. the smaller α) the greater ρquad (i.e. the greater the weight given to the claim
history of the policyholder). Moreover, ρquad is clearly increasing in λi•. If λi• is very small
(which is for instance the case for policies with a high deductible) then ρquad is very small,
too. The no-claim discount for such policies is thus also very small and as pointed out by
Gisler (1996) the usefulness of Bonus-Malus systems can be questioned in this case. It is
worth mentioning that it is very similar to the credibility factor obtained without covariates,
except that now, the length of year t for policyholder i is λit instead of 1. In other words,
the length of the time periods is determined by the relating base premiums.

3.3 A posteriori premium using exponential loss

The use of a quadratic loss function leads to very high maluses. Although theoretically
correct, such a system is not accepted by policyholders. In order to have a model with a
parameter controlling the severity of the system, let us now incorporate a priori variables in
the exponential loss function.

Proposition 3.3. Assume that the distribution function of Θi is Γ(.|α, α). Under an ex-
ponential loss with parameter c > 0, the a posteriori premium for policyholder i is given
by

P exp
t+1 = λIi(t+1)BMF exp(ki•(t), λi•(t))

where the Bonus-Malus coefficient is given by

BMF exp(ki•(t), λi•(t)) = (1− ρexp)× 1 + ρexp ×
ki•(t)

λi•(t)

with

ρexp =
λi•(t)

c
ln

(
1 +

c

α + λi•(t)

)
.
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Proof. From Lemma 3.1, we get

E
[
exp(−cΘi)|Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit

]
=

(
α + λi•(t)

α + λi•(t) + c

)α+ki•(t)

,

whence it follows that

lnE
[
exp(−cΘi)|Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit

]
= −(α + ki•(t)) ln

(
1 +

c

α + λi•(t)

)

and

E lnE
[
exp(−cΘi)|Ki1 = ki1, Ki2 = ki2, . . . , Kit = kit

]
= −(α + λi•(t)) ln

(
1 +

c

α + λi•(t)

)

The result then follows from Proposition 4.1.

Let us now compare the Bonus-Malus coefficients obtained with a quadratic and expo-
nential loss functions. Since for any c ≥ 0,

ln

(
1 +

c

α + λi•

)
≤ c

α+ λi•
,

it is easily seen that ρexp(c) ≤ ρquad; the weight given to past claims is thus smaller under
an exponential loss.

It can be shown that ρexp(c) → 0 as c → +∞. If the asymmetry factor c tends to
+∞ then all the risks within the same tariff class pay the same premium: there is no more
experience rating. Conversely, ρexp(c) → ρquad as c → 0. The results obtained by Dionne
and Vanasse (1989,1992) so appear as limit cases of those obtained with an exponential loss
function.

3.4 Numerical illustration

Let us first compute the premium for these two policyholders using Dionne-Vanasse’s method-
ology. This yields the results in Table 3.1. Contrarily to Table 2.7, the Bonus-Malus factors
are not the same for both individuals. The differences are explained by the presence of per-
sonal characteristics in the calculation of these factors. Comparing the bonus-malus factors
of Table 2.7 and 3.1, we find that once the a priori variables are introduced the sizes of
the bonuses and of the maluses are reduced. Technically, this means that part of the het-
erogeneity has been taken into account in the a priori differentiation of the premiums, so
that the residual heterogeneity is smaller and the magnitude of the a posteriori corrections
is reduced. It is interesting to note that even if the policyholder whose car is in category
“≤ 53” always pays a premium smaller that the corresponding premium for the driver in
category “≥ 119”, his Bonus-Malus factors are always greater (i.e. he has less bonuses and
more maluses). This comes from the fact that “good” risks are rewarded in their base pre-
miums (through the a priori variables incorporated in the tariff); consequently, the size of
bonus they require for equity is reduced. In other words, the premium discount awarded to

18



Car in category “≤ 53”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.1787 0.8203 0.1466 1.8259 0.3263 2.8316 0.5060
2 0.1787 0.6953 0.1243 1.5478 0.2766 2.4002 0.4289
3 0.1787 0.6034 0.1078 1.3432 0.2400 2.0829 0.3722
4 0.1787 0.5330 0.0952 1.1863 0.2120 1.8397 0.3288
5 0.1787 0.4772 0.0853 1.0623 0.1898 1.6474 0.2944
6 0.1518 0.4383 0.0665 0.9757 0.1481 1.5130 0.2297
7 0.1518 0.4053 0.0615 0.9021 0.1369 1.3989 0.2124
8 0.1518 0.3768 0.0572 0.8388 0.1273 1.3008 0.1975
9 0.1518 0.3521 0.0535 0.7838 0.1190 1.2155 0.1845
10 0.1518 0.3305 0.0502 0.7356 0.1117 1.1408 0.1732

Car in category “≥ 119”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.3306 0.7945 0.2626 1.4162 0.4682 2.0379 0.6737
2 0.3306 0.6590 0.2179 1.1747 0.3884 1.6905 0.5589
3 0.3306 0.5630 0.1861 1.0036 0.3318 1.4442 0.4775
4 0.3306 0.4914 0.1625 0.8760 0.2896 1.2606 0.4168
5 0.3306 0.4360 0.1441 0.7772 0.2569 1.1184 0.3697
6 0.2808 0.3979 0.1117 0.7092 0.1992 1.0206 0.2866
7 0.2808 0.3659 0.1027 0.6522 0.1831 0.9386 0.2635
8 0.2808 0.3387 0.0951 0.6037 0.1695 0.8687 0.2439
9 0.2808 0.3152 0.0885 0.5619 0.1578 0.8085 0.2270
10 0.2808 0.2948 0.0828 0.5255 0.1476 0.7562 0.2123

Table 3.1: Bonus-Malus coefficients and a posteriori premiums of Proposition 3.2 for a 30-
year-old policyholder.

risks judged as “good” a priori has to be smaller than the bonus awarded to those judged as
“bad” a priori. Conversely, the penalties in case of claims is more important.

The same remarks hold for the Bonus-Malus coefficients obtained with an exponential
loss function presented in Table 3.2. The severity of the a posteriori corrections is weaker
than with a quadratic loss function, as expected.

4 Appendix: Credibility Models with quadratic and

exponential loss functions

We give here all the technical results used throughout this paper. Those involving a quadratic
loss are standard. The use of an exponential loss function has been advocated in actuarial
sciences by Ferreira (1977) and Lemaire (1979) in the context of Bonus-Malus systems. Such
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Car in category “≤ 53”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMFt Premium Pt+1 BMFt Premium Pt+1 BMFt Premium Pt+1

1 0.1787 0.9635 0.1722 1.1676 0.2087 1.3718 0.2451
2 0.1787 0.9313 0.1664 1.1236 0.2008 1.3159 0.2352
3 0.1787 0.9022 0.1612 1.0846 0.1938 1.2669 0.2264
4 0.1787 0.8758 0.1565 1.0495 0.1876 1.2232 0.2186
5 0.1787 0.8516 0.1522 1.0177 0.1819 1.1838 0.2115
6 0.1518 0.8324 0.1264 0.9927 0.1507 1.1531 0.1750
7 0.1518 0.8144 0.1236 0.9694 0.1472 1.1245 0.1707
8 0.1518 0.7974 0.1210 0.9476 0.1438 1.0978 0.1666
9 0.1518 0.7813 0.1186 0.9270 0.1407 1.0728 0.1628
10 0.1518 0.7660 0.1163 0.9076 0.1378 1.0492 0.1593

Car in category “≥ 119”
0 Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t)

t BPt BMF Premium BMF Premium BMF Premium
1 0.3306 0.9359 0.3094 1.1298 0.3735 1.3238 0.4377
2 0.3306 0.8835 0.2921 1.0597 0.3503 1.2359 0.4086
3 0.3306 0.8390 0.2774 1.0013 0.3310 1.1636 0.3847
4 0.3306 0.8003 0.2646 0.9513 0.3145 1.1023 0.3644
5 0.3306 0.7660 0.2532 0.9075 0.3000 1.0491 0.3468
6 0.2808 0.7396 0.2077 0.8743 0.2455 1.0089 0.2833
7 0.2808 0.7154 0.2009 0.8439 0.2370 0.9724 0.2731
8 0.2808 0.6931 0.1946 0.8161 0.2292 0.9391 0.2637
9 0.2808 0.6723 0.1888 0.7904 0.2219 0.9084 0.2551
10 0.2808 0.6530 0.1834 0.7665 0.2152 0.8800 0.2471

Table 3.2: Bonus-Malus coefficients and a posteriori premiums of Proposition 3.3 for a 30-
year-old policyholder, with c = 12.93.

loss functions have been successively applied by Denuit and Dhaene (2001) to the design of
Bonus-Malus system in a Markovian setting.

Let us consider a sequence of random variables {X1, X2, X3, . . . } and a risk parameter Θ;
in the remainder of this section, Θ is a random variable, or possibly a sequence of random
variables. In the latter case, Θ = {Θ1,Θ2, . . . } and it is assumed that Xi depends on Θ
only through Θi. Given Θ, the Xi’s are independent. The first two moments of the Xi’s are
assumed to be finite. Moreover, the conditional mean of the Xi’s is given by

µi(Θ) = E[Xi|Θ], i = 1, 2, 3, . . . ,

and Eµi(Θ) = µi.

Proposition 4.1. (i) The minimum of

E
(
µn+1(Θ)−Ψ(X1, X2, . . . , Xn)

)2
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on all the measurable functions Ψ : Rn → R is obtained for

Ψ∗(X1, X2, . . . , Xn) = E[µn+1(Θ)|X1, X2, . . . , Xn].

(ii) The minimum of

E exp
{
− c
(
µn+1(Θ)−Ψ(X1, X2, . . . , Xn)

)}

on all the measurable functions Ψ : Rn → R satisfying the constraint EΨ(X1, X2, . . . , Xn) =
µn+1 is obtained for

Ψ∗(X1, X2, . . . , Xn) = µn+1 +
1

c

{
E
[
lnE [exp(−cµn+1(Θ))|X1, X2, . . . , Xn]

]

− lnE [exp(−cµn+1(Θ))|X1, X2, . . . , Xn]
}
.

Proof. (i) is a classical result; a proof can be found in any statistical textbook. An easy way
to get it consists in noting that

E
(
µn+1(Θ)−Ψ(X1, X2, . . . , Xn)

)2

= E
(
µn+1(Θ)−Ψ∗(X1, X2, . . . , Xn) + Ψ∗(X1, X2, . . . , Xn)− Ψ(X1, X2, . . . , Xn)

)2

= E
(
µn+1(Θ)−Ψ∗(X1, X2, . . . , Xn)

)2

+ E
(
Ψ∗(X1, X2, . . . , Xn)−Ψ(X1, X2, . . . , Xn)

)2

,

which is clearly minimal for Ψ ≡ Ψ∗.
Let us now turn to (ii). Starting from

E exp
{
− c
(
µn+1(Θ)−Ψ(X1, X2, . . . , Xn)

)}

= E
[
exp {cΨ(X1, X2, . . . , Xn)}E [exp{−cµn+1(Θ)}|X1, X2, . . . , Xn]

]

= E exp
{
c(Ψ(X1, X2, . . . , Xn)− Ψ∗(X1, X2, . . . , Xn))

}

exp{cµn+1} exp
{
E lnE

[
exp{−cµn+1(Θ)}|X1, X2, . . . , Xn

]}
.

Now, let us apply Jensen’s inequality to get

E exp
{
− c
(
µn+1(Θ)− Ψ(X1, X2, . . . , Xn)

)}

≥ exp
{
cE [Ψ(X1, X2, . . . , Xn)− Ψ∗(X1, X2, . . . , Xn)]

}

exp{cµn+1} exp
{
E lnE

[
exp{−cµn+1(Θ)}|X1, X2, . . . , Xn

]}
.

Because of the constraint on the expectation of the Ψ’s, the first exponential is 1, yielding
the announced result.

Remark that in (ii) the constraint is made in order to guarantee the financial equilibrium.
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