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École d’Actuariat

Université Laval
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Abstract

The aim of this paper is to apply the method proposed by Denuit, Genest and
Marceau (1999) for deriving stochastic upper and lower bounds on the present value
of a sequence of cash flows, where the discounting is performed under a given stochas-
tic return process. The convex approximation provided by Goovaerts, Dhaene and
De Schepper (2000) and Goovaerts and Dhaene (1999) is then compared to these
stochastic bounds. On the basis of several numerical examples, it will be seen that
the convex approximation seems reasonable.
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Résumé.

Le but de cet article est d’appliquer la méthode proposée par Denuit, Genest et
Marceau (1999) afin d’obtenir des bornes supérieures ou inférieures au sens de la
dominance stochastique sur la valeur actuelle d’une série de flux financiers lorsque le
taux d’intérêt obéit à un processus stochastique donné. L’approximation au sens de
l’ordre convexe proposée par Goovaerts, Dhaene et De Schepper (2000) et Goovaerts
et Dhaene (1999) est ensuite comparée aux bornes évoquées plus haut. Sur base de
plusieurs exemples numériques, l’approximation convexe semble raisonnable.
Mots-clé: dépendance, dominance stochastique, annuités stochastiques



1 Introduction

Let Vt be the present value at time 0 of an amount of αt paid at time t. The stochastic
discounted value at time 0 of payments of amount αt made at times t = 1, 2, · · · , n
is then given by

Zn = V1 + V2 + · · ·+ Vn. (1.1)

Consider for instance an insurance company facing payments of amount αt at times
t = 1, 2, · · · , n; the present value of these n deterministic payments is given by (1.1).

The Vi’s involved in (1.1) are obviously correlated, so that the convenient indepen-
dence assumption for the summands in Zn is not realistic. As a consequence, an exact
expression for the cumulative distribution function of Zn requires the knowledge of the
joint distribution of the random vector (V1, V2, · · · , Vn), which is in general not avail-
able. Goovaerts, Dhaene and De Schepper (2000) recently proposed to circumvent

this problem by approximating Zn by means of a random variable Z̃n dominating
the original Zn in the convex sense. If we denote by F1, F2, · · · , Fn the respective
distribution functions of V1, V2, . . . , Vn involved in (1.1), Z̃n is given by

Z̃n = F−1
1 (U) + F−1

2 (U) + · · ·+ F−1
n (U),

where U is a unit uniform random variable and the F−1
i ’s are the quantile functions

associated to the Fi’s. We obviously have that EZn = EZ̃n and it can be shown that
the inequalities

Emax{Zn − d, 0} ≤ Emax{Z̃n − d, 0} (1.2)

hold for any d ≥ 0 (that is, Zn is smaller than Z̃n in the convex order).

Since Z̃n precedes Zn in the convex sense, the approximation Z̃n is considered
as less favorable by all the risk-averse decision-makers, and the method is thus con-
servative. Moreover, the cumulative distribution function of Z̃n enjoys an explicit
expression and is particularly easy to handle. On the basis of numerical illustrations
performed in a situation where the exact cumulative distribution function of Zn can be
obtained, Goovaerts et al. (1999) showed that the cumulative distribution functions

of Zn and Z̃n seem to be rather close.
The problem of estimating the distribution of Zn has been studied, among oth-

ers, by Beekman and Fuelling (1991), De Schepper and Goovaerts (1992), Dufresne
(1990), Frees (1990), Parker (1994c,1997), De Schepper, Teunen, Goovaerts (1994)
and Vanneste, Goovaerts and Labie (1994). This paper aims to carry on with
Goovaerts et al.’s (1999) approach by providing lower and upper bounds on Zn in
the stochastic dominance sense, using the method proposed in Denuit, Genest and
Marceau (1999). This approach also provides upper and lower bounds on the quan-
tiles of Zn. In risk management, these quantiles correspond to the Value at Risk
at different probability levels. Such bounds cannot be obtained with the aid of the
convex approximation Z̃n. Indeed, we see from (1.2) that the stop-loss premium of

Z̃n is an upper bound of the stop-loss premium of Zn; more generally, Eφ(Z̃n) is an
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upper bound for Eφ(Zn) for any convex function φ. However, there is in general no

relation between P [Zn ≤ z] and P [Z̃n ≤ z] (since indicator functions are not convex).
Another purpose of this work is to provide several numerical illustrations which

enhance the practical interest of our approach. In these illustrations, we will exam-
ine the position of the cumulative distribution function corresponding to the convex
approximation Z̃n in the admissible region delimitated by the stochastic bounds on
Zn. As a byproduct of our results, the error in the approximation of Zn by Z̃n can
be evaluated (in other words, we get an upper bound for the Kolmogorov distance

between Zn and Z̃n).

2 Stochastic bounds on Zn

In this section, we recall how to build two functions Fmin and Fmax such that the
inequalities

Fmin(t) ≤ P [Zn ≤ t] ≤ Fmax(t) for all t ≥ 0, (2.1)

hold, as well as

Fmin(t) ≤ P [Z̃n ≤ t] ≤ Fmax(t) for all t ≥ 0. (2.2)

To this end, we use the following result due to Denuit et al. (1999, Proposition 2). Let
F1, F2, · · · , Fn be the respective cumulative distribution functions of V1, V2, . . . , Vn.
Then, the cumulative distribution function FZn of Zn = V1+V2+. . .+Vn is constrained
by (2.1) with

Fmin(t) = sup
(v1,v2,... ,vn)∈Σ(t)

max

{
n∑

i=1

P [Vi < vi]− (n− 1), 0

}
,

and

Fmax(t) = inf
(v1 ,v2,... ,vn)∈Σ(t)

min

{
n∑

i=1

Fi(vi), 1

}
,

where
Σ(t) = {(v1, v2, . . . , vn) ∈ IRn|v1 + v2 + . . .+ vn = t}, t ∈ IR.

Note that Fmax is a bona fide cumulative distribution function, whereas Fmin is the left-
continuous version of some cumulative distribution function. The bounds in (2.1) and

(2.2) are the best-possible bounds on Zn and Z̃n in the sense of stochastic dominance
when we know the distribution functions F1, F2, . . . , Fn, but no assumption is made
on the dependence structure between the Vi’s. Equivalently, these bounds hold for
all sums (1.1) with given cumulative distribution functions for V1, V2, . . . , Vn.

Closed form expressions for the bounds (2.1) can in general not be obtained for
distributions of the Vi’s and one must resort to numerical evaluation. For more details,
see Denuit et al. (1999).
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Now, assume we have at our disposal some partial knowledge of the dependence
existing between the Vi’s, namely that there exists a multivariate cumulative distri-
bution function G satisfying

G(v1, v2, · · · , vn) ≤ P [V1 ≤ v1, V2 ≤ v2, · · · , Vn ≤ vn] for all v1, v2, . . . , vn ∈ IR,
(2.3)

and a joint decumulative distribution function H such that

P [V1 > v1, V2 > v2, · · · , Vn > vn] ≥ H(v1, v2, · · · , vn) for all v1, v2, · · · , vn ∈ IR.
(2.4)

From Denuit et al. (1999, Proposition 5), the inequalities

sup
(x1,x2,··· ,xn)∈Σ(t)

G(x1, x2, · · · , xn) ≤ FZn(t) ≤ 1− sup
(x1,x2,··· ,xn)∈Σ(t)

H(x1, x2, · · · , xn),

(2.5)

hold for all t ∈ IR. The bounds in (2.5) are obviously more accurate than those in
(2.1).

In the literature, several notions of positive dependence have been introduced in
order to express the fact that large values of one of the components of a random vector
tend to be associated with large values of the others. In our context, one intuitively
feels that in most situations the Vi’s mainly “move together” (i.e. a large value of Vi
is usually followed by a large value of Vi+1). For the numerical illustrations in this
paper, we will assume that (2.3) and (2.4) are satisfied with

G(v1, v2, · · · , vn) =

n∏

i=1

Fi(vi)

and

H(v1, v2, · · · , vn) =
n∏

i=1

(1− Fi(vi)).

In such a case, the Vi’s are said to be Positively Orthant Dependent (POD, in short).
POD comes thus down to assume that the probability that all the Vi’s assume “small”
values (i.e. Vi ≤ vi, i = 1, 2, . . . , n) is larger than the corresponding probability under
the assumption that the Vi’s are mutually independent. The interpretation for H is
similar by substituting “large” for “small”. For more details, see, e.g., Szekli (1995,
pp. 144-145).

3 Applications

3.1 Stochastic annuities

Let δs be the force of interest at time s and let Yt denote the force of interest accu-
mulation function at time t, i.e.

Yt =

∫ t

s=0

δsds.
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The random present value at time 0 of a payment of 1 monetary unit at time t is
given by exp(−Yt), t ≥ 0.

As noticed by Parker (1994b), there are mainly two possible approaches to model
the interest randomness, namely the modeling of Yt and the modeling of δs. In the
first approach, we could let Yt be the sum of a deterministic drift of slope δ and a
perturbation modeled by a Wiener process, i.e.

Yt = δt+ σWt, t ∈ IR+, (3.1)

where σ is a non-negative constant and {Wt, t ∈ IR+} is a standardized Brownian
motion. In such a case, Vt is log-normally distributed with parameters −δt and σ2t.
This corresponds to the approach adopted by Goovaerts et al. (1999) who considered
a discounted cash flow Zn of the form

Zn =

n∑

i=1

exp(−δi−Xi),

where the Xi’s are assumed to be normally distributed with mean 0 and variance iσ2,
and δ is the expected force of interest. The convex upper bound Z̃n on Zn obtained
by Goovaerts et al. (1999) is

Z̃n =
n∑

i=1

exp
{
−δi− σ

√
iΦ−1(U)

}
, (3.2)

where Φ is the cumulative distribution function of a standard normal distribution and
U is a random variable uniformly distributed on the unit interval [0, 1]. The survival

function of Z̃n then follows from

P [Z̃n > x] = 1− F �

Zn
(x) = Φ(νx),

with νx the root of the equation

n∑

i=1

αi exp(−δi−
√
iσνx) = x.

Let us now investigate the accuracy of the bounds (2.1) and (2.5) on the distribution
function of Zn in the model (3.1). In Figure 1, one sees the functions Fmin and Fmax

involved in (2.1). with in between the approximation F �

Zn
of the unknown FZn for

n = 10, δ = 0.08 and σ = 0.02. Figure 3 is the analog for n = 20. Comparing the
cumulative distribution function of the convex approximation (3.2) with the stochastic
bounds (2.1), we see from Figures 1 and 3 that (3.2) lies in the very middle of
the admissible region bordered by Fmin and Fmax. This indicates that (3.2) could
be reasonable. In Figures 2 and 4, we further assume that the Vi’s are POD and
we computed the improved bounds furnished in (2.1). Only the lower bound got
improved. As it is observed in Example 3 of Denuit et al. (1999), both upper and
lower bounds on the distribution of a sum of random variables got improved when the
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Figure 1: Graph of the bounds (2.1) and cumulative distribution function of Z̃10 for
(3.1) with δ = 0.08 and σ = 0.02.

supports of the random variables are of the form [ai, bi] with −∞ < ai < bi < +∞. If
bi is equal to +∞ as in Example 1 of Denuit et al. (1999), only the lower bound will
be improved with the assumption of POD. In our examples, the random variables are
lognormally distributed with supports corresponding to [0,+∞). If, as in Goovaerts
and Dhaene (1999), δt is defined by a CIR model, then Yt will be strictly positive,
Vt = exp(−Yt) will take values between 0 and 1, and therefore upper and lower bounds
on the distribution of Zt will have been improved.

A second approach to model interest randomness is to model δs. For instance, the
force of interest can be defined by the differential equation

dδt = −α(δt − δ)dt+ σdWt, (3.3)

with non-negative constants α and σ, and with initial value δ0 = δ ≥ 0; {δt, t ≥ 0}
is thus an Ornstein-Uhlenbeck process. The force of interest accumulation function
{Yt, t ≥ 0} is therefore a Gaussian process with mean function

t 7→ µt = δt+ (δ0 − δ)
1− exp(−αt)

α
,

and autocovariance (s, t) 7→ Cov[Ys, Yt] ≡ ω(s, t), where

ω(s, t) =
σ2

α2
min(s, t) +

σ2

2α3
{−2 + 2 exp(−αs) + 2 exp(−αt)
− exp(−α(t− s))− exp(−α(t + s))} ;
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Figure 2: Graph of the bounds (2.5) and cumulative distribution function of Z̃10 for
(3.1) with δ = 0.08 and σ = 0.02.
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Figure 3: Graphs of the bounds (2.1) and cumulative distribution function of Z̃20 for
(3.1) with δ = 0.08 and σ = 0.02.
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Figure 4: Graphs of the bounds (2.5) and cumulative distribution function of Z̃20 for
(3.1) with δ = 0.08 and σ = 0.02.

see e.g. Parker (1994a, Section 6). Then,

Zn =
n∑

i=1

exp(−Yi),

where Yi is a Normal random variable with mean µi and variance ω(i, i). In such a
case, the convex upper bound Z̃n follows from Goovaerts et al. (1999):

Z̃n =

n∑

i=1

exp
{
−µi −

√
ω(i, i)Φ−1(U)

}
,

where U is a random variable uniformly distributed on the unit interval [0, 1]. In
Figure 5, you can see the bounds on the cumulative distribution function of Z10 in
the model (3.3) with δ = 0.06, δ0 = 0.08, α = 0.3 and σ = 0.01, together with the
cumulative distribution function of Z̃10. Figure 7 is the analog for n = 20. The
comments inspired from Figures 1 and 3 still apply. In Figures 6 and 8, we assumed
that the Vi’s were POD. Again, the improvement with POD is moderate.

3.2 Life insurance

Consider a temporary life annuity issued to an individual aged x with curtate-future-
lifetime K and denote P [k < K ≤ k + 1] = k|qx and P [K > n] = npx. We assume
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Figure 5: Graphs of the bounds (2.1) and cumulative distribution function of Z̃10 for
(3.3) with δ = 0.06, δ0 = 0.08, α = 0.3 and σ = 0.01.
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Figure 6: Graphs of the bounds (2.5) and cumulative distribution function of Z̃10 for
(3.3) with δ = 0.06, δ0 = 0.08, α = 0.3 and σ = 0.01.

8



 

 

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

upper bd on Fa
lower bd on Fa
convex upper bd

Figure 7: Graphs of the bounds (2.1) and cumulative distribution function of Z̃20 for
(3.3) with δ = 0.06, δ0 = 0.08, α = 0.3 and σ = 0.01.
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Figure 8: Graphs of the bounds (2.5) and cumulative distribution function of Z̃20 for
(3.3) with δ = 0.06, δ0 = 0.08, α = 0.3 and σ = 0.01.
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that K is independent of the random discount factors V1, V2, V3, . . . . The net single
premium relating to this contract is given by

ax;n| = E[a◦
x;n|],

with

a◦
x;n| =





0 if K = 0,
ZK if K = 1, . . . , n− 1,
Zn if K ≥ n,

where Z is defined as in (1.1). By conditioning on K, the net single premium relating
to such a contract is

ax;n| =
n−1∑

k=1

E[Zk]k|qx + E[Zn]npx.

The cumulative distribution function of a◦
x;n| is also obtained by conditioning on K:

P [a◦
x;n| ≤ y] = qx +

n−1∑

k=1

P [Zk ≤ y]k|qx + P [Zn ≤ y]npx.

No explicit expression exists for P [a◦
x;n| ≤ y], but we use the approach developed above

allows us to find stochastic dominance bounds on a◦
x;n|. In Figure 9, we depicted the

graph of the bounds on P [a◦
x;n| ≤ y] for an individual aged 45 in the model (3.1)

with δ = 0.08 and σ = 0.02. Figure 10 is the analog in model (3.3) with δ = 0.06,
δ0 = 0.08, α = 0.3 and σ = 0.01. For these numerical illustrations, we used the
standard mortality table (Makeham model) given in Bowers et al. (1996). The
bounds in Figures 9 and 10 give a good idea of the danger inherent to the stochastic
interest rate combined with the stochastic mortality. Let us mention that the convex
approximation of Goovaerts et al. (1999) also applies in this situation.
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