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Abstract

The aim of this paper is to apply the method proposed by Denuit, Genest and
Marceau (1999) for deriving stochastic upper and lower bounds on the present value
of a sequence of cash flows, where the discounting is performed under a given stochas-
tic return process. The convex approximation provided by Goovaerts, Dhaene and
De Schepper (2000) and Goovaerts and Dhaene (1999) is then compared to these
stochastic bounds. On the basis of several numerical examples, it will be seen that
the convex approximation seems reasonable.
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Résumé.

Le but de cet article est d’appliquer la méthode proposée par Denuit, Genest et
Marceau (1999) afin d’obtenir des bornes supérieures ou inférieures au sens de la
dominance stochastique sur la valeur actuelle d'une série de flux financiers lorsque le
taux d’intérét obéit a un processus stochastique donné. L’approximation au sens de
I'ordre convexe proposée par Goovaerts, Dhaene et De Schepper (2000) et Goovaerts
et Dhaene (1999) est ensuite comparée aux bornes évoquées plus haut. Sur base de
plusieurs exemples numériques, 1’approximation convexe semble raisonnable.
Mots-clé: dépendance, dominance stochastique, annuités stochastiques



1 Introduction

Let V; be the present value at time 0 of an amount of a; paid at time ¢. The stochastic
discounted value at time 0 of payments of amount a; made at times t = 1,2,--- 'n
is then given by

Zn=Vi+ Vot + V. (1.1)

Consider for instance an insurance company facing payments of amount a; at times
t =1,2,--- ,n; the present value of these n deterministic payments is given by (1.1).

The V;’s involved in (1.1) are obviously correlated, so that the convenient indepen-
dence assumption for the summands in Z,, is not realistic. As a consequence, an exact
expression for the cumulative distribution function of Z,, requires the knowledge of the
joint distribution of the random vector (V3, Vs, .-+, V},), which is in general not avail-
able. Goovaerts, Dhaene and De Schepper (2000) recently proposed to circumvent
this problem by approximating Z, by means of a random variable Zn dominating
the original Z, in the convex sense. If we denote by Fy, Fb, .-+, F, the respective
distribution functions of Vi, Vs, ... |V, involved in (1.1), Z, is given by

Zn=FYU) + F;YU) + -+ F7H(U),

where U is a unit uniform random variable and the F; '’s are the quantile functions
associated to the F;’s. We obviously have that EZ,, = EZ, and it can be shown that
the inequalities

Emax{Z, —d,0} < Emax{Z, — d,0} (1.2)

hold for any d > 0 (that is, Z,, is smaller than Z,, in the convex order).

Since Zn precedes Z,, in the convex sense, the approximation Zn is considered
as less favorable by all the risk-averse decision-makers, and the method is thus con-
servative. Moreover, the cumulative distribution function of Z, enjoys an explicit
expression and is particularly easy to handle. On the basis of numerical illustrations
performed in a situation where the exact cumulative distribution function of Z,, can be
obtained, Goovaerts et al. (1999) showed that the cumulative distribution functions
of Z, and ZL seem to be rather close.

The problem of estimating the distribution of Z, has been studied, among oth-
ers, by Beekman and Fuelling (1991), De Schepper and Goovaerts (1992), Dufresne
(1990), Frees (1990), Parker (1994¢,1997), De Schepper, Teunen, Goovaerts (1994)
and Vanneste, Goovaerts and Labie (1994). This paper aims to carry on with
Goovaerts et al.’s (1999) approach by providing lower and upper bounds on Z,, in
the stochastic dominance sense, using the method proposed in Denuit, Genest and
Marceau (1999). This approach also provides upper and lower bounds on the quan-
tiles of Z,. In risk management, these quantiles correspond to the Value at Risk
at different probability levels. Such bounds cannot be obtained with the aid of the
convex approximation Z,. Indeed, we see from (1.2) that the stop-loss premium of
Z, is an upper bound of the stop-loss premium of Z,,; more generally, E(j)(ZL) is an
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upper bound for E¢(Z,) for any convex function ¢. However, there is in general no
relation between P[Z, < z] and P[Z, < 2] (since indicator functions are not convex).

Another purpose of this work is to provide several numerical illustrations which
enhance the practical interest of our approach. In these illustrations, we will exam-
ine the position of the cumulative distribution function corresponding to the convex
approximation Z, in the admissible region delimitated by the stochastic bounds on
Zn. As a byproduct of our results, the error in the approximation of Z,, by Z, can
be evaluated (in other words, we get an upper bound for the Kolmogorov distance
between Z,, and Zn)

2 Stochastic bounds on Z,

In this section, we recall how to build two functions F;, and Fy. such that the
inequalities

Frin(t) < P[Z, < t] < Fuax(t) for all t > 0, (2.1)
hold, as well as
Fain(t) < P[Zy < 1] < Fuax(t) for all £ > 0. (2.2)

To this end, we use the following result due to Denuit et al. (1999, Proposition 2). Let
Fy, Fy, -+ F, be the respective cumulative distribution functions of Vi, Vs, ... V.
Then, the cumulative distribution function Fz of Z,, = Vi+V5+.. .4V, is constrained
by (2.1) with

Fuin(t) = sup max ZP[VZ- <v]—(Mm-=1),0p,
JEX(t)

(v1,v2,... ,Un i—1

and
Foax(t) = inf min Fi(v; 71 )
( ) (v1,02,...,0n)ES(E) {ZZI ( ) }

where
N(t) = {(v1,v9,... ,vn) € R"vy +v2 4 ...+ v, =1}, t € IR

Note that F,.. is a bona fide cumulative distribution function, whereas F,;, is the left-
continuous version of some cumulative distribution function. The bounds in (2.1) and
(2.2) are the best-possible bounds on Z,, and Z, in the sense of stochastic dominance
when we know the distribution functions F}, Fs, ... , F,, but no assumption is made
on the dependence structure between the V;’s. Equivalently, these bounds hold for
all sums (1.1) with given cumulative distribution functions for Vi, Vs, ... | V.

Closed form expressions for the bounds (2.1) can in general not be obtained for
distributions of the V;’s and one must resort to numerical evaluation. For more details,
see Denuit et al. (1999).



Now, assume we have at our disposal some partial knowledge of the dependence
existing between the V;’s, namely that there exists a multivariate cumulative distri-
bution function G satisfying

G(Ulav%”' avn) S P[‘/l S vlaVYQ S Vo, « - 7Vn S vn] for all V1,V2,...,0Up S Bv
(2.3)
and a joint decumulative distribution function H such that
PVi > v, Vo > vy, -+, Vyy > v,] > H(vy, 09, -+ ,v,) for all vy, vy, -+, v, € IR.
(2.4)
From Denuit et al. (1999, Proposition 5), the inequalities
sup G(l'l,l'g,"‘ 71'71) SFZn(t) S 1- sup H(xlax%'” 7$n)7
(z1,22, ,xn)EX(E) (z1,22, ,xn)EX(L)
(2.5)

hold for all ¢ € IR. The bounds in (2.5) are obviously more accurate than those in
(2.1).

In the literature, several notions of positive dependence have been introduced in
order to express the fact that large values of one of the components of a random vector
tend to be associated with large values of the others. In our context, one intuitively
feels that in most situations the V;’s mainly “move together” (i.e. a large value of V;
is usually followed by a large value of V;;1). For the numerical illustrations in this
paper, we will assume that (2.3) and (2.4) are satisfied with

G(v1,v9, -+ ,0p,) = H Fi(v)
i=1
and

H(vy, v, 00) = [[(1 = Fi(w2)).
i=1

In such a case, the V;’s are said to be Positively Orthant Dependent (POD, in short).
POD comes thus down to assume that the probability that all the V;’s assume “small”
values (i.e. V; <w;,i=1,2,...,n)is larger than the corresponding probability under
the assumption that the V;’s are mutually independent. The interpretation for H is
similar by substituting “large” for “small”. For more details, see, e.g., Szekli (1995,
pp. 144-145).

3 Applications

3.1 Stochastic annuities

Let 6, be the force of interest at time s and let Y; denote the force of interest accu-
mulation function at time ¢, i.e.
t
Y, = / 04ds.
s=0
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The random present value at time 0 of a payment of 1 monetary unit at time ¢ is
given by exp(—Y;), t > 0.

As noticed by Parker (1994b), there are mainly two possible approaches to model
the interest randomness, namely the modeling of Y; and the modeling of d,. In the
first approach, we could let Y; be the sum of a deterministic drift of slope § and a
perturbation modeled by a Wiener process, i.e.

Y, =6t + oW, te R, (3.1)

where ¢ is a non-negative constant and {WW;, ¢ € IR"} is a standardized Brownian
motion. In such a case, V; is log-normally distributed with parameters —dt and o>t.
This corresponds to the approach adopted by Goovaerts et al. (1999) who considered
a discounted cash flow Z,, of the form

n

Z, = Zexp(—éi - Xi),

i=1

where the X;’s are assumed to be normally distributed with mean 0 and variance io?,
and 0 is the expected force of interest. The convex upper bound Z, on Z, obtained
by Goovaerts et al. (1999) is

Zy = iexp {—52' - gﬂ@—l(U)} : (3.2)

=1

where ® is the cumulative distribution function of a standard normal distribution and
U is a random variable uniformly distributed on the unit interval [0, 1]. The survival
function of Z,, then follows from

PlZ, > 1] =1~ Fj (z) = ®(v,),

with v, the root of the equation
n
Z a; exp(—di — Viov,) = .
i=1

Let us now investigate the accuracy of the bounds (2.1) and (2.5) on the distribution
function of Z,, in the model (3.1). In Figure 1, one sees the functions F;, and F.x
involved in (2.1). with in between the approximation F; of the unknown Fy, for
n =10, 6 = 0.08 and ¢ = 0.02. Figure 3 is the analog for n = 20. Comparing the
cumulative distribution function of the convex approximation (3.2) with the stochastic
bounds (2.1), we see from Figures 1 and 3 that (3.2) lies in the very middle of
the admissible region bordered by Fpi, and Fia.x. This indicates that (3.2) could
be reasonable. In Figures 2 and 4, we further assume that the V;’s are POD and
we computed the improved bounds furnished in (2.1). Only the lower bound got
improved. As it is observed in Example 3 of Denuit et al. (1999), both upper and
lower bounds on the distribution of a sum of random variables got improved when the
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Figure 1: Graph of the bounds (2.1) and cumulative distribution function of Zy, for
(3.1) with 6 = 0.08 and o = 0.02.

supports of the random variables are of the form [a;, b;] with —oo < a; < b; < 400. If
b; is equal to +00 as in Example 1 of Denuit et al. (1999), only the lower bound will
be improved with the assumption of POD. In our examples, the random variables are
lognormally distributed with supports corresponding to [0, +00). If, as in Goovaerts
and Dhaene (1999), §; is defined by a CIR model, then Y; will be strictly positive,
Vi = exp(—Y;) will take values between 0 and 1, and therefore upper and lower bounds

on the distribution of Z; will have been improved.
A second approach to model interest randomness is to model d,. For instance, the

force of interest can be defined by the differential equation

d5t = —Oé((st — 5)dt + Uth, (33)

with non-negative constants « and o, and with initial value 69 = 6 > 0; {é;, t > 0}
is thus an Ornstein-Uhlenbeck process. The force of interest accumulation function

{Y;, t > 0} is therefore a Gaussian process with mean function

t,_>m:5t+(50_5)1_#p(_0‘t)’

and autocovariance (s,t) — Cov|Y;, Y| = w(s,t), where

o? o?
el min(s, t) + 203 {—2+ 2exp(—as) + 2 exp(—at)

w(s,t) =
—exp(—a(t — s)) —exp(—a(t +s))};
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Figure 2: Graph of the bounds (2.5) and cumulative distribution function of Zy, for

(3.1) with 6 = 0.08 and o = 0.02.
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Figure 3: Graphs of the bounds (2.1) and cumulative distribution function of Zyy for

(3.1) with § = 0.08 and o = 0.02.
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Figure 4: Graphs of the bounds (2.5) and cumulative distribution function of Zq for
(3.1) with 6 = 0.08 and o = 0.02.

see e.g. Parker (1994a, Section 6). Then,
Zn = Zexp(_}/z‘)a
i=1

where Y; is a Normal random variable with mean p; and variance w(i,4). In such a
case, the convex upper bound Z, follows from Goovaerts et al. (1999):

Zn = ieXp {—m — W(i,i)@*l(U)} :

where U is a random variable uniformly distributed on the unit interval [0,1]. In
Figure 5, you can see the bounds on the cumulative distribution function of Z;( in
the model (3.3) with 6 = 0.06, o = 0.08, @ = 0.3 and ¢ = 0.01, together with the
cumulative distribution function of Zy. Figure 7 is the analog for n = 20. The
comments inspired from Figures 1 and 3 still apply. In Figures 6 and 8, we assumed
that the V;’s were POD. Again, the improvement with POD is moderate.

3.2 Life insurance
Consider a temporary life annuity issued to an individual aged x with curtate-future-
lifetime K and denote Pk < K < k + 1] = y¢, and P[K > n] = ,p,. We assume
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Figure 5: Graphs of the bounds (2.1) and cumulative distribution function of Zy, for

(3.3) with 6 = 0.06, 69 = 0.08, « = 0.3 and o = 0.01.
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that K is independent of the random discount factors Vi, Vs, V3, .... The net single
premium relating to this contract is given by

:E[ao ]7

|

ax,n—|
with
0if K =0,
@ =4 Zxif K=1..,n-1
’ Z, if K > n,

where Z is defined as in (1.1). By conditioning on K, the net single premium relating

to such a contract is
n—1

k=1

The cumulative distribution function of a;n—| is also obtained by conditioning on K:

No explicit expression exists for P[a:_m < yl, but we use the approach developed above
allows us to find stochastic dominance bounds on az_n—‘. In Figure 9, we depicted the
graph of the bounds on P[a;n—| < y| for an individual aged 45 in the model (3.1)
with 0 = 0.08 and o = 0.02. 7Figure 10 is the analog in model (3.3) with § = 0.06,
0o = 0.08, @ = 0.3 and ¢ = 0.01. For these numerical illustrations, we used the
standard mortality table (Makeham model) given in Bowers et al. (1996). The
bounds in Figures 9 and 10 give a good idea of the danger inherent to the stochastic
interest rate combined with the stochastic mortality. Let us mention that the convex
approximation of Goovaerts et al. (1999) also applies in this situation.
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