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Résumé. Les actuaires calculent la plupart du temps le mon-
tant de la prime afférente & un contrat d’assurance-vie im-
pliquant plusieurs tétes sur base de I’hypothése peu réaliste
d’indépendance des durées de vie restante des assurés. De
nombreuses études cliniques ont cependant mis en évidence
la corrélation entre les durées de vie des époux. Dans cette
optique, le présent article tente de répondre a la question suiv-
ante: cette simplification de la réalité constitue-t-elle un réel
danger pour I’assureur? A la lumiere de la présente étude, il
semble bien que la dépendance existant entre les durées de vie
des époux puisse sensiblement influencer les primes relatives
a des contrats d’assurance sur plusieurs tétes. Afin de quanti-
fier cet impact sur les primes relatives a des annuités avec ou
sans réversion, nous utilisons les bornes de Fréchet, les pro-
cessus de Markov ainsi que certains modéles de “coupleur”.
Ces techniques sont appliquées a quelques contrats classiques
reposant sur la téte d’un couple marié et illustrées sur des
données récoltées dans la Région de Bruxelles Capitale.

Samenvatting. Gewoonlijk gaan actuarissen bij de bereken-
ing van premies op meer hoofden uit van de onrealistische
assumptie van onafhankelijkheid tussen de resterende lev-
ensduren van de verzekerden. Nochtans hebben verscheidene
studies de afhankelijkheid tussen de resterende levensduren
van samenwonenden, zoal man en vrouw, aangetoond. In dit
artikel pogen we een antwoord te vinden op de vraag of
deze vereenvoudigende hypothese een financieel gevaar vormt
voor de verzekeraar. Het antwoord op deze vraag is bevesti-
gend: deze afhankelijkheid beinvioedt wel degelijk de waar-
den van annuiteiten en verzekeringen die betrekking hebben op
meerdere hoofden. Om de impact van een mogelijke afhankeli-
jkheid op de premies voor verzekeringsprodukten waarin twee
hoofden betrokken zijn te kunnen meten zullen we gebruik
maken van de Fréchet-grenzen en van een aantal copula-
modellen We zullen deze techniek toepassen op gebruikeli-
jke verzekeringscontracten die afgesloten worden op de beide
hoofden van een koppel. We zullen gebruik maken van een
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data-set met gegevens over personen die leven in Brussel.

Abstract. Actuaries usually compute multiple life premiums
based on the unrealistic assumption of independence of the
lifelengths of insured persons. Many clinical studies, however,
have demonstrated dependence of the lifetimes of paired lives
such as husband and wife. In this respect, the present article
tries to give an answer to the following question: does this
simplifying hypothesis constitute a real financial danger for
the insurance company? The answer turns out to be affirma-
tive: this dependence materially affects the values of annuities
and insurances involving multiple lives. In order to quantify
the impact of a possible dependence on the amount of pre-
mium charged for annuities, insurances and widow’s pension,
we resort here on the Fréchet bounds, Markov processes and
some copula models. These techniques are applied to classical
insurance contracts issued to married couples and illustrated
on NIS data as well as on observations from Brussels city.
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1 Introduction-Motivation

Standard actuarial theory of multiple life insurance tradition-
ally postulates independence for the remaining lifetimes in
order to evaluate the amount of premium relating to an insur-
ance contract involving multiple lives. Nevertheless, this hy-
pothesis obviously relies on computational convenience rather



than realism. A fine example of possible dependence among
insured persons is certainly a contract issued to a married cou-
ple. Indeed, the husband and wife are more or less exposed
to the same risks since they share a common way of life, go
together away on holiday and, as the saying goes, “birds of a
feather flock together"”. Moreover, from the medical point of
view, several clinical studies put the “broken heart syndrome"
in a prominent position; the latter may cause an increase of the
mortality rate after the death of one’s spouse (using a data set
consisting of 4,486 55-year-old widowers, Parkes, Benjamin
and Fitzgerald (1969) showed that there is a 40% increase in
mortality among the widowers during the first few months af-
ter the death of their wives; see also Jagger and Sutton (1991)).
There is thus strong empirical evidence that supports the de-
pendence of mortality of pairs of individuals. Investigations
carried out by the Belgian National Institute of Statistics (NIS,
in short) established that the marital status significantly mod-
ifies the mortality profile of individuals. Similar conclusions
have been drawn in actuarial sciences, e.g. by Maeder (1995,
Section 2.3). In such a case, the actuary has to wonder whether
the independence assumption is reasonable and he has to build
an appropriate price list taking into account the possible effects
of a dependence among the time-until-death random variables
involved in the contract.

To illustrate these remarks, we have Figure 1 based on the
data collected by the Belgian NIS during 1991. The observed
probabilities ¢, (i.e. the probability that a life aged = will
die within one year) are plotted as a function of the age « (for
x = 2510 90), separately for Belgian men and women, splitted
according to the marital status. It can be seen that the mortality
depends on the marital status, especially for men. The mortal-
ity experienced by the widows seems worse than the mortality
experienced by the entire Belgian population. This speaks in
favour of a model incorporating the marital status of the in-
sured persons and taking into account the dependence among
the involved lifelengths to calculate the amount of premium re-
lating to policies issued to married couples such as the widow’s
pension. Of course, one could convincingly argue that the so-
ciety drastically changed during the last few decades and that
the marriage is no more the obligatory prerequisite when two
persons decide to start a life together. Consequently, many in-
dividuals counted as “single" by the Belgian NIS should in fact
be considered as “married"” from a sociological point of view.
The marital status will not appear as the most relevant explana-
tory variable. However, the fiscal legislation often subordinates
the tax incentives granted for some insurance contracts to the
fact that the assured persons are indeed officially married.
Therefore, the data collected by the governmental statistical
services may be considered as relevant as far as contracts like
the widow’s pension are concerned.

Recently, anumber of articles have been devoted to the study
of the impact of a possible dependence among insured risks
in setting premium rates. Several authors based their anal-
ysis on multivariate stochastic orderings (see, e.g., Béuerle
and Miiller (1998), Denuit, Lefévre and Mesfioui (1999a,b),
Dhaene and Goovaerts (1996,1997), Dhaene, Vanneste and
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Figure1l. The observed probabilities g, for the Belgian population, for
married individuals and for widow individuals, as functions of the age =
(from 25 to 90).

Wolthuis (2000) and Miiller (1997)). Others used copula mod-
els to take this dependence into account (see, e.g., Carriére and
Chan (1986), Carriére (1994,2000), Frees, Carriere and Valdez
(1996) and Frees and Valdez (1998)). The situation where the
dependence of lives arises from an exogeneous event that is
common to each life, can be described by a “common shock”
model. A reference to this kind of models is Marshal and
Olkin (1988). To the best of our knowledge, the first actuarial
textbook explicitly introducing multiple life models in which
the future lifetime random variables are dependent is Bowers,
Gerber, Hickmann, Jones and Nesbitt (1997). In Chapter 9 of
this book, copula and common shock models are introduced to
describe dependencies in joint-life and last-survivor statuses.
Also other models can be used to incorporate dependencies
between life times, e.g. frailty models or Markov models. For
a more extensive overview of dependency models, we further
refer to Frees, Carriére and Valdez (1996) and the references
in that paper.

In this paper, we quantify the effect of a possible depen-
dence of time-until-death random variables on the amount of
premium relating to various insurance policies sold to married
couples. For this purpose, we use the Fréchet bounds and a
Markovian model inspired from Norberg (1989) and Wolthuis
(1994). The paper is organized as follows. Section 2 gives
the basic notations used throughout the paper. Section 3 re-
calls the main features of the Makeham model. In Section
4, we show that the Fréchet-H&ffding bounds provide poor



margins for widow’s pensions while the margins obtained for
most multiple life premiums are quite accurate. Moreover, the
qualitative approach based on the positive quadrant depen-
dence developed by Norberg (1989) is briefly exposed. Then,
in Section 5, we present the Markovian model built to study
the impact of a possible dependence among the husband’s and
wife’s time-until-death random variables on the amount of in-
surance premiums. After having estimated the parameters of
this model on the basis of data collected by the Belgian NIS
during 19915, we compute the amount of premium relating
to a widow’s pension in the Markovian model. In Section 6,
we present two copula models of ratemaking built to study
the possible impact of dependence on amounts of premiums.
This technique is illustrated on a data set from Brussels city.
In the last Section 7, we propose the correlation order as a tool
for describing and understanding dependencies in multiple
life statuses. It is shown that this order is preserved (or re-
versed) when pricing multiple life and last-survivor insurance
and annuity contracts. In particular, we establish conditions
that provide information on phenomenon of over/underpricing
when the usual assumption of mutual independency of the life
times involved is made.

2 Notations

Let us now introduce the notation used throughout this paper.
Henceforth, R is the real line (—oo, +o0), R is the half-
positive real line [0, +00), Nistheset {0, 1,2, ...} of the non-
negative integers. The symbol “=;" means “is distributed as".
In the remainder, T, and T}, represent the remaining lifetimes
(ortime-until-death random variables) of a z-year-old man and
of his y-year-old wife, respectively; T’ (resp. 1},) is assumed
to be valued in [0,w,] (resp. [0,w,]) where w, (resp. w,)
denotes the difference between the ultimate age of the lifetable
describing the probability distribution of T, (resp. T,)) and =
(resp. y). As usual, we denote by ;q, and +¢, (resp. by +p, and
+Py) the distribution functions (resp. survival functions) of 77
and Ty, respectively, i.e.

th,:]P)[T:C >t]:1_tqd,a t€R+a
and

oy =P[T, >t =1—,q, teR".
As usual, 1p, = p, and 1q, = g.. The probability of the
joint-life status “min(7}, T})" surviving to time ¢, denoted by
tPzy, 1S given by
Plmin(T,,Ty) > t]
P[T, > t,T, > t],

tPxy
t € RT.

The probability ;g., that the joint-life status fails before time
t is then given by

= Pmin(T,,Ty) <t
P[T, <torT, <t

1 — tPey, t €RT.

tdzy

5 The details of these data can be found in a publication of the Belgian NIS
(1992).
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Similarly, the probability that the last-survivor status
max(T,, Ty) surviving to time ¢, denoted by ;pz, is

Plmax(Ty, Ty) > t]
P[T, > torT, > t]
tPx + tpy - tpzya

tPzy

teRT.

The probability ;¢zy that the last-survivor status fails before
time ¢ is given by

Plmax(Ty,T,) <]

P[T, <tandT, <t

1— tPzy, te R+.

tdzy =

Finally,v = (1+¢&)~! stands for the discount factor associated
with the constant annual effective rate £. Basic life insurance
theory can be found in Gerber (1995).

We will consider in this chapter the standard net single pre-
miums relating to annuities and widow’s insurance. Of course,
a similar study can be achieved for term life or whole life in-
surances payable on the first or on the last death. We restrict
the present study to life benefits only to save space.

Annuities are contractual guarantees that promise to pro-
vide periodic income over the lifetime(s) of individuals. An
important variation of the standard life annuity is the joint-life
annuity and the last-survivor annuity. In the case of a married
couple, the n-year last-survivor annuity pays $ 1 at the end of

the years 1, 2, ..., n, as long as either spouse survives; it is
defined as
n
k
Azgm| = Z” kPzy:
k=1

The corresponding perpetuity is az; = agy:s(. The n-year
joint-life annuity pays $ 1 at the end of the years 1, 2, ..., n,
as long as both spouses survive; it is defined

n
_ k
azy;m - U kPxy-
k=1

The corresponding perpetuity is a., = a,,:s. Many varia-
tions are offered in the market place, including a joint and 50%
annuity that pays a level amount while both annuitants survive
with a 50% reduction of that amount upon the death of one
annuitant.

The widow’s pension is a reversionary annuity with pay-
ments starting with the husband’s death and terminating with
the death of his wife. Such an insurance is used as post-
retirement benefit in some pension plans and is also widely
used in the European social security systems. The correspond-
ing net single life premium for a x-year-old husband and his
y-year-old wife, denoted as a,,, is given by a, |, = a, — a.y
where

wy min(wg,wy)

ay = epy and ag, = k

y = V" kPy Apy = VU kPzy-
k=1 k=1

Calculating the exact values of azym|, Gzym) OF Gy, re-
quires the knowledge of the joint distribution of the lifetime



random vector (17, T}). In practice, the actuary is only able to
approximate azy.n|, auy:m and a,), With the help of various
probabilistic models. The easiest approach certainly consists
in considering T, and T}, as independent. In the remainder of
the work, the superscript “_L" indicates that the correspond-
ing amount of premium is calculated under the independence
hypothesis; it is thus the premium from the tariff book. More

n .
precisely, a-- ot my;m and a;, are given by

n

L k
a@;ﬁ‘ = Z v {kpd, + kDy — kpl‘kpy}a

k=1

Tl = Z Hiperpy
and

min(wg,wy )

D

k=1

k
UV kPxkPy-

Wy
_ k
Ay = E v Py —
k=1

3 Makeham graduation

In the present paper, we use lifetables based on the Makeham
formula and built on the basis of the mortality experienced in
Belgium during 1991. Makeham formula gives fort € R,

+t £d
t C1 —C1

tPx = S$191 , €1 > 17 S1,01 € [07 1]7 (1)
and
Cy+ Y
tPy = 52922 2, 2> 1, 82,92 € [051]' 2
If we introduce
A; = —In(s;) and B; = —In(¢;) In(g;), i=1,2,

the corresponding forces of mortality are given by

Patt = Ay + Bici T, t € RT,

for men, and by

fy+t = Az + Bachtt, t € RT,

for women. The parameters involved in (1)-(2) have been esti-
mated on the basis of data collected by the Belgian NIS during
the year 1991. We used the Maximum Likelihood method with
initial values provided by the following algorithm, proposed
by Frere (1968). Let p, = 1 — ¢, be the empirical estimator
of the one-year survival probability at age . Let us define

Qp = — 1n(ﬁz)

and suppose we would like to fit the Makeham model for the
ages v; to vo. Frére’s idea consists in decomposing the age
range (v, v2) into two parts, namely (v, 40) et (41, v3). In
(41, v9), A1 may be neglected in

=A; + ﬂlcf where 51 =

—In(ps) —(c1 — 1) In gy,
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so that
In(—In(p,)) ~In By +2lnc;

is approximately linear. On the contrary, in (1, 40), A; may

no more be neglected. The method determines the parameters

(1 and ¢, as the solutions of the optimization problem

{ In(ay) — In(&1) — xhl(&)}Qa

,C1) = arg min
(51 1) g(gl &)

whereas A; is given by
40 2
A, = argmin {a — &3 — x} .
1 gmi Z «— &3 — Bic]
r=11
The estimations of the parameters A1, 31 and ¢, are then given
by

Ine, = Zyz s L Z;c 2y In(ay) — (o —40) 41 7In(ay)
- 1%5) 2 1%5) ’
(Zx =41 z)” — (12 *40)2 1:52
lnﬁlz 4()(211104; - )Zx),
=41 r=41
and

1 40
41 — 141 Z (Oéx
T=v1

In Table 1, one can find the maximum likelihood estimations
of the parameters s, g and ¢ for Belgian men and women.

It should be noted that the data collected by the Belgian
NIS relate to the mortality experienced by the Belgian popu-
lation during 1991. Such data are suitable for the pricing of
the widow’s pension included in social security systems, but
possibly not for contracts issued by private insurance compa-
nies. The latter will have to substitute their own observations
for those used in the present work.

A = — Bic).

Parameter Men (i = 1) Women (z = 2)
Si 0.999 408 439 685  0.999 767 237 352
gi 0.999 598 683 466  0.999 831 430 984

1.102 904 035923  1.106 730 646 873

Ci

Table1l. Maximum Likelihood estimators of the Makeham parameters
involved in Formulas (1)-(2)

4 Bounds on net single premiums
4.1 Fréchet bounds

Let us first recall the definition of a Fréchet class. The Fréchet
class Rqo(F1, Fy) is the set of all the (bivariate distribu-

tion functions Fx of) random vectors X = (X, X3) with
marginal distribution functions F; and F5, i.e.
FL(J?) = ]P[XZ < 33], reR, i=1,2.

Henceforth, let F; = 1 — F; be the decumulative distribution
function corresponding to F;, ¢ = 1, 2.

InRo(F1, F»), there are two very particular elements whose
definition is recalled next.



Definition 4.1. In Ry (F1, F»), the distribution function W,
defined by

Wa(z1,22) = min{ Fy (1), Fa(x2)}, (21,22) € R?,

is the Fréchet upper bound; the distribution function M de-
fined by

My (x1, x2) = max{Fy(x1)+Fa(x2)—1,0}, (z1,22) € R2,
is the Fréchet lower bound.

Since Hoffding (1940) and Fréchet (1951), it is well-known
that the joint distribution function F'x ofany X in Ry (F1, F»)
is constrained from above and below by the Fréchet bounds
Mo and Wy, i.e.

M(x1,22) < Fx(21,22) < Wa(x1,22) (3)
for all (z1,72) € R2. Formula (3) directly follows from the
following elementary result.

Proposition 4.2. For any events A; and A, the following in-
equalities hold:
max {P[Al] + P[Ag] - 1,0} S P[Al N AQ]

and
]P[Al n AQ] § min {P[Al], ]P[AQ]} .

Proof. The first inequality follows from
1> P[A; U Ay] = P[A1] + P[As] — P[A; N Ay,

while the second one is valid since (A; N A2) € A; and
(A1 N Ay) C As. O

In the bivariate case, the Fréchet lower and upper bounds
are both reachable within R (F}, F»), as it is formally stated
in the next result.

Proposition 4.3. In Ro(F1, Fy), Wa is the distribution func-
tion of (F; 1 (U), Fy *(U)) and Ms is the distribution function
of (F,1(U), Fy *(1 — U)), where U is uniformly distributed
on [0, 1] and the generalized inverses F, ' and F, * are defined
as

F ' (p) =inf{zx e R|F;(x) > p}, 0<p<1, i=1,2

K2

Proof. Itis clear that
(FH(U), Fy 1(U)) € Ra(Fy, F).
For any (x1,2) € R?, we have that

PIE;NU) < 21, Fy ' (U) < 2o
= PU < min{F;(z1), Fa(z2)}]
= W2($17352)-

On the other hand,

(F7YU), FyH(1-0)) = (FTYU),Fy ' (U)) € Ro(Fy, Fy)

and for any (z1, z2) € R?,

PR (V) < o1, By (1= U) < o)
= P[U < Fi(21),1—-U < Fy(a2)]
= Msy(z1,x2).

This ends the proof O

The distribution of (U, U) has all its mass on the diagonal
between (0,0) and (1,1), whereas that of (U,1 — U) has all
its mass on the diagonal between (0,1) and (1,0). Therefore,
it is often said that 1, and M describe perfect positive and
negative dependence, respectively.

4.2 Bounds on multilife premiums obtained from
Fréchet bounds

This approach centers on quantifying the maximal impact of a
possible dependence on actuarial values by using the bounds
for bivariate distribution functions introduced in Definition
4.1. Specifically, applied in the present context, the Fréchet
bounds M and 15, yield

max{0, Py + 0y — 1} < 1Ppy < min{ips, vy}, (4)

forall t € R*, and that

1 —min{¢qs, 1y} < tpzy < 1 — max{;q, + g, — 1,0},
()

for all ¢ € R*. These bounds have been first applied by
Carriére and Chan (1986) to differentannuities and then placed
by Denuit and Lefévre (1997) and Dhaene, Vanneste and
Wolthuis (1997) in the context of bivariate stochastic order-
ings.

By inserting (4)-(5) in the net single premiums az. and
Agyimls we get

min max min
Uzgn| < Gagm| < Gy AN gy < Apyim

‘ S amax (6)

zy;7|

with

n

min k :

Qrym| = Zv {17m1n{tqz,tqy}}
k=1

max

NIE

vk{l — max{qs + +tqy — 1,0}}

TY;n|
k=1
n
min k
Q| = g v” max{0, tpy + ¢tpy — 1}
k=1
n
max _ k_ .
Upym| = E ¥ min{pg, Dy }-
k=1

To illustrate the accuracy of the bounds (6), we plotted the
graphs depicted in Figures 2-3. We considered z = y =
30, 40,50 and 60 years. The continuous line stands for the
tariff book premiums (i.e., those computed on the basis of the
independence assumption) and the dotted lines represent the



lower and upper bounds obtained by (4)-(5). We see that the
accuracy of the margins is reasonably good (which means that
the impact of a possible dependence on the amounts azy.z
and a7 is moderate) although it decreases with n. For large
values of n, azym| ~ azy and a,ym ~ agy, Which explains
the horizontal behavior of the rightmost part of the graphs.
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min(wg,wy)

k .
;n‘lyn Z,U KDy — Z v mll’l{kp:cakpy}

k=1
and

min(wg,wy)

;nlzx _ Zv kpy Z ”Uk maX{O, kPx + kpy - 1}
k=1

In order to figure out the accuracy of the bounds (7), we have
drawn the graphs presented in Figure 4. We used three as-
sumptions for the numerical illustrations: firstly, we consider
x =1y = 25,26,...,90 (i.e. the husband and his wife both
have the same age), then x = y + 5 = 25,26,...,90 (i.e.,
the husband is five years older than his wife), and finally
xr =y —>5=2526,...,90 (i.e., the husband is five years

23



younger than his wife). The continuous line stands for the
tariff book premiums al' and the dotted lines represent the

lower and upper bounds am”’ and amaX The margins for the
widow’s pension a,,,, are o poor quallty (espemally the lower
bounds). For x = y, g“y“ is about 55% to 59% of awly' while

agl‘zx represents 120% to 130% of ai-y. The accuracy of the
lower bound increases with x, whereas the accuracy of the
upper bound decreases with z. When the husband is younger
than his wife, the lower bound am‘iy“ is about 22% to 1% of

at iy and the upper bound am" represents 126% to 144% of

j‘y Therefore, the lower bound is even worse than in the case
x = y and becomes gradually useless (since it decreases to 0).
On the contrary, the accuracy tends to increase when the wife
is older than her spouse: a;“‘iy“ is about 74% to 82% of a;,

and a})2* represents 114% to 118% of ai,- . In conclusion,
we could say that, for the widow’s pension, the independence
assumption may lead to a significantly erroneous amount of
premium.
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Flgure4 Fréchet bounds am”‘ and amax (dotted lines) on a,, together
with a - Zly (continuous line) V|ewed as functlons of z and y, with £ = 4%.

4.3 Positive quadrant dependence

A number of notions of positive dependence among two ran-
dom lifelengths 7', and T}, have been introduced in the litera-
ture in an effort to mathematically describe the property that
“large (resp. small) values of T, go together with large (resp.
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small) values of T3,". In this Section, we will assume that 77
and T, are Positive Quadrant Dependent (PQD, in short).

Let X = (X3, X5) be a random couple with distribution
function Fx in Ro(F1, F»). According to Lehmann (1966),
X issaid to be PQD if

P[X; > a1, X2 > ag] > P[X1 > a1]P[X2 > a2] (8)
forall ay,as € R. Since
PX; >a1,X2 > a0 = —P[X1 < a1] — P[X3 < ag)
+P[X1 < a1, X2 < ag)
and
P[X; > a1|P[Xs > as] = 1-P[X; <ai] —P[Xs < as]
+P[X1 < a1]P[X> < ag]
both hold true, condition (8) is equivalent to
P[X; < a1, Xs <ap] > PX; <aq|P[X2 <az]  (9)

forall a1, as € R. The reason why (8) or (9) defines a positive

dependence concept is that X; and X, are more likely to

be large together or to be small together compared with the

theoretical situation where X; and X are independent of each

other.

Remark 4.4. Note that the population version of Spearman’s
p is given by

12/ / FX (71, 22)
r1=—00 12—700

—Fl(xl)Fg(xg)}dFl (le)dFQ(JJg)

and hence p/12 represents a measure of average quadrant
dependence, where the average is with respect to the marginal
distribution of X; and Xs.

Proposition 4.5. (8)-(9) are satisfied if, and only if,
Cov[p1(X1), ¢2(X2)] > 0

holds for any non-decreasing functions ¢; and ¢-
provided the expectations exist.

(10)
Rt - R,

Proof. For a proof of the equivalence of (8) and (10), proceed
as for Theorem 1 in Dhaene and Goovaerts (1996). O

Example 4.6. Let us consider the special case that F; is a
two-point distribution in 0 and «; > 0, ¢ = 1, 2. For any
()(17 Xg) S RQ(Fl, FQ) with COV[)(l7 Xg] > 0, we have
that

P[Xl = a1, X2 = Oég] Z ]P[Xl = Oél]P[Xg = 052].

The latter inequality can be transformed into

PX1 = 0, X2 = 0] > P[X; = 0]P[X; = 0]
from which we find
PX: < 21,Xp < @2] > PX; < 2] P[Xy < a2

forany z; > 0, z2 > 0. We can conclude that in this special
case

X7 and X, are PQD < Cov[X1, Xo] >



4.4 The PQD assumption for remaining lifetimes

Let us prove the following result, which gives an intuitive
meaning of PQD for remaining lifetimes 73, and T,.

Property 4.7. 1f T}, and T,, are PQD then the inequalities
E[T,|T, > t] > E[T,] forall t € R

and
E[T.|T, > s] > E[T,

both hold true.

] forall s € RT

Proof. Let us prove the first inequality; the reasoning for the
second one is similar. It comes from

400
/s:O

1 oo
_ P|T, T. tld
P[Tx>t]/_0 [Ty > 5, T > 1]ds

1 Heo
- PIT, > s|P[T,,
S /ﬁ) T, > sB[T, > t]ds

+oo
/s:()
where the inequality is a consequence of the fact that 7", and
T, are PQD. O

E[T,|T, > 1] P[T, > s|T, > t]ds

P[T, > s]ds = E[T,],

Property 4.7 indicates that when PQD remaining lifetimes
are involved, the knowledge that one of the two spouses is still
alive at some time increases the expected remaining lifetime of
the other one. From the introduction, the PQD assumption for
the remaining lifetimes of married couples appears as rather
natural.

When T, and T}, are PQD, we have for the joint-life status
that

Ay, o 2 a:cy,n\ (11)

while for the last-survivor status, the reverse inequality holds,
ie.

Azy,7)| < axl_y,n| (12)
Moreover, it is easily seen that
Agly = < (l x|y* (13)

For the contracts (12)-(13), the independence assumption ap-
pears therefore as conservative as soon as PQD remaining
lifetimes are involved. In other words, the premium in the in-
surer’s price list contains an implicit safety loading in such
cases. Moreover, the results (11)-(13) increase the accuracy of
the bounds on azy 7 and a,, 5. Indeed, when PQD remain-
ing lifetimes 7, and 7, are involved, the unknown values of
a,y.m lie between ozl ol and a™2% | respectively, while those

@Y, nl’
Of azymy lie between a2, respectively. Finally,

and af ]
az| lies between a7 and az, . However, it is not possible to
evaluate the height of the safety loading implicitly contained
in the insurer’s price list; this will be done in Sections 5 and 6.
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5 Markovian model
5.1 Description of the model

Since the seminal lecture given by Amsler (1968) at the 18th
International Congress of Actuaries and the paper by Hoem
(1969), the Markovian model has become an appreciated tool
for the calculation of life contingencies functions.

Given a stochastic process X = {X;, ¢t € R*}, X, often
represents in actuarial applications the state at time ¢ of an in-
dividual, group of individuals, or insurance/annuity contract.
In such a case, ¢ usually measures the time since some event
such as the birth of an individual or the sale of a policy. Let F;
be the history of the process X’ up to time ¢. The Markovian
model assumes, roughly speaking, that the future of X is in-
dependent of all information contained in F;, except the state
X, at time ¢. Markov processes have been extensively dis-
cussed in the actuarial literature; see, for example, the papers
by Amsler (1988), Davis and Vellekoop (1995), Haberman
(1983,1984,1988,1995), Hoem (1972,1977,1988), Hoem and
Aalen (1978), Jones (1994,1995,1996,1997a,1997b), Moller
(1990,1992), Norberg (1988,1989), Panjer (1988), Pitacco
(1995), Ramlau-Hansen (1988a,1988h,1991), Ramsay (1989),
Tolley and Manton (1991), Waters (1984), Wilkie (1988) and
Wolthuis and Van Hoeck (1986), as well as the references
therein. An excellent overview is provided by the book of
Haberman and Pitacco (1998). The present Section is based
for the most part on Denuit and Cornet (1999a,b).

Norberg (1989) and Wolthuis (1994), in a first attempt to
take into account a possible dependence among insured life-
lengths, proposed a Markovian model with forces of mortality
depending on marital status in order to evaluate the amount
of premium relating to an insurance contract issued to a mar-
ried couple. More precisely, assume that the husband’s force
of mortality at age « + ¢ is o1 (¢) if he is then still married
and uos(t) if he is a widower. Likewise, the wife’s force of
mortality at age y + ¢ is po2(t) if she is then still married and
w13(t) if she is a widow. The future development of the marital
status for a x-year-old husband and a y-year-old wife may be
regarded as a Markov process with state space and forces of
transitions as represented in Figure 5.

To be specific, let us denote by p;;(t,t + At), t, At > 0
the transition probabilities of the Markov process described in
Figure5, i.e. p;;(t, t+At) isthe conditional probability that the
married couple under interest is in state ;7 at time ¢ + At, given
that it was in state ¢ at time ¢. Obviously, forany 0 < ¢; < t5,
0< pij(tl,tQ) < 1forall andj,pij(tl,tl) =1ifi= J and
0 otherwise, and Zj pij(ti,t2) = 1 for all i. Moreover, the
functions t1 — Dij (f,l, Ifg) for fixed to and to — Dij (tl, tg) for
fixed ¢, are assumed to be continuously differentiable on [0, ¢5]
and on [t1, +ool, respectively. For i # j, forces of transition
are related to transition probabilities through

Al}flg() At o ahp” (t7 b+ h) h=0 B ‘LLZ] (t)’
so0 that
Pij (f,, t+ At) = lij (f,)At + O(At),



Obviously, ps3(t1,t2) = 1 for any ¢ < t¢2. Now, from the
State 0 : Kolmogorov differential equations, it can be shown that for

both spouses j = 1, 2,
alive

to
poj(t1,t2) =/ poo(ts, T)po;i (T)pj; (T, t2)dr, 0 <ty <t».
t1
The latter formula has an intuitive derivation: it is obtained by
conditioning on the instant — when the transition from state 0
to state 5 occurs.
Now, the joint survival function of (T, T},) is given by

State 1: State 2 :
husband dead wife dead P[T > t1, 1y, > tg]
x y Ly

_ J Poo(0,t2) 4+ poo(0, t1)por (t1, t2) if 0 <ty < 1o,
P00(0,t1) + poo(0,t2)po2(te, t1) if 0 < to < ty.

The marginal survival functions of T, and 7}, are respectively
given by

P[T, > t1] = poo(0,t1) + po2(0,t1)

State 3 : and
both spouses P[T, > ta] = poo(0,t2) + po1(0, t2),

dead
fortq, t2 > 0.
Norberg (1989) proved the following result in this model.

Proposition 5.1. In the model described above,

Figure5. Markovian model with forces of mortality depending on the

marital status. fo1 = pig3 and pioz = a3
& T, and Ty, are independent, (14)
where o(.) is a function such that limy .o o(h)/h = 0. In the while
model described in Figure 5, using the Markov property, we
can write to1 < poz and po2 < pis = Ty and T, are PQD.  (15)
poo(t1,ta + Ata) = poo(t1, t2)poo(te, ta + Ats), Proof. Norberg’s proof is based on the following argument:

the idea is to compute

FEP[T, > 11|T, > to]
Ponltnfa+ 802) = ponltst2){1 = Guor (1) + ) At} ) (ot a0t
+o(Atg). Dta ( P00 (0,£2)+P01(0,£2) )
if0 <t <t

0 <t1 <ty <ty + Atg, Whence

Letting At2 — 0, we obtain the differential equation -

9 0 (poo((),tl)(erog((),tz)(poz()tz,tl))
- t1,ts) = _{ t t } t1,t2). ?tz P00 (0,t2)+po1(0,t2
at2p00( 1,t2) po1(te) + poz2(te) ppoo(ts, t2) 0 <ty < .
The solution has to satisfy the boundary condition  and to show by a straightforward but tedious calculation that
poo(t1,t1) = 1 and is therefore given by it is always non-negative if g1 < w23 and po2 < 13, While
it vanishes when 191 = w23 and pge = p13. Therefore, since
" P[T,, = 0] = 0, we get
poo(thtz):exp{—/ {M01(T)+M02(T)}d7'}, v =Y =0Weg
ty

(i) in the first case that the inequality

0 < t1 < to. Similarly,
Shsh y P[T, > t|T, > ts] > [T, > t|T, > 0] = P[T, > t1],

ta
p11(t1,t2) = exp {/ ms(T)dT} holds for any ¢1,#, € R, which reduces to (15), so that
th (15) is valid,

and (ii) while in the second case, the equality

to P[Tx > t1|Ty > tg] = ]P)[Tz > tl],
paz(t1,t2) = exp{—/ ,u23(7')d7'} , 0t <to.

t holds for any ¢1,t2 € R, whence (14) follows.
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This ends the proof. O

From the introduction and in view of equations (14)-(15), it
seems natural to propose that, fort € R,

to1(t) = (1 — ao1) tayt, p23(t) = (1 + a23)pars, (16)
and
po2(t) = (1 — ao2)pty+e, ps(t) = (1+ ars)pyse,  (17)

where the «;;’s are non-negative and the a;’s are less than 1.
Therefore, the model (16)-(17) comes down to assume that the
mortality intensities are lower than the forces of mortality in
the entire Belgian population as long as both spouses are alive
and are higher when one of the couple is deceased. Setting
ai; = «, we find the model proposed by Wolthuis (1994, page
62).

5.2 Estimation of the parameters

We are now going to estimate the four parameters a1, ags,
a3 and asg involved in (16)-(17). To this end, we use data
collected by the Belgian NIS and we follow the method of
least squares proposed in Wolthuis (1994, chapter VI). The
estimators &;; of the parameters a;; minimize the sum of
the squared differences between the increments AQ;; of the
transition functions

Qij(t) = /T t:O

and their estimations AQ;;, i.e.

wij (T)dr, t>0,

1 2
&;j = arg minz <AQZ-]- (k) — / pij (k + t)dt>
. t=0
(18)

Let us now briefly expand on the estimation of AQ;;. Let L;(¢)
be the number of couples in state ¢ at age ¢— (i.e. L;(¢) can be
thought of as the number of couples “at risk" just prior to age
t of a transition from state ¢) and let L,;(¢) be the number of
transitions from state i to state j over [0, ¢]. The Nelson-Aalen
non-parametric estimator of Q;;(¢) is

Qij(t) = /T t:O

where I[A] is the indicator function of the event A, and with
the convention that the integrand is defined to be zero when
L;(7) = 0; for more details, see e.g. Jones (1997b) and the
references therein.

For estimation purposes, we had at our disposal data about
the population living in Belgium during 1991 (total population
of the kingdom splitted by age, sex and marital status at January
1, 1991 and January 1, 1992, as well as the number of the
deceases, the number of weddings and divorces in 1991 by
age, sex, year of birth and marital status). Since the number
of transitions is only available for a year, we use the linearity

H[LL(T) > 0]

Li (T) dLZ] (’7’),
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assumption, i.e. we assume that for any integer k. and 0 < t <
11

Lij(k+t)=Lij(k)+t{Lij(k+1) — L;;(k)}
and
Li(k+t)=Li(k) +t{L;(k+1)— L;(k)}.
These approximations yield
AQ;; (k)

/1 I[Li(k +7) > 0]
reo Li(k) +7{Li(k +1) — Li(k)}

1) — Lij(k)}dT

{1nLi(k+1) —1nLi(k)}

Lik+1)—

|
~
<.

0 { In Li(k +1) — 1nL,-(k)}(19)
where L; (k) represents the number of couples in state ¢ at age
k and

Lij(k) = Lij(k + 1) = Li;(k)

is the number of transitions from state ¢ to state j observed
for k-year-old individuals. Relation (19) is in accordance with
formula (33) in Wolthuis (1994, page 108).

Let us explain precisely how we estimate AQm(k) and
AQ13(k) (the interested reader will easily deduce the esti-
mations of AQq (k) and Ay (k) by switching the roles of
the two spouses). Let us start with AQ; (k) and examine the
different elements constituting (19):

1. the numerator Lg.;1 (k) is the number (#, in short) of k-year-
old married men dying during 1991 (this number is directly
available from the NIS);

the denominator Lo(k + 1) — Lo (k) is equal to

— # of k-year-old married men dying during 1991
— # of k-year-old married men
whose wife died during 1991
+ # k-year-old men getting married during 1991
—# k-year-old married men
getting divorced during 1991.

The number of couples with a k-year-old man whose wife
died during 1991 cannot be obtained from the NIS. There-
fore, we estimate it as follows :

# of (k + 1)-year-old widowers at January 1, 1992
—(# of k-year-old widowers at January 1, 1991
— # of k-year-old widowers dying during 1991
—# of k-year-old widowers
getting married during 1991);

finally, concerning the difference of the logarithms in (19),
Lo(k) is the number of k-year-old married men at January
1,1991, and Lo (k + 1) is easily deduced from above.



Let us now examine A3 (k) :

1. the numerator L1.3(k) is the number of k-year-old widows
dying during 1991,

2. the denominator L, (k + 1) — Ly (k) is equal to

— # of k-year-old widows dying during 1991
+ # of k-year-old women whose husband died during 1991
— # of k-year-old widows getting married during 1991.

The number of couples with a k-year-old woman whose
husband died during 1991 is not available from the NIS.
Therefore, we estimate it as follows :

# of (k + 1)-aged widows at January 1, 1992

—(# of k-year-old widows at January 1, 1991

— # number of k-year-old widows dying during 1991

— # of k-year-old widows getting married during 1991);

finally, concerning the difference between the logarithms in
(19), L1 (k) is the number of k-year-old widows at January
1, 1991, and L, (k + 1) is easily obtained from above.

In the model (16)-(17), the estimations ¢ of the parameters
a5 are explicitly given by

S, (A1 + Bk 3‘;;}) Ao ()
dor=1-— —, (20)
c1—1
Zk (Al + Blc’f 13101 )
Zk (AQ —+ BQCS%) AQ()Q(k)
Aoz =1— —, (21)
co—1
Sy (42 + Backszzl)
13 = -1 (22)
1 2
5y (42 + Back L)
and
by = ~1. (D)

)2
On the basis of (20)-(23) with the aid of the NIS data concern-
ing individuals aged from 30 to 80 years, we get

P (Al + Bycka=t

llnc

Qo1 = 0.092 945 871, é&p2 = 0.121 655 037,

Gis = 0.041 349 449 and G = 0.241 032 536.

In other words, there is (on the basis of the NIS data collected
during 1991) an under-mortality of about 9% for married men,
of 12% for married women, and an over-mortality of about 4%
for the widows and of 24% for the widowers, compared to the
mortality experienced by the entire Belgian population.
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5.3 Premium calculation in the markovian model

In order to price the widow’s pension, we only need the prob-
abilities poo (¢, t + At), po1(t,t + At) and p11 (¢, ¢ + At) for
integers t and At. The pog’s and p11°s can be calculated recur-
sively since they satisfy the recurrence scheme

P00(0, k + 1) = poo(0, k)poo (k, k + 1),
p11(0,k + 1) = p11(0, k)p11(k, k + 1),

starting with poo(0,0) = p11(0,0) = 1. We further assume
that the transition intensities p;;(.) are constant for each year

of age, i.e.
[Lw(k‘+’l') :,U,Z](k‘) f0r0§T< 1. (24)

This reduces to consider that for each integer age « + & and
y + k, we have
Patktr = Hatk AN fhy k7 = plytp fOro <7 < 1.
The one-year probabilities poo (k, k£ + 1) and p11 (k, k + 1) are
then respectively given by
poo(k, k + 1) = exp {—po1 (k) — po2(k)}
and
pr1(k, k4 1) = exp{—p3(k)},
while the one-year transition probabilities po1 (k, k& + 1) can
be expressed as
po1(k, k+1)

um(ki)(exp {—#o1(k) — po2(k)} — exp {—M13(’€)})
- 13 (k) — po1 (k) — poz(k)
Reformulated in the Markov model, the net single premium

af ¥ relating to the widow’s pension is given

min(wg,wy)

a%k - Z P00 (0, k)po1(k, k + 1)
k=0
wy—k
> (k41 k+ 1+ )t
7=0

Remark 5.2. The assumption (24) has been done to facilitate
computations. More rigorously, from specifications (16)-(17),
it is easily seen that for s < ¢

Poo(s,t)

exp { /:_S (o1 (T) + uoz(T))dT}
exp {(1 — an) /t_ (A + Blcf“)df}
exp {—(1 ) /Tt_ (Az + Bgcg”)df}

B
= exp {—(1 — 0401) (A1 + —lncll (cf+t _ ci:+s))
B2 y+t y+s
7(1 — CV()Q) A2 —+ —ln . (62 — Cy )



with similar expressions for p11(s,t), p22(s,t). Tedious cal-
culations then yield expressions for po1 (s, t) and poa(s, t).

5.4 Numerical illustrations

To illustrate the possible use of the above Markovian model,
we plotted the graphs of Figure 6 on the basis of the set of the
three assumptions z =y, x = y — 5and x = y + 5. The fact
that the net single premiums a?ﬁrk are indeed lower for the
calculation based on the assumption of dependent remaining
lifetimes can be explained as follows. Since the &;;’s are all
non-negative, we deduce from (15) that the time-until-death
random variables T3, and 77, are PQD. With PQD remaining
lifetimes, the policy stays longer in state O (thus there is a
longer time until possible annuity payements) and shorter in
state 1 (less annuity payements). Grosso modo, the Markovian
model provides net single premiums ag‘@’k of about 90% of

those computed on the independence assumption (i.e. ai“y).
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In conclusion, the Markovian model allows the actuary to
determine an “exact" value of the premium a,, under inter-
est. This “exact” value offers the actuary a yardstick in order
to decide whether or not to grant a discount to the assured
persons, as well as to select the amount of this discount, or
to evaluate the level of the mortality benefits in profit testing.
Finally, the value aga”‘ is also of primordial importance when
the level of the safety loading is to be selected. Indeed, the

manual premium aj‘y itself contains an implicit safety load-
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ing of about 10%. This has to be taken into account in order
to avoid excessive safety margins.

6 Copula models of ratemaking
6.1 Notion

One of the most useful tools for handling multivariate distri-
butions with given univariate marginals is the copula function
(also named uniform representation or dependence functions).
The concept of “Copulas" or “copula functions" originates
in the late 50°s in the context of probabilistic metric spaces.
The idea behind this concept is the following: for multivari-
ate distributions, the univariate marginals and the dependence
structure can be separated and the latter may be represented
by a copula. The word copula is a latin noun which means “a
link", and is used in grammar and logic to describe that part
of a proposition which connects the subject and predicate. In
statistics, it now describes the function that “joins together"
one-dimensional ditribution functions to form multivariate dis-
tribution functions.

Let us define the notion of copula in the bidimensional case.

Definition 6.1. A bivariate copula C' is the joint distribu-
tion function for a bivariate distribution with unit uniform
marginals. More precisely, C' is a function mapping the unit
square [0, 1] x [0, 1] to the unit interval [0, 1] which is non-
decreasing and continuous, and satisfies

(I) limui_,o C(ul,ug) =0fori= 1,2;

(ll) hmul*)l C(Ul, UQ) = us and hHluQi,l C’(ul, UQ) = Ui,

(iii) C(v1,v2) = Clur, v2) = Clvr, uz) + Cuy, uz) > 0 for
any u; < vy, ug < va.

Then, it can be proved that every bivariate distribution func-
tion F'x in R (F1, F») can be represented in terms of a copula
C through

Fx(z1,22) = C (Fi(21), Fa(z2)), (21,72) € Ra. (25)

When the marginals F; and F5 are continuous, the copula C'
in (25) is unique and coincides with the distribution function
of the pair (F1(X1), F»(X2)); this is nevertheless no more
true when at least one of the F;’s possesses some disconti-
nuity points. Henceforth, we restrict ourselves to continuous
marginals. Considering (25), C “couples” the marginal dis-
tributions F; and F5 to get the joint-distribution F'x of the
pair X. The dependence structure is entirely described by C
and dissociated of the marginal distributions F; and F5. Thus,
the manner in which X; and X, “move together" is captured
by the copula, regardless of the scale in which the variable is
measured.

The marginals £} and F> can be inserted in any copula, so
they carry no direct information about the coupling. At the
same time any pair of marginals can be inserted into C so C
carries no direct information about the marginals. This being
the case, it may seem reasonable to expect that the connections
between the marginals of F'x are determined by C' alone, and
any question about the dependence structure can be answered
with the knowledge of C' alone.



Example 6.2. The population version of Kendall’s = for a
random couple (X7, X2) of continuous rv’s with copula C'is
expressible as

XI;XQ

/ / ul,u2 dC(ul,’UQ)*l
ul_() ug—()

4E[C(U1, Us)] —

where (U, Us) stands for a couple of random variables uni-
formly distributed over [0, 1] with joint distribution function
C'. Similarly, Spearman’s p can be expressed as

X17X2

12/ / u1u2dC Ul, UQ) -3
ul—O U= =0

12/ C(ul,uQ)duldug — 3. (27)
ul—O u2 0

6.2 Some classical copula families

We give below the most common copulas, together with their
Kendall’s 7. Let us now point out some remarkable copulas
related to independence and Fréchet bounds:

e the Fréchet upper bound copula, denoted by Cy, is

CU(Ul,U2> = min(ul,UQ), (ul,uQ) S [0, ].] X [071},
it corresponds to a unit mass spread over the main diagonal
uy = ug Of the unit square and has 7 = 1;

the Fréchet lower bound copula, denoted by C7, is
Cr(u1,u2) = max(0,u+us—1), (ug,uz) €
it corresponds to a unit mass spread over the secondary
diagonal u; = 1 — usy of the unit square and has 7 = —1;
finally, the independence copula, denoted by C7, is

[0,1] x [0, 1],

Cr(ui,us) = uiug, (u1,u2) €

7=0.

Let us mention that if X; and X5 possess the distribution
function (25) then they are independent if, and only if, C = C7,
X is almost surely a non-decreasing function of X if, and
only if, C = Cy, and X5 is almost surely a non-increasing
function of X if, and only if, C = Cf.

Fréchet (1958) proposed a family of copulas consisting in
two-parameters convex linear combinations of C',, Cr and Cy,
known in the literature as the Fréchet family. More precisely,
the copulas C., s of the Fréchet family are of the form

Cap=0aCy+ (1 —a—p)Cr+ pCL,

1—
/Ul 0/1,@2 =0 aul UI7u2)a 2C(U17U2)du1du2
(26)

[0,1]%][0, 1],
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with «, 3 > 0 such that o + 8 < 1. The corresponding
Kendall’s 7 is given by

(a—p)la+b+2)
3

and the Spearman’s p equates p,g = « — (. Then, Mardia
(1970) introduced a subfamily of the Fréchet family that can
be seen as one-parameter mixtures of C'p, C; and Cy; (see also
Carriére and Chan (1986) for a generalization of this model).

There are also many parametric families of bivariate cop-
ulas, as those listed hereafter (in each case, the parameter «
measures the degree of association):

Ta,p =

e Cook-Johnson

-1/«

Clu1,ug) = (uy® +uy® — 1) ;

(u

a > 0;
T=af(a+2);
Farlie-Gumbel-Morgenstern

C(uy,uz) = uu@(l—&—a(l —up)(1 —uQ)), a€[-1,1].

_2 2

This family has 7 = 2a € [—2, 2] and can thus be used
only in situations with weak dependence;

Frank
1)(exp(aug — 1)
—1)/a, where D4 (.) is the Debye

1

(exp(auq) —
exp(a) —

1
C(Ul,U2> = a In <]. +

a# 0,7, =144(D1 ()
function of order 1, i.e.

Drle) = /:0 o :

exp{ —1)

Gumbel-Hougaard or logistic copula

+ (f1nu2)a}1/a) ,

a>1,7=1—a"'. The parameter . controls the amount
of dependence between the two components: « = 1 gives
independence and the limit for o« — +oc leads to perfect de-
pendence. This copula is consistent with bivariate extreme
value theory and can be used to model the limiting de-
pendence structure of componentwise maxima of bivariate
random couples.

¢, acR;

C(u1,uz) = exp (7 {(—Inuy)®

Note that all the bivariate copulas examined above satisfy
the exchangeability condition C'(u1,u2) = C(ug,u1). In a
situation where the appropriateness of this symmetry condition
is doubtful, one may wish to have non-exchangeable models.
Asymmetric copulas have been proposed in Genest, Ghoudi
and Rivest (1998).

6.3 Archimedean family

Let us now present the family of the Archimedean copulas
introduced by Genest and MacKay (1986a,b).



Definition 6.3. Consider a function ¢ : [0,1] — R™ having
two continuous derivatives ¢") and ¢(?) on ]0, 1[ and satisfy-
ing

p(1) =0, ¢W(r)<0and @ (r) >0 (28)

forall = €]0, 1[. Conditions (28) are enough to guarantee that ¢
has an inverse ¢~ having also two derivatives. Every function
¢ satisfying (28) generates a bivariate distribution function C,
whose marginals are uniform on the unit interval (i.e. a copula)
given by

¢~ {o(ur) + P(uz)},
if p(u1) + d(uz) < ¢(0), (29)

0, otherwise,

Cy(u1,uz) =

for 0 < wj,us < 1. Copulae Cy of the form (29) with ¢
satisfying (28) are referred to as Archimedean copulae.

The Archimedean representation (29) allows us to reduce
the study of a multivariate copula to a single univariate func-
tion. As an example, C; is the Archimedean copula associated
to ¢(t) = — In(¢).

In general evaluating the population version of Kendall’s
T requires the evaluation of a double integral. For an
Archimedean copula, the situation is simpler in that ~ can be
evaluated directly from the generator ¢ as follows: Kendall’s
T associated to Cy, is given by

L)
7'¢:4/t:0 ¢(1>(t)dt+1

One of the reasons Archimedean copulas are easy to work
with is that often expressions with a one-dimensional function
(the generator) can be employed rather than expressions with
a two-dimensional function (the copula).

Now, a bivariate distribution function Fx in Ro(F}, F») is
said to be generated by an Archimedean copula if, and only if,
it can be expressed in the form

Fx(z) = Cy(Fi(x1), Fa(22)), xeR?,

for some Cy, satisfying (28)-(29). Several one-parameter sys-
tems of bivariate distributions with fixed marginals can be seen
to have Archimedean copulas as their dependence functions.
Three key examples of generators are given next (these can be
found in Genest and Rivest (1993)):

1. Cook-Johnson:
boa=t"%—1, a>1;

_ exp(at) — 1 '
(//)a —h’l{m}, OZGR,

2. Frank:

3. Gumbel-Hougaard:

Do = (fln(t))a, a> 1.

The Archimedean family provides a host of models that are
extremely versatile and that have been successfully used in a
number of data modeling contexts (see the references provided
in Section 2 of Genest, Ghoudi and Rivest (1998)). Moreover,
this class of dependence functions is mathematically tractable
and its elements have stochastic properties that make these
functions attractive for the statistical treatment of data.

6.4 Data for numerical illustrations

In order to fit these models, we need a bivariate data set. The
required data were not available at the NIS (National Institute
of Statistics) since the Belgian official statistics are based on
the death certificates fulfilled by the family practitioner or a
physician with a hospital appointment and the latter do not
mention the age of death (if applicable) of the spouse of the
deceased. In other words, NIS can provide detailed statistics
about the mortality of Belgian males and females split by
age and marital status, but not bivariate data sets. Therefore,
we selected at random two cemeteries in Brussels (namely
Koekelberg and Ixelles-Elsene) and we collected the ages at
death of 533 couples buried there. Of course, this methodology
is open to criticism and we do not claim at all that the present
data set is the best sample a statistician could find. These data
are only used in order to illustrate the techniques examined in
the paper. The interested actuary will substitute his own data
set for the present one.

Let us now provide some data characteristics. The two vari-
ables of interest are called “Age at death/Man" and “Age at
death/Woman". First, Table 2 provides some descriptive statis-
tics about these two variables, namely, the mean, the mode, the
standard deviation, the standard error (calculated by dividing
the standard deviation of the observations by the square root
of the number of observations; it estimates the variability one
expects if repeated samples of the same size are taken from
the population), the smallest and largest values in the set of
observations, the range, the 10th, 25th, 50th, 75th and 90th
percentiles, the skewness (the negative value of the skewness
indicates that the left tail spreads out further than the right), the
kurtosis (the positive kurtosis value indicates that the data is
squeezed into the middle of the distribution). The histograms
of “Age at death/Man" and “Age at death/Woman" are dis-
played in Figures 7 and 8, while the scattergram of the pair
“Age at death/Man" — “Age at death/Woman" is depicted at
Figure 9. The results clearly suggest higher mortality rates for
males than for females and moderate association.

The box plots for “Age at death/Man" and “Age at
death/Woman" are depicted in Figure 10. The central box is
composed of three horizontal lines that display the 25th, 50th
and 75th percentiles of the variable. In addition, two segments
of 1.5 times the inter-quartile interval are plotted above the
75th percentile and below the 25th one.

Considering Table 3, the positive value of Spearman’s p
indicates that high ranks of one variable occur with high ranks
of the other variable. The null hypothesis tested in Table 3
(first column) is that the two variables “Age at death/Man" and



“Age at death/Man"

“Age at death/Woman"

Mean

Mode

Std. deviation
Std. error
Minimum
Maximum
Range

10th percentile
25th percentile
50th percentile
75th percentile
90th percentile
Skewness
Kurtosis

73,083
81,000
12,268
0,531
24,000
98,000
74,000
56,000
67,000
74,000
82,000
88,000
-0,752
0,711

78,340
81,000
11,074
0,480
22,000
103,000
81,000
64,000
72,000
80,000
86,000
91,000
-0,949
1,824

Table 2. Descriptive statistics for “Age at death/Man" and “Age at
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Figure 10. Box plots of “Age at death/Man" and “Age at death/Woman"

“Age at death/Woman" are independent of each other, against
an alternative hypothesis that the rank of a variable is correlated
with the rank of another variable. The tied p-value is equal to
0,15% so that the independence assumption is clearly rejected
at any reasonable confidence level. Similar conclusions are
drawn from Kendall’s 7.

Spearman’s rank  Kendall’s rank

correlation correlation

Rank correlation 0,139 0,092
Z-value 3,199 3,169
p-value 0,0014 0,0015
Rank correlation

corrected for ties 0,138 0,094
Tied Z-value 3,180 3,254
Tied p-value 0,0015 0,0011

Table3. Spearman and Kendall rank correlations and independence test.

6.5 Archimedean copula selection

In order to select a copula model, we first restricted ourselves
to Archimedean copulas, and we applied the methodology
proposed by Genest and Rivest (1993) for identifying a copula
form in empirical applications. It assumes that the underlying
distribution function F'x has an associated copula C; the aim
is thus to identify ¢. The idea is to work with an intermediate
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random variable Z; = Fx (X(”, x{") that has distribution
function F'z. It can be shown that

¢(2)

¢ (z)
To identify ¢, the method proceeds in three steps:

Fz(Z) =z —

estimate Kendall’s 7;
construct a nonparametric estimate of 'z as

F,(2)

il < 2}

1
n—1

©)

7x2

Z; =

#{ ("

construct a parametric estimate of F'z: for various choices
of ¢ use 7T to estimate « and

)‘xgj) < mgi),mgj) < xéi)};

Pa

=z —F.
o)

After having repeated Step 3 for several choices of ¢, it suffices
to compare each parametric estimate to the nonparametric es-
timate constructed in Step 2. The idea is to select ¢ so that the
parametric estimate resembles the nonparametric one. Mea-
suring closeness can be done by minimizing a distance such
as

Fysq (Z)

[ {Fea®) - But2)} B0

or graphically.

__Asitcan be seen from Figure 11, the empirical distribution
F, is very close to its theoretical couterparts £, so that Cook,
Frank and Gumbel models seem appropriate to model our data.
Therefore, let us continue with Gumbel copula, for the sake of
simplicity.

The parameter o involved in the Gumbel model is estimated
via Maximum Likelihood, starting from the following initial
value: .

S

0, 104;

we have obtained & = 0.1015378. We then get the probability
that both T’ and T, fail before ¢ can be estimated by

Cqm (tha tqy)
exp (= {(~In1g,) ! + (= Insg,)* 1} )

t € R*. Probabilities ;p,,, and ;pz7 can then be estimated by
+Dzy aNd Pzy given by

tqzy

Doy =1 — tqy — 1@y + Co, (+qu,1qy), tERT,  (30)
and
tﬁﬁ =1- C¢& (tCthQy), te R+' (31)

By inserting the values provided by (30)-(31) in the net single
Premiums a,.z(, azym| and a,),,, we get the graphs depicted



1.0

0.8

110 125 140 155 17.0

n-year joint-life annuities

independence

**** minimum

**** maximum
Gumbel

9.5

0.6
8.0

10 15 20 25 30 35 40 a5 50 55 60

N x=y=40

0.4

15.0

empirical distribution
Cook

Frank

""" Gumbel

cumulative distribution function

135

0.2
!
120

independence
minimum
maximum
Gumbel

n-year joint-life annuities

95 105

0.0

85

0.0 0.2 0.4 0.6 0.8 1.0

75

Figure11. Graphical procedure for selecting the appropriate Archimedean

copula. Figure12. a,, . s a function of n, with & = 4%, = y = 40 and 50,

computed on the basis of Gumbel’s model.

in Figures 12-14, where the premiums based on the indepen-
dence assumption, the Fréchet bounds as well as the premiums
based on Gumbel’s model are presented. Because of the poor .
dependence exhibited by the data set, the Gumbel’s premiums
are very close to the tariff book premiums.

n-year last-survivor annuities
4
)

independence

6.6 Mardia’s model Ep

~'="  Gumbel

N x=y=40

In our context, the one-parameter mixture of C'r, C; and Cy
arises from the assumption that the population under interest
consists of three groups: the married couples in perfect dis-
agreement (i.e. those with a dependence structure described
by C1) in proportion 71, those in perfect agreement (i.e. those
with a dependence structure described by Cy;) in proportion 73
and those with independent time-until-death random variables
in proportion 7. Regarding these proportions as functions of
a unique parameter 3, we get the one-parameter copula Cs
given by o

independence
maximum

n-year last-survivor annuities

s minimum
- == Gumbel

n x=y=50

Cp(ur,uz) = m(B)CL(u1,u2) + m2(B8)Cr(u1, u2)
+m3(8)Cu (u1, u2), (32)

Figure13. agy.m| as a function of n, with § = 4%, = y = 40 and 50,
0 < uq,ug < 1. The parameter 3 in (32) is thought of as computed on the basis of Gumbel’s model.

providing some measure of association between 7>, and 7.
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Mardia’s model is obtained by considering

n) = P
m(B) = 1-p2 (33)
m() = o 0

where g € [—1,1].

We emphasize that the mixture (32) boils down to an insur-
ance premium built as a combination of the tariff book pre-
mium (based on the independence assumption, i.e. on C7) to-
gether with the extremal premium amounts (computed with the
Fréchet bounds C, and Cy). This particularly simple model
is consequently very interesting, on the one hand because of
its intuitive appeal and, on the other hand since it is easily put
into insurance practice.

Because of its intuitive meaning, Mardia’s model is also
an interesting candidate for our data. Let us now work with
the model (32)-(33). It can be shown that p = 33, so that we
start the iterative algorithm yielding the maximum likelihood
estimation of the parameter 3 with

pY% =0,517;
we have obtained B = (0.5170861. We then have
Cﬁ(tha tq’y)
7?(1 max((), tqx + tqy — 1) + 7?[_2 tdz tqy

+73 Min(¢ ¢y, ¢Gy)

tdzy

35

where 773 = m(8) = 0,065, 72 = m2(6) = 0,730 and
3 = 7r3(5) = 0,205. Then, ¢puy and ;pzy are deduced from
(30)-(31). The premiums based on the independence assump-
tion (dotted line), the Fréchet bounds (dotted line) as well as
the premiums based on Mardia’s model (continuous line) are
presented in Figures 15-17. Mardia’s premiums therefore con-
sist in approximately 73% of the tariff book premium plus a
mixture of the “extreme" Fréchet premiums. Again, Mardia’s
premiums are close to the tariff book ones because of the weak
dependence in the data set.
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Figure15. a,,. as a function of n, with £ = 4%, = y = 40 and 50,

computed on the basis of Mardia’s model.

7 Ordering lifetimes with the correlation order

The correlation order is a partial order between the joint distri-
butions of the remaining lifetimes in R (F1, F). It expresses
the notion that some elements of Ry (F}, F») are more posi-
tively correlated than others.

Definition 7.1. Let us consider two random couples X =
(Xl,Xg) andY = (Yl,Yé) in RQ(F17F2). If

Fx(ajl,l‘g) < Fy(ajl,l‘g), forall z; and X9, (34)
or, equivalently, if
Fx(lﬂl,lﬂ2> §Fy(a:1,x2), for all z; and X2, (35)

then we say that X is smaller than Y in the correlation order
(denoted by X <.Y).
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From (8) it is seen that X is PQD if, and only if, X+ <. X
where X+ denotes an independent version of X.

By Hoeffding’s Lemma (see Lehmann, 1966, page 1139)
we see that if (X, X2) has distribution F'x in Ro(Fy, Fy),
then

C()V[)(l7 Xg]

/Z/Z {Fx(a1,22) ~ Fy(a1) Fy(a) } drydas

provided the covariance is well-defined. It thus follows from
(34) that if (X1, X2) and (Y1, Y2) both belong to Ry (Fy, Fz),
the stochastic inequality (X1, X2) <. (Y1, Y2) implies

Cov[Xy, X3] < Cov[Y, Yz, (36)

and therefore, denoting as r the Pearson’s correlation coeffi-
cient, since Var[X;] = Var[Y;], i = 1, 2, we have that

(X1, X2) <r(Y1,Y2),

provided the underlying variances are well defined. It is worth
mentioning that some other correlation measures, such as
Kendall’s 7 and Spearman’s p, are preserved under the cor-
relation order.

If X <.Y then the inequalities

P[X2 > 22| X1 > 1] < P[Y2 > a2|V1 > 2] forall 21 and z,
and
P[Xs < :EQ|X1 >x1] > PlYs < :cg‘Yl > x4] forall 27 and z».
Thus, for all z; we have
E[X2| X1 > 2]

0
/..

LS
+/ ]P)[Xg > xg‘Xl > $1]d$2
0

1.

LS
+/ ]P)[Yé > .IJQ‘Yi > $1]d$2
0

P[XQ < CE2|X1 > 161] dxo

IN

PD/Q < CE2|Y1 > 161] dxo

E[Y2|Y1 > 331].

For every X € Ro(F1, Fy), the stochastic inequalities
(FrHO) P - 10)) 2 X = (FPHU), F ()
(37)

are valid, where U stands for a unit uniform random variable.
The notions of correlation order and positive quadrant de-
pendence can easily be expressed in terms of copulas. Indeed,

let (T,T,) and (Tx,fy) be elements of Ro(Fy, F») with

respective copula functions C and C. Then

(T, 1) <o (T2, T,)



is equivalent with
C(u,v) < C(u,v) forall u,v € [0,1].
Moreover, saying that T}, and T}, are PQD is equivalent with
C(u,v) > uvforall u,v € [0,1].

LetT" be the remaining lifetime of a joint-life or last-survivor
status. We will consider life insurances and annuities for which
the present value of future benefits (PVFB, in short) is given by
f(T) with f anon-decreasing or non-increasing non-negative
function. The expectation of f(T) is the (pure) single premium
for the insurance or annuity under consideration.

Remark that the PVFB of most of the usual joint-life and
last-survivor insurances and annuities can be written as non-
decreasing or non-increasing functions of the remaining life
time of the joint-life or last-survivor status involved:

(i) the PVFB of pure endowments (, Eyy, nEzy) and whole
life annuities (Gxy, dzy, oy, Tzy, - - -) are non-decreasing
functions of the multiple life status involved;

(ii) the PVFB of whole life insurances (A, Azz, Avy, Azg,
...) are non-increasing functions of the remaining life time
of the multiple life status involved.

In the following theorem, which states our main result, we
will consider two bivariate remaining lifetimes in Ry (F1, F»)
which are ordered in the <.-sense. We will show that this im-
plies an ordering of the corresponding multiple life premiums.

Proposition 7.2. Let (T, T,) and (Tx,fy) be two bivariate
remaining life times, both elements of Ry (F1, Fy). If

(T2, Ty) = (T T,)

then the following inequalities hold for any non-decreasing
function ¢:

E¢ (min {1}, T,}) < Ed (min {Txfy}) ,

E¢ (max {fx, fy}) > E¢ (max{T,,T,}).
If ¢ is non-increasing then the opposite inequalities hold.

Proof. Let us show that if
(Tazv Ty) jc (Txv fy)

then the corresponding joint-life and last-survivor statuses are
ordered in the <;-sense, specifically the following stochastic
order relations hold:

min {1, T, } < min {fx,fy} ,
and

max {f;,fy} <ot max {1y, T,},

where X <5 Y means P[X > ¢t] < P[Y > ¢] forall ¢t € R.
Since

P[Ty > t,T, > s| g[P’[fz >t,T, >s},
we find

Plmin {T,,T,} > ] = P[Ty>tT, >

P[Tx >t,T, >t}

IN

P [min {fc,fy} > t} ,

which proves the first stochastic order relation. The other rela-
tion is proven similarly. The first inequality is thus proven. The
proof for the other inequality is similar. The inequalities for
a non-increasing function ¢ follow immediately by remarking
that —¢ is non-decreasing in this case. O

Proposition 7.2 can be interpreted as follows. Assume that
the marginal distributions of the remaining lifetimes 7, and
T, are given. If the bivariate remaining life time of the couple
increases in the sense of the correlation order, then the single
premiums of endowment insurances and annuities on the joint-
life status increase, while the single premiums of endowment
insurances and annuities on the last-survivor status decrease.
For whole life insurances, the opposite conclusions hold.

Remark that Proposition 7.2 can also be used for order-
ing single premiums of more complex multiple life functions.
Consider e.g. an annuity which pays one per year while both
T, and T, are alive, and o per year while T’ is alive and T, has
died. The discounted value of the benefits involved is given by

min{T,,Ty} Ty
/ v dt + /
0 min{T;,Ty}

min{T;, Ty} Ty
= (1704)/ vtdtJra/ vt dt.
0 0

ot dt

Under the conditions of Proposition 7.2, we find from the
equality above that

(T2, 1)) = (T T,)
implies

(T..T,) agLTy) taa

zly

(T2, Ty)
Ay +aa ey ,

in obvious notations.

Remark 7.3. A natural measure of dependency between two
random variables is the covariance. So, one could wonder
whether

Cov|[T},T,] < Cov [Tw, Ty}

is a sufficient condition for the ordering relations in Proposition
7.2 to hold. In the following example, we will show that the
ordering of the covariances is not a sufficient condition.



Example 7.4. Let F' be the cumulative distribution function
of aremaining life time that can be equal to 1/2, 3/2 or 5/2, each
with probability 1/3. Now, we consider the couples (T, T})

and (Tx, Ty) both elements of R(F, F). Further, we assume
that 7', and 7', are mutually independent, while the dependency
structure of (Tz, Ty) is described by the following relations:

P[fy:1/2|ﬁ:1/2} - 1
P[Ty:3/2|ﬁ:5/2} = 1,
P{fy:5/2|ﬁ:3/2} = 1

We have that Cov [T}, T,] = 0 and Cov [ﬁ,,fy} =1/3.
On the other hand, we find

1/9 fort < 3/2,
4/9 for3/2 <t <5/2,
1 fort > 5/2.

(v

From the distribution functions of max{T,,T,} and
max {i“ Ty} we find that

Pmax{T,,T,} <t] =

and

fort <5/2,
fort > 5/2.

P [max {ﬁ,fy} < t}

> g1

T, Ty)
lE ’ Ty 9

(
Ty
but

(7. 7,)
Ty < oF. Y

Ty :

Although it is customary to compute covariances in relation
with dependency considerations, one number alone cannot re-
veal the nature of dependency adequately. From the example
above, we see that the order induced by comparing only the
covariances of (T, T,) and (fz,fy) will not imply a con-
sistent ordering between the single premiums of endowment
insurances on the last-survivor status. Hence, the results of
Proposition 7.2 cannot be generalized in this way.

Instead of comparing

Cov [T, T,] and Cov {fz, Ty}
one could compare

Cov [¢1(T%), ¢2(T,,)] with Cov [¢1 (T,), b (fy)}

for all non-decreasing functions ¢, and ¢. The order induced
in thisway is <.. As we see from Proposition 7.2, this general-
ization of an order based on comparing covariances implies a
consistent ordering between single premiums of joint life and
last-survivor annuities and insurances.
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