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Abstract

Actuaries intuitively feel that positive correlations between individual risks reveal a more
dangerous situation compared to independence. The purpose of this short note is to formalize
this natural idea. Specifically, it is shown that the sum of risks exhibiting a weak form of
dependence known as positive cumulative dependence is larger in convex order than the
corresponding sum under the theoretical independence assumption.
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1 Introduction

The study of the impact of dependence among risks has become a major topic in actuarial
science nowadays; see e.g. Dhaene, Wang, Young and Goovaerts (2000), Goovaerts, Dhaene
and De Schepper (2000), Kaas, Dhaene and Goovaerts (2000), Simon, Goovaerts and Dhaene
(2000), Vyncke, Goovaerts and Dhaene (2000) as well as the references therein. It has been
recognized that the assumption of mutual independence of risks is often violated in insurance
practice. In many lines of business, the introduction of common shocks at the portfolio level
is needed to represent the effects of catastrophes hitting several (or a large number of) policies
simultaneously, like earthquakes, tornados, epidemics and so on. Consequently, the risks in
the individual model are certainly not independent but merely depend on each other.

Several notions of positive dependence were introduced in the literature to model the fact
that large values of one of the components of a multivariate risk (X7, Xs,...,X,) tend to
be associated with large values of the others. Some of these concepts appear to be relevant
in actuarial science. For a review, see e.g. Scarsini and Shaked (1996) or Joe (1997).

In this paper, we consider a weak form of positive dependence, known as positive cumu-
lative dependence. This concept seems to have received little attention until now, compared
to the stronger notions of association or conditional increasingness in sequence, for instance.
As shown in Section 2, the positive cumulative dependence is particularly appealing for
actuaries. In Section 3, we state our main result. Finally, in Section 4 an application is
proposed.

Let us briefly specify some notations. Henceforth, a non-negative random variable X
with a finite expectation is called a risk. Further, IR denotes the real line (—oo, +00), IR,
the half positive real line [0, +00) and IV the set of the non-negative integers {0,1,2,...}.
The symbol “=;” means “is equally distributed as”. The risks X, X5, ..., X;I represent
independent versions of X1, Xy, ..., X,,, i.e. (i) the random variables Xi-, X5, ... X} are
mutually independent and (ii) for any i = 1,2,...,n, the random variables X; and X; are
identically distributed. Furthermore, the risks X, XY ... XU represent the comonotonic
version of X1, Xo,..., X, i.e. XV = F ' U),X{ = F,Y(U),..., XV = E-YU) where U
denotes a random variable uniformly distributed on the unit interval [0,1] and F,! is the
quantile function associated to the distribution function F; of X;, i.e.

FYp) =inf{z € R|F(z) >p}, 0<p<1.
Given two risks X and Y, X is said to precede Y in the stop-loss order, written as X <4 Y,
if E¢(X) < E¢(Y) holds for all the non-decreasing and convex functions ¢ for which the
expectations exist. It is worth mentioning that X <, Y and FX = FEY if, and only if,
E¢(X) < E¢(Y) holds for all the convex functions ¢ for which the expectations exist.

2 Positive cumulative dependence

As far as random couples are concerned (n = 2), positive quadrant dependence (PQD, in
short) has been extensively used in actuarial sciences, e.g. by Dhaene and Goovaerts (1996)
and Denuit, Lefevre and Mesfioui (1999). Let us recall that two risks X; and X, are said to



be PQD if the inequality
P[Xl > .Z'l,XQ > .Z'Q] > P[Xl > .Z'l]P[XQ > 1'2] (21)

holds for any reals 1,9 € IR,. Considering (2.1), the intuitive meaning of PQD is clear: if
Xy and X5 are PQD then the probability that they both assume “large” values is greater than
if they were independent. Note that (2.1) can be cast into P[X; > x1|Xs > 5] > P[X; > 2]
for any x5 such that P[X, > x3] > 0, which is also very intuitive: the knowledge that X5 is
“large” (i.e. exceeds some treshold z5) increases the probability for X; to be “large”. It is
known from Dhaene and Goovaerts (1996, Theorem 2) that

X1, Xy are PQD = X+ X5 < X1 + Xo. (2.2)

Our aim is to extend the stochastic inequality (2.2) to the case of n risks X7, Xo,..., X,.
For this purpose, we need to introduce a positive dependence notion involving more than
two risks.

For Z C {1,2,...,n}, let us define St as the sum of the X;’s whose index is in Z, i.e.
St = Y ez Xi- The positive cumulative dependence (PCD, in short) is defined as follows:
the risks Xy, Xo,... ,X,, are PCD if for any Z and j ¢ Z, S7 and X are PQD. This weak
form of dependence extends the bivariate PQD to arbitrary dimension and keeps the intuitive
meaning of PQD: if the X,’s are PCD, the probability that S7 and X; both assume “large”
values is greater than if the X;’s were independent. In particular, the inequality

S Xi>th ZXi>t1]

i#] i#]

P Xj>t2 zp

holds true for any j = 1,2,... ,n with P[X; > t] > 0 provided all the risks X7, Xs,... , X,
are PCD, whence it follows that

E <2Xit1>+)xj Sty > E <2Xit1>+.

i#] i#]

This means that the knowledge that one of the individual risks, X; say, is large (i.e. X; > ¢,
for some ¢y € IR, ) increases the probability that the aggregate claim produced by the n — 1
remaining risks of the portfolio is also large, as well as the stop-loss premiums relating to
them.

3 Main result

Let us now prove the following result which enhances the interest of PCD in the study of
dependent risks. More precisely, we provide hereafter a multivariate generalization of (2.2).

Theorem 3.1. Let us consider PCD risks X1, Xs, ..., X, with marginal distribution func-
tions F1, F5, ... | F,. Then, we have

X X+ X< X+ X+ 4 X, e XU+ XV 4+ XY



Proof. The second stop-loss inequality is true in general, for risks X, X, ..., X, with dis-
tribution function Fi, Fy, ... F,; see, e.g., Dhaene, Wang, Young and Goovaerts (2000).
Let us prove the first stop-loss inequality. Without loss of generality, the random vectors
(X, Xo, ..., X)) and (X1, Xs, ..., X,,) may be considered independent. Now, proceed by
induction. First, Xi* <, X trivially holds. Now, assume that

X{+Xg+ 4+ Xy 2 X1+ X0+ + X,

holds true for k =1,2,--- ,n — 1. Then, by the closure of <,, under convolution, the latter
stochastic inequality yields

X4 X+ + X X< Xi+ X+ 4+ X + X (3.1)
Now, since the X;’s are PCD, X,, and X; + X5 + --- + X,,_1 are PQD, and we get
Xi+ X0+ + X X< Xi+ X4+ Xl + X (3.2)

Combining (3.1) and (3.2) yields the announced result by the transitivity property of <s. O

Note that the conclusions of Theorem 3.1 a fortiori hold when the X;’s are associated,
linear positive quadrant dependent or conditionally increasing in sequence as these positive
dependence notions imply PCD (see Joe (1997) for further details about these concepts).
Therefore, Theorem 3.1 can be applied in many situations. As a few examples, let us mention
the class of counting distributions introduced by Ambagaspityia (1998) or the models recently
defined by Cossette and Marceau (2000); for more details, see Denuit, Dhaene and Ribas
(1999).

From the above result, once the marginal distributions of the X;’s are fixed, the best
lower and upper bounds in the < ,-sense on the aggregate claims X; + Xs+...+ X, of PCD
risks are provided by Xi+ X5 + ...+ X- and XV + XV +.. .+ XY respectively. Therefore,
any risk-averse decision-maker will prefer Xi- + X5- + ... + X;- over X; + Xy + ... + X,,
when the risks X, X, -+, X,, are PCD. This conclusion holds both in Von Neumann and
Morgenstern expected utility theory, as well as in Yaari’s dual theory of choice under risk.
It also follows from Theorem 3.1 that making the assumption of mutual independence for
PCD risks Xy, X5, ..., X, leads to an underestimation of the stop-loss premiums.

For PCD risks, the safest dependence structure is provided by mutual independence, for
fixed marginals. When the risks are not known to be PCD, the safest dependence structure
does not always exist; see Dhaene and Denuit (1999) for more details.

4 An application to premium calculation principles

Let us consider a premium calculation principle H|[.], that assigns a premium amount H|[X]|
to any risk X. We assume that the distribution function of X completely determines the
premium for X. Assume further that H[.] preserves the stop-loss order, i.e. given two risks
X and Y,

X =Y = H[X] < H[Y]



Consider PCD risks X7, Xs, -+, X,,. The stop-loss preserving property together with
Theorem 3.1 yields

H [ZH:XZ.L] <H iX] <H [Zn:XiU] : (4.1)

The inequality above states that for a stop-loss preserving premium principle, the premium
of a sum of PCD risks is maximal if the risks are comonotonic and minimal if the risks are
mutually independent. We remark that the second inequality holds in general for all risks
X1, X, ..., X, (not necessarily PCD); see e.g. Wang and Dhaene (1998). From (4.1), we
find that if a premium principle preserves stop-loss order and is additive for independent
risks, then it is super-additive for PCD risks. This result is a generalization of the bivariate
case considered in Wang and Dhaene (1998).
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