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Abstract

This paper focuses on techniques for constructing Bonus-Malus systems in third party
liability automobile insurance. Specifically, the article presents a practical method for con-
structing optimal Bonus-Malus scales with reasonable penalties that can be commercially
implemented. For this purpose, the symmetry between the overcharges and the undercharges
reflected in the usual quadratic loss function is broken through the introduction of parametric
asymmetric loss functions of exponential type. The resulting system possesses the desirable
financial stability property.
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1 Introduction and Motivation

Rating systems penalizing insureds responsible for one or more accidents by premium sur-
charges (or maluses), and rewarding claim-free policyholders by awarding them discounts
(or bonuses) are now in force in many developed countries. This a posteriori ratemaking
is a very efficient way of classifying policyholders into cells according to their risk. Several
studies have shown that, if insurers are allowed to use only one rating variable, it should be
some form of merit rating: the best predictor of the number of claims incurred by a driver in
the future is not age or car but well past claims behavior. Besides encouraging policyholders
to drive carefully (i.e. counteracting moral hazard), they aim to better assess individual
risks, so that everyone will pay in the long run a premium corresponding to his own claim
frequency. Such systems are called no-claim discounts, experience rating, merit rating, or
Bonus-Malus systems (BMS, in short). We will adopt here the latter terminology. For a
thorough presentation of the techniques relating to BMS, see Lemaire (1995).

In the EU, competition based on BMS seems to have been limited to a few member
countries. In Portugal for instance, each company developed its own experience rating sys-
tem. The Portugese market is characterized by many movements among different companies,
partly explained by competition but also by the lack of data disclosure among insurers. Pol-
icyholders have indeed the faculty to leave a company and to declare another one that it is
the first policy they subscribe. As a result, policyholders placed in the highest classes tend
to leave the company.

In the near future, complete freedom about a posteriori ratemaking will be given to all
insurers operating in EU member states, in accordance with European Directives. Therefore,
the turnover of policyholders is expected to increase in the near future. It seems thus
hopeless to implement in practice the very principle of credibility theory, that is, to make
correspond the premium paid to the true risk in the long run. Consequently, unless the
regulatory authorities organize an information system so that each insurer has access to the
past record of claims at fault, companies will not be able to apply credibility techniques. It
seems therefore more realistic to apply BMS in order to counteract moral hazard: the BMS
becomes a simple incentive to drive carefully. The systems considered in this paper for the
purpose of illustration conform to this philosophy.

All the methods used so far to determine the relative premiums are characterized by im-
portant penalties in case of claims and moderate (or even small) premium discounts awarded
to claim-free policyholders. This is a by-product of the use of a quadratic loss function. In
this paper, we apply an idea proposed by Ferreira (1977) and Lemaire (1979) to the Bayes
scales studied by Norberg (1976), Borgan, Hoem and Norberg (1981) and Gilde and Sundt
(1989): specifically, we derive the optimal relativities under an exponential loss function.
The main advantage of this method is that actuaries have now the freedom to determine the
severity of the system by selecting the value of a single parameter.

A few words on the notation and terminology used troughout the paper. In the remainder,
we denote a point of the real n-dimensional space R™ by a bold letter x; the 7th component
of xisx;, 71 =1,2,...,n. All the vectors are tacitly assumed to be column vectors. A matrix
is denoted by a capital letter in boldface, for instance M; M! denotes the transposition of
M. The vector of ones, that is (1,1,...,1)!, will be denoted by e. The identity matrix (with
entries 1 on the main diagonal and 0 elsewhere) is denoted by I. Finally, we denote by N



the set {0,1,2,...} of the non-negative integers, by Ny the set {1,2,3,...} of the positive
integers and by R the half-positive real line [0, +00).

2 Portfolio model

The framework of credibility theory, with its fundamental notion of randomly distributed risk
parameters, was employed in analysis of BMS by Pesonen as early as 1963. To be specific,
let us consider a portfolio of n policies. The ith policy of the portfolio, + = 1,2,... ,n, is
represented by a sequence (0;, K1, Kja, K3, ... ) where K;; represents the number of claims
incurred by this policyholder during the jth year the policy is in force, i.e. during the period
(7 — 1,7). At the portfolio level, the sequences (0;, K1, K2, K;3,...) are assumed to be
independent and identically distributed for + = 1,2, ... ,n. The risk parameter ©; represents
the risk proneness of policyholder 7, i.e. unknown risk characteristics of the policyholder
having a significant impact on the occurence of claims; it is regarded as a random variable.
Given ©; = 6, the random variables K;;, K5, K;3,... are assumed to be independent and
identically distributed. Unconditionally, these random variables are obviously dependent.
At the outset, O; is totally unknown. As time goes on, its value is reflected by the risk
performance on the policy. This fact makes individual experience rating possible.

Let us denote as X5, K = 1,2,..., K;; the amounts of the K;; claims reported by the
1th policyholder during the jth year. The total claim amount for this risk in year j is

Sij = E Xijk
k=1

with the convention that the empty sum equals 0. The severities X, ¢ = 1,2,...,n,
7,k € Ny, are assumed to be independent and identically distributed, and independent of the
claim frequencies K;;, j € Ny. This assumption essentially states that the cost of an accident
is for the most part beyond the control of a policyholder. The degree of care exercised by a
driver mostly influences the number of accidents, but in a much lesser way the cost of these
accidents. This assumption seems acceptable for third party liability insurance. Indeed,
the payments of the insurance company are for the third party, not for the policyholder.
Therefore, the amount paid by the insurer mostly depends on the characteristics of the third
party, and not on those of the insured. Henceforth, we put EX;;, = 1, which means that the
expected claim amount is chosen as monetary unit. The pure premium for policy ¢ in year
7 is then given by
E[Si;]0:] = E[K;]04].

A priori (i.e. without information about claims history), an identical amount of premium
EK;; = E©; is charged to new policyholders.
The very basic tenets of a BMS are as follows:

(i) a premium calculation principle;
(ii) a distribution for the [K;;|©; = 0]’s;

(ili) a distribution Fg for the ©,’s;



(iv) aloss function of which expectation has to be minimized in order to find the optimal
experience premium.

Considering (i), we assume throughout this paper, as it is common in practice, that each
policy is charged an amount proportional to its expected number of claims (expected value
principle). Let us now turn to item (ii). In the numerical illustrations, we assume in this
paper that the occurrence of the claims reported by individual policyholders, given their risk
parameter, is described by a homogeneous Poisson process. The assumptions underlying the
Poisson counting model are as follows:

Al: the probability of an accident during a small period of time (¢,¢ + At) is, ignoring
higher-order terms, proportional to the duration At of this interval;

A2: the probability in A1 does not depend on the start ¢ of the interval;
A3: the probability of two or more accidents in time interval (¢, 4+ At) is negligible;
A4: the number of accidents relating to disjoint time intervals are independent.

If we assume that the accident pattern of a policyholder conforms to A1-A4 then the number
of claims generated by this individual is Poisson distributed. Even if A2 eliminates seasonal
effects and A4 rules out the learning experience from an accident, the set of all Poisson
assumptions should at least provide (locally in time) a good approximation to the accident
generating mechanism. The annual numbers of claims [K;;|©; = 0], [K;2|0©; = 0], ... reported
by policyholder 7 are then independent and conform to a Poisson distribution with mean 6,
ie.

k

0

0 is the claim frequency of this policyholder and is constant over time.

Items (iii) and (iv) will be addressed further in this work.

All the numerical illustrations given in this paper are based on the data displayed in
Table 2.1. Specifically, Table 2.1 shows the distribution of the number of claims in the
automobile third-party liability portfolio of a typical Benelux company; n; is the number of
policies with k claims reported during the year 1995, k = 0,1,2,3,4(= kmyax)- It contains
n = 112,031 policies and has mean 7 = 0.0935 and variance s* = 0.1023. First, let us fit the
distribution of Table 2.1 by a Poisson distribution. The Maximum Likelihood method leads
to the selection of the observed mean as the estimator of §. Computing the probabilities of
a Poisson distribution with mean ¥ and multiplying them by the sample size n leads to the
fitted theoretical frequencies 7y, presented in column A of Table 2.1. The fit is extremely
poor: there is not enough probability mass in the right tail of the Poisson distribution. To
measure the goodness-of-fit, standard y?-statistics is used, with the following calculation

procedure:
kmax ﬁ
2 k
Xops = —2 ng In (—) .
N
k=0

ke N jeNy;

Considering the p-value, the Poisson assumption is rejected without doubt. The character-
istic standard sign-sequence “+,-,4” for the n, — n;’s is clearly observed, indicating that



the data probably come from a mixture of Poisson rather than from an homogenous Poisson
distribution. The incompatibility of the homogeneity assumption underlying the Poisson
model with statistical analysis already proves that the introduction of a BMS in automobile
insurance is justified. Column D of Table 2.1 displays the negative binomial fit (that is,
Fg corresponds to a two-parameter Gamma distribution with mean a/7 and variance a/72).
Parameters a and 7 were estimated by Maximum Likelihood (using the moment estimations
as starting values). This model provides a reasonable fit to the data, as can be seen from the
expected ny’s presented in Column D of Table 2.1. Nevertheless, the p-value is only of 9%,
indicating that the model must be considered with prudence. The fits displayed in columns
B and C correspond to nonparametric maximum likelihood estimation of Fg; see Section 3.4
for details.

3 Markov Models for Practical BMS

3.1 BMS as Markov chains

In practice, a BMS consists of a finite number of classes, each with its own premium level.
New policyholders have access to a specified class. After each year, the policy moves up or
down according to transition rules. In case a BMS is in force, all policies can be partitioned
into a finite number of classes, so that the annual premium depends only on the class. The
knowledge of the present level and of the number of claims of the present year suffice to
determine the next class. This ensures that the BMS may be represented by a Markov
chain: the future (the class for year ¢t + 1) depends on the present (the class for year ¢t and
the number of accidents reported during year t) and not on the past (the complete claim
history and the levels occupied during years 1,2,...,¢ — 1). Sometimes, fictitious classes
have to be introduced in order to meet this memoryless property.
Formally, an insurance company uses a BMS when

e the policyholders are partitioned into a finite number of disjoint classes Cy, C1, ... ,Cs so
that the annual premium depends only on the class;

e the policyholders begin their driving career in a specified starting class Cj,;

e an insured’s class for a given year is determined uniquely by the class of the preceding
annual period and the number of claims reported during this period.

The relativity associated to class C is 7y; the meaning is that an insured in class C} pays
an amount of premium equals to r,% of the base premium corresponding to class Cj, (hence
rin = 1). By convention, the classes Cy, C, ... ,Cs have been numbered so that ro < r; <
... <rs. The transition rules, i.e. the rules determining the transfer from one class to another
when the number of claims of the preceding period is known, are described by transformations
Ty such that Ty (¢,) = £5 if the policy is transferred from class Cy, to class Cp, when k claims

have been reported; T}, can be represented as a matrix {té]zz}, 01,05 =0,1,...,s, such that
tils 0 otherwise.
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0 | 102,435 | 102,026 | 102,435 | 102,435 102,442
1 8,804 9,544 8,805 8,811 8,778
2 714 446 712 703 743
3 65 14 68 76 63
4 12 0 10 8 5
5 1 0 2 1 0
> 6 0 0 0 0 0
X e 365.67 1.25 3.78 8.18
# d.f. 5 1 3 4
p-value <107 0.26 0.29 0.09

Column A: expected frequency with homogeneous Poisson
Column B: expected frequency with 3-point NPMLE Fo
0, = 0.132, 0y = 0.829, f5 ~ 0.000

7 = 0.651, T, = 0.009 and 75 = 0.340

Column C: expected frequency with 2-point NPMLE Fo
0, = 0.068, 0y = 0.446, 7, = 0.933 and 7, = 0.067

Column D: expected frequency with Negative Binomial

a = 1.0255 and 7 = 10.9672

Table 2.1: Data set from a typical automobile third-party liability insurance portfolio ob-
served during the year 1995.



The evolution of a policyholder with mean claim frequency € in such a BMS can thus be
represented as a homogeneous Markov chain Z(0) = {Z,(0), v € Ny} where Z,(0) = £ if the
policyholder is in class C; during the vth period of insurance. For an excellent introduction to
the use of Markov chains in connection with BMS, we refer the interested reader to Chapter
7 in Rolski, Schmidli, Schmidt and Teugels (1999).

3.2 Transient distributions

In our model, the probability ps,¢, () of moving from Cy, to Cy, for a policyholder with mean

frequency 6 is equal to
“+o0o

0%
Pue(6) = D exp(—0) 1t
k=0
M(6) is the corresponding one-step transition matrix, i.e. M(0) = {pge,(0)}, 1,0s =
0,1,...,s. The probability ps,¢, defined as

DPeqes :/ pelez(e)dF@(6)> €1>€2:O>1a"' S,
OcR+

is the corresponding probability for a randomly selected policyholder of the portfolio. Taking
the vth power of M(0) yields the v-step transition matrix whose element (¢1¢5), denoted as
pé'ljz?(@), is the probability of moving from class Cy, to class Cl, in v transitions, i.e.

), (0) = P[Z4y(0) = 5] Zu(6) = 01], & € N;

pZZQ is defined analogously to ps,¢, by averaging for all the possible values for 6.

3.3 Stationary distribution

Let us define péy) (0) = P[Z,(0) = ¢]. All BMS in practical use have a “best” class, with
the property that a policy in that class remains in the class after a claim-free period. In
the following, we restrict attention to such non-periodic bonus rules. The transition matrix
M(6) associated to such a BMS is regular, i.e. there exists some integer £ > 1 such that
all entries of {M(6)}% are strictly positive. Consequently, the Markov chain Z(6) is ergodic
and thus possesses a stationary distribution m(0) = (mo(8), 71(0), ... ,7s(0))"; me(6) is the
stationary probability for a policyholder with mean frequency 6 to be in level /¢ i.e.
me(0) = VEI&(}@”(@), (=0,1,...,s.

Note that () does not depend on the starting class. The term 7,(6) is the limit value of
the probability that the policyholder is in class C, when the number of periods tends to
+o00. It is also the fraction of the time a policyholder with claim frequency 6 spends in class
Cy, once stationarity has been reached.

Let us now recall how to compute the m,(6)’s. The vector m(f) is the solution of the
system



Let E be the (s+1) x (s+ 1) matrix all of whose entries are 1, i.e. consisting of s+ 1 column
vectors e. Then, it can be shown that

w(0) =e' (I — M(0) + E)_l,

which provides a direct method to get 7 (0).
Let Z be a random variable valued in {0, 1,... s} such that [Z]|© = ] conforms to the
distribution 7 (0) i.e.
P[Z =101© =0] =m(0), £=0,1,...,s;
[Z|© = 0] can be seen as the weak limit of the Z,(6)’s. The unconditional distribution of Z

Pz =0~ [ mlo)dFo(0) =

Z may be interpreted as the bonus class of a randomly selected policy in the BMS once
stationarity has been reached.

3.4 Determination of the transient and stationary distributions
from observed claim frequencies

Several algorithms have been proposed in order to compute the stationary distribution of the
policyholders in a given BMS. Dufresne (1988) proposed a very elegant technique requiring
independence between the annual number of accidents per policyholder K;i, K, K;3,...;
unfortunately, this independence assumption rules out all the mixed Poisson distributions.
Dufresne (1995) adapted the reasoning to the mixed Poisson case, but at the cost of many
numerical difficulties. Here, we follow the method proposed by Walhin and Paris (1999).
The idea is to resort on the NonParametric Maximum Likelihood Estimator (NPMLE, in
short) of the structure function Fg.

In a seminal paper, Simar (1976) gave a detailed description of the NPMLE of Fg, as well
as an algorithm for its computation. The NPMLE ﬁ@ of Fg is a discrete distribution putting
positive probability masses @1, @2, ..., 4 on ¢ support points 0y, 0, ... ,0,. The resulting
model for the claim number is a finite mixture model, allowing for easy computations. Simar
(1976) obtained an upper bound for the size ¢ of the support of the NPMLE: let x be the
number of observed distinct values, i.e.

k = #{k € N such that ny > 0}

(in most cases, kK = kpax + 1) then ﬁ@ exists, is unique and has a number of support points

less than or equal to
kmax 1
a:min{{72+ ] ,Ii}, (3.1)

where [z] denotes the integer part of the real .
The solution Fg puts probability masses @1, 9a, ... , Pz at the atoms 60y, 60s, ... , 05 ie.

oF  ~ O
P[K;; = k] = exp(—0)=dFe(0) = > Grexp(—b;)=, ke N.
’ DERT k!



This finite mixture model has a nice intuitive interpretation. To fix the ideas, assume that
g = 3 and 91 < 92 < 93 Then, the portfolio consists of 1% of good drivers with annual mean
claim frequency of 91, of gpg% of medium-quality drivers with annual mean claim frequency
02 and of ©3% of bad drivers with annual mean claim frequency of 5. A desirable property

of Fg is that
/ 0dFe(0) =7,
OcR+

so that the observed claim amount is kept unchanged.

For the portfolio in Table 2.1, Simar’s upper bound (3.1) is 3. The fit based on the
3-point ﬁ@ is displayed in column B of this table; column C shows the corresponding fit
with a 2-point Fg. Considering the p-values, these two fits can be regarded as statistically
equivalent. We therefore prefer the 2-point structure function since it involves less parameters
(statistical principle of parcimony). The NPMLE is thus a good-risk/bad-risk model. It is
worth mentioning that the purely discrete nature of the NPMLE is sometimes undesirable.
Therefore, Denuit and Lambert (2000) have proposed a smoothed version of the NPMLE,
using a Gamma kernel.

Using NPMLE, the computation of the ps,4,’s and of the 7y,’s become rather easy. The
idea is to compute M(f.), the transition matrix for policyholders with claim frequency 6,

¢(=1,2,...,q. The element ({;(5) of (M(6.))" is pMQ (6¢), and hence

(v)
Poye, :/ 6162 dF@ E :SOCPMQ
fcR+

Norming the left eigenvector of M(@C) or applying Dufresne’s (1988) method y1elds the
stationary distribution for the policyholders with annual mean claim frequency of 94, (Og)
It suffices then to compute the weighted average of these eigenvectors to get the stationary
distribution of a randomly selected policyholder of the portfolio, i.e.

q
e, = Z@cmz(eg), lo=0,1,... 5.
=1

3.5 Example of a BMS

In this paper, we consider the following type of Bonus-Malus scale for our practical illus-
trations. The policyholders are classified according to the number of claim-free years since
their last claim. After a claim all premiums reductions are lost. Such systems are widely
used in UK. They have been considered e.g. by De Pril and Goovaerts (1983) who studied
the bonus-hunger phenomenon induced by such merit rating plans. See also Lemaire (1995).

Specifically, let us consider a BMS with s classes (numbered 0 to s). The starting class
is s. Each claim-free year is rewarded by one bonus class. In case an accident is reported,
all the discounts are lost and the policyholder is transferred to class s.

Note that the philosophy behind such a BMS is different from credibility theory. Indeed,
this BMS only aims to counteract moral hazard: it is in fact more or less equivalent to a
deductible which is not paid at once but smoothed over s years (the time needed to go back
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to the lowest class). In the authors’ opinion, such a system is pragmatic in a very competitive
market. The turnover of policyholders is indeed important and it seems hopeless to make
correspond in the long run the premium paid to the true risk, since policyholders stay on
average just a few years in the same company (and no official information system is created
or it is easily eluded).

For instance, let us consider such a BMS with 6 classes (numbered 0 to 5). This choice
is commercially reasonable in a country where the average claim frequency is approximately
equal to 10%. Indeed, every ten years, the average driver will stay five years in the super
bonus class and the other five years, the policyholder will move down to come back to the
lowest level. The transition matrix M(6) associated to this BMS is given next:

exp(—0) 0 0 0 0 1 — exp(—0)

exp(—0) 0 0 0 0 1 — exp(—0)

B 0 exp(—0) 0 0 0 1 — exp(—0)

M(6) = 0 0 exp(—0) 0 0 1 — exp(—0)
0 0 0 exp(—0) 0 1 — exp(—0)

0 0 0 0 exp(—0) 1 —exp(—0)

Let us now consider a large group of policyholders entering such a system at time 0 in level
5 (we recall that all the computations are based on the 2-point NPMLE fit of Table 2.1).

In Figures 3.3.1-3.3.3, the transient distributions pgz) are depicted for £ = 0,1,...,5 and

k= 1,3,5. It is easily checked that pé‘? =m, for £ = 0,1,...,5, so that the system needs
5 years to reach stationarity (i.e. the time needed by the best policyholders starting from
level 5 to arrive in class 0). Therefore, Figure 3.3.3 also gives the stationary distribution.

4 Determination of the relativities

4.1 Norberg’s method with a quadratic loss

To each of the s + 1 levels of a BMS, we would like to attach a relativity ry; the premium
for class £, ¢ = 0,1,...,s, is the product of the base premium and a fraction r,%. Let us
denote as P, the premium corresponding to level /.

Predictive accuracy is a useful measure of the efficiency of a BMS. The idea behind this
notion is as follows. A BMS is good at discriminating among the good and the bad risks
if the premium they pay is close to their “true” premium. According to Norberg (1976),
once the number of classes, the starting level and the transition rules have been fixed, the
optimal premium quuad associated to level /£ is determined by maximizing the asymptotic
predictive accuracy. Formally, the Pequad’s minimize the mean squared deviation between a
policy’s expected claim frequency and its premium in the year ¢ as t — 400: denoting as ©
the unknown claim frequency of a randomly selected policyholder of the portfolio, our aim
is to choose the function P such that the expected squared difference between the “true”
premium © and the premium Py paid by a policyholder in the system (after the stationary
state has been reached), i.e. the goal is to minimize

Qu=BO= P = [ 30 P)m(O)aFe(s)

=0
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Figure 3.3.1: I-year transient distribution

where Z is as defined in Section 3.3. The solution PZ“* is given by E[©|Z] so that

fHGR“' Qm(@)dF@(Q)

Te

, £=0,1,...,s.

P =E[O|Z = (] =

The optimal premium for class C is thus equal to the conditional expected claim frequency
for an infinitely old policy, given that the policy is in class Cy. The corresponding relativities
are given by

EO|Z =1/
rd*d =100 x %@]%, (=0,1,...,s
It is easily seen that Erqzuad = 1, resulting in financial equilibrium once steady state is reached.

This fundamental property is highly desirable: the introduction of a BMS has no impact
on the yearly premium collection. The repartition of the amounts paid by the policyholders
is modified according to the reported claims but on the whole, the company gets the same
amount of money. The relativities Tguad for the practical example described in Section 3.5
are displayed in Table 4.1. The penalties for policyholders reporting claim are very severe.
For instance, a policyholder in the superbonus class pay 77.2% of the base premium. If he
files a claim, he will pay 187.1% of the base premium, that is more than twice his preceding
premium.

This method entirely relies on the stationary distribution of the BMS. It can therefore
be recommended only if the steady state is reached after a relatively short period, as it is
the case for the BMS considered in Section 3.5. Moreover, because of the construction of
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Figure 3.3.2: 3-year transient distribution
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Figure 3.3.3: 5-year transient or stationary distribution

11

2 3 4 5



this system, using the stationary distribution for the computation yields higher premiums
than those obtained using transient distributions, with the method of Borgan, Hoem and
Norberg (1981).

Level ¢ 0 1 2 3 4 5

rg“ad 77.2 1052 118.3 136.0 1588 187.1
r; ", m="T1% < c¢=1.018 80.4 103.9 115.2 130.5 150.1 176.2
r; ", n=50% < ¢ = 2.465 5.1 102.8 111.9 124.3 141.1 162.8
r; ", n=25% < ¢=5.108 88.8 101.7 108.0 116.8 128.8 144.8
riin a =0.0721, b = 0.0198 77.3  98.5 119.7 1409 162.0 183.2
rl?*”", n="T75%, a=0.0750, b =0.0171 | 80.3 98.7 117.0 1354 153.7 172.0
rl?*”", n=>50%, a=0.0784, b =0.0140 | 84.0 989 113.9 128.9 143.8 158.8
rj_“", n=25%, a=0.0828, b =0.0099 | 88.7 99.2 109.8 120.4 131.0 141.5

C . d . i
Table 4.1: Relativities r{“**, r¢™ rl™ and 7§~

4.2 Norberg’s method with exponential loss function

When the new premium amount is fixed by the insurer, two kinds of errors may arise: either
the policyholder is undercharged and the insurance company looses its money or the insured
is overcharged and the insurer is at risk of losing the policy. In order to penalize large
mistakes to a greater extent, it is usually assumed that the loss functions is a non-negative
convex function of the error. The loss is zero when no error is made and strictly positive
otherwise. In most papers devoted to BMS, the loss function is taken to be quadratic.
Among other choices we find also the absolute loss and the 4-degree loss; see e.g. Lemaire
and Vandermeulen (1983). The problem with the two latter losses is that the resulting BMS
are unbalanced; in practice, actuaries most often resort on a quadratic loss.

Our aim is to propose an asymmetric loss function with one parameter; the latter reflects
the severity of the BMS. In order to reduce the maluses obtained with a quadratic loss,
keeping a financially balanced system, we resort on an exponential loss function. It is worth
mentioning that such loss functions have been first proposed by Ferreira (1977) and Lemaire
(1979) in the classical credibility setting. Our purpose here is to apply exponential loss
function to determine the optimal Bonus-Malus scale.

In order to soften the penalties, keeping the financial stability property condition, let us
determine P, so to minimize

Eexp { — c¢(© — Pz)} (4.1)
under the financial stability constraint EP, = EO©

where the parameter ¢ > 0 determines the “severity” of the BMS. The choice of the loss (4.1)
is made in order to reduce the penalties compared to those obtained under a quadratic loss.
Indeed, (4.1) puts more weight on the errors resulting in an overestimation of the premium
(i.e. Pz > ©) than on those coming from an underestimation. Consequently, the maluses
are reduced, as well as the bonuses since financial stability has been imposed.
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Let us derive the general solution of (4.1).

Proposition 4.1. The solution of the constrained optimization problem (4.1) is
1
PS” = EO + _{E[mE [exp(—¢0)|Z]] — InE [exp(—cO)|Z] }
c
Proof. First, note that

exp{cEO} exp {E[IDE lexp(—cO)|Z] } }
E[exp(—c@)\Z]

exp{cP;"} =

Now, considering the latter formula, we have to minimize

E[exp{ - C(@ - Pz)}] = E[exp {C(PZ - ngp)}}

exp{cEO} exp {E [InE [exp(—cO)|Z] ] }
Invoking Jensen’s inequality yields

E[exp{ —c(@—PZ)}] > exp {cE[Pz—P?””}}

(. J/
~~
=1

exp{cEO} exp {ElnE lexp(—cO)|Z] }
= E[exp{—c(@—PE‘Dp)}},
which ends the proof. O

The optimal relativities are then given by ;" = 100 x P;”/E©%. In order to compute
these quantities, it suffices to evaluate

Elexp(—cO©)|Z = j] = Jocr+ exp(—ch)7;(0)dFe(0)

Ty

and

E(lnE[exp(—c@)\Z]) = Z'ﬁjlnE[eXp(_C@)‘Z:j]

— S <f exp(—cmm(e)dF@(e)) |

Let us briefly explain a possible criterion to fix the value of the parameter c. First, note
that
. : d
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so that letting ¢ tend to 0 yields Norberg’s approach. In other words, the BMS becomes
more severe as ¢ decreases. Now, the ratio of the variances of the premiums obtained with
an exponential and a quadratic loss is given by

Var[P;™] 1 Var[InE [exp(—cO)|Z] |
Var[Pg el c? Var[E [0]Z]]

=% < 100%.

The idea is then to select the variance of the premium in the new system as a fraction of the
corresponding variance under a quadratic loss (for instance n = 25, 50 or 75%). Of course,
other procedures can be applied. For instance, the actuary could select the value of rq, or of
rs, and then compute ¢ in order to match this value.

The relativities r;"” for the BMS described in Section 3.5 are displayed in Table 4.1 for
the aforementioned 7n’s. The severity of the BMS clearly increases as ¢ decreases, the rguad’s

corresponding to ¢ = 0.

4.3 Gilde and Sundt method

In practice, a linear scale of the form P, =a +bl, £ =0,1,...,s, could be desirable. Such
scales have been studied by Gilde and Sundt (1989). In their paper, the optimal linear
premium is the solution of the minimization of

E(© — Pz)? =E(© — a — bZ)%

It is well-known that the solution of this optimization problem is given by

Cov|[Z, 0] Cov[Z, 0]
=———anda=EOQ - ——EZ. 4.2
Var[z] ¢ Var[Z] (42)
The linear premium scale is thus of the form
: Cov|Z,0], .
P =EO + ———(j —EZ
i @ + Var[Z] (.] )7

where
Cov|Z, 0] = Cov [E[Z|@], @] - Z (E[Or,(0)] — EZEO

£=0
s

= > ¢ / 074(0)dFo(h) — EZEO.
1—o JOERT

Finally, the relativities are given by ri" = 100 x P/"/E©%.

The relativities 75" for the BMS described in Section 3.5 are displayed in Table 4.1; they
are rather similar to the unconstrained rguad’s.

Let us now indicate how Gilde and Sundt’s (1989) approach can be extended using

exponential loss functions. The aim is now to minimize the objective function
O(a,b) = Eexp { —c(®—a-— bZ)}
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under the constraint E© = a 4+ bEZ. The latter relation implies that a = E© — bEZ so that
it suffices to minimize

Ob) = Eexp{ - c<@ _EO —b(Z — IEZ)) }
Differentiating O with respect to b and equating to zero yields
E[(Z _EZ) exp{ - c<@ ~EO) - b(Z — EZ)) H —0

= / i(f _EZ)exp { - c<9 _EO) — b(l — IEZ)) }m(e)dF@(O) —0

which has to be solved numerically to get the value of b (and hence of a). Convenient starting
values for the numerical search are provided by (4.2). This yields the relativities

a+ bl
E©
e—lin>

the values of the rj s in our example are listed in Table 4.1.

retm =100 x %;

5 Conclusions

In this paper, we have demonstrated on the basis of a typical Benelux data set how to build
optimal BMS for asymmetric loss functions of exponential-type. This allows the actuary
to design financially balanced BMS with moderate penalties, that can be implemented in
practice. In that respect, this work solves an open problem faced with the quadratic loss
function, namely too high maluses.

Let us briefly comment some of the simplifying assumptions made throughout this paper.
First, we considered a closed portfolio: no policy cancellations and no new policyholders
entering the portfolio. This is of course unrealistic. In a market where competition is
(partly) based on BMS, policy lapses cannot be neglected, in particular for policyholders
with high maluses. In order to take this phenomenon into account, a convenient way is to
introduce an additional (s + 2)th state in the Markov chain: when a policy is transferred to
level s 4+ 1, it means that the policyholder changes of company. It is then realistic to use
transition probabilities py.s+1 increasing with Z.

Another crucial assumption is the constancy of the claim frequency 6 for each policyholder
during his whole driving carreer. This is also unrealistic since claim frequencies are generally
convex functions of the age, for instance. An answer to this question is provided by the
inclusion of explanatory variables, as it is done in Dionne and Vanasse (1989,1992), Pinquet
(1997,1999) and Bermidez, Denuit, Dhaene and Morillo (2000) in the classical framework
of credibility theory. In a forthcoming work, we expand on the ideas given in Taylor (1997)
and we build optimal Bonus-Malus scales taking into account a priori risk classification.
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