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Abstract

In this paper we present an efficient methodology for approximating the
distribution function of the net present value of a series of cash-flows, when
the discounting is presented by a stochastic differential equation as in the
Vasicek model and in the Ho-Lee model. Upper and lower bounds in con-
vexity order are obtained. The high accuracy of the method is illustrated
for cash-flows for which no analytical results are available.

1 Introduction

When determining the present value of a series of n payments ci at times τi
(i = 1, . . . , n), one has to define a discount process X(τ). The present value of
this series is then given by

V0 =
n∑

i=1

cie
−X(τi). (1)

To determine the cumulative distribution function (cdf) of this random vari-
able (rv), one has to cope with a standard problem: the summation of rvs with
marginal cdfs of the same type need not (and often will not) produce a cdf of
that type. Secondly, the dependence structure of the rvs X(τi) is not known or
hard to obtain in general. Although we could approximate the cdf via Monte
Carlo simulation when the dependence structure of the X(τi) is given, this would
be very time-consuming. Moreover, if we want to estimate a high quantile (e.g.
Value-at-Risk) accurately, we should increase the sample size – and consequently
the computation time – drastically. Using results from actuarial risk theory on
comonotonic risks, we can however obtain an easily computable upper bound for
V0. In addition, Jensen’s inequality combined with the theory on comonotonic
risks provides a tool for obtaining a lower bound.
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In this paper we will define the discount factors as follows. We write X(τ) as

X(τ) =

∫ τ

0

r(s)ds, (2)

hence

V0 =
n∑

i=1

ci exp

(
−
∫ τi

0

r(s)ds

)
, (3)

and consider two types of models for r(s). In the first model, the stochastic
differential equation for describing the behaviour of r(s) is the same as the one
for the instantaneous interest rate in the Vasicek (1977) model:

dr = (α− βr)dt+ γdW, (4)

where α, β and γ are non-negative constants and W represents a standard Wiener
process. Replacing α by a non-negative function α(t) of time, as in the Ho-Lee
(1986) model yields a second model:

dr = α(t)dt+ γdW. (5)

In the present paper analytical upper and lower bounds for the distribution func-
tion of V0 are obtained. They are shown to be practically applicable due to the
very small relative error bounds. Random variables of this type arise in modern
actuarial situations where e.g. discounting is taken into account in the evaluation
of the distribution of IBNR provisions. In the case of financial reinsurance it
provides the distribution of the experience account and as such it enables the
determination of the final premium of this type of reinsurance. Knowing the dis-
tribution of V0, provides a tool for the determination of the ”fair value” as well as
the ”supervisory value” of a portfolio of risks. Moreover it avoids simulations in
solvency calculations and it helps for the determination of embedded value and
appraisal value.

Our methodology only requires the knowledge of the distribution functions of
the X(τi) and does not take into account the dependence structure between
these random variables. Allowing for all kinds of dependence structures, which
often cannot be measured because of the incomplete statistical basis, of course
has an influence on the distribution function of V0. Replacing the unknown cdf
of V0 by the upper bound (in convex order sense) is a safe strategy in the sense
that all risk averse decision makers would prefer the original (unknown) cdf. On
the other hand, the lower bound gives us an idea of the high accuracy of the
approximation.
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2 Convex Upper Bound

In the actuarial field it is common practice to replace the cdf of V0 by a ”less
favourable” one. Of course the new cdf should be easier to determine, see e.g.
Goovaerts e.a. (1986). To formalise the concept ”less favourable”, we make use
of the convex order.

Definition 1 A rv V is smaller than a rv W in the convex order if

E[φ(V )] ≤ E[φ(W )]

for all convex functions φ : R → R. This is denoted as V ≤cx W .

In terms of utility theory, V ≤cx W means that the rv V is preferred to the rv
W by all risk averse decision makers, i.e. E[u(−V )] ≥ E[u(−W )] for all concave
utility functions u. Replacing the cdf of V by the cdf of W can therefore be
considered as a prudent strategy. A closely related order is the stop-loss order.

Definition 2 A rv V is smaller than a rv W in the stop-loss order if

E[V − d]+ ≤ E[W − d]+

for all d. This is denoted as V ≤s� W .

In Shaked & Shanthikumar (1994) it is proven that the convex order incorporates
the stop-loss order:

V ≤cx W ⇐⇒
{
V ≤s� W
EV = EW

(6)

We will now introduce the concepts of a Fréchet space and comonotonic risks,
which will enable us to construct an upper bound for V0.

Definition 3 The Fréchet space Rn(F1, . . . , Fn) determined by the (univariate)
distribution functions F1, . . . , Fn is the class of all n-variate distribution functions
F (or the corresponding rvs) with marginals F1, . . . , Fn.

In the Fréchet space Rn(F1, . . . , Fn) any rv X is constrained from above by

FX(x) ≤ min{F1(x1), F2(x2), . . . , Fn(xn)} =: Wn(x), ∀x ∈ R
n

A comonotone risk is a rv with cdf Wn, see e.g. Dhaene et al (1997):

Definition 4 A random vector (X1, . . . , Xn) is said to be comonotone (the rvs
X1, . . . , Xn are said to be mutually comonotone) if any of the following equivalent
conditions hold:
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1. For the n-variate cdf we have

FX(x) = min{F1(x1), F2(x2), . . . , Fn(xn)}, ∀x ∈ R
n;

2. There exist a rv Z and non-decreasing functions g1, . . . , gn : R → R such
that

(X1, . . . , Xn)
d
= (g1(Z), . . . , gn(Z));

3. For any rv U uniformily distributed on [0, 1], we have

(X1, . . . , Xn)
d
= (F−1

1 (U), . . . , F−1
n (U)).

As usual, ”
d
=” denotes equality in distribution and F−1 represents the inverse of

the cdf F defined as

F−1
X (p) = inf{x ∈ R|FX(x) ≥ p}, p ∈ [0, 1].

It can be seen from condition 2 that comonotonic rvs possess a very strong positive
dependence: increasing one of the Xi will lead to an increase of all other rvs Xj

involved. These special rvs will provide us with a tool to construct a close upper
bound for V0, see Goovaerts et al (2000).

Theorem 1 Let X = (X1, . . . , Xn) be a n-dimensional rv with marginals F1, . . . , Fn.
Further, let U be a rv, uniformly distributed on [0, 1]. Finally, let φ1, . . . , φn be
non-negative and non-increasing functions. Then

φ1(X1) + · · · + φn(Xn) ≤cx φ1(F
−1
1 (U)) + · · · + φn(F−1

n (U)). (7)

Proof. In Goovaerts & Dhaene (1999), it is shown that

n∑
i=1

φi(Xi) ≤s�

n∑
i=1

φi(F
−1
i (U)).

Because (X1, . . . , Xn) and (F−1
1 (U), . . . , F−1

n (U)) have the same marginals,
∑n

i=1 φi(Xi)
and

∑n
i=1 φi(F

−1
i (U)) have the same mean. Equation (6) then completes the

proof. �

Setting φi(X) := ci exp (−X(τi)), we obtain the convex upper bound

W =
n∑

i=1

φi(F
−1
X(τi)

(U)) =
n∑

i=1

ci exp(−F−1
X(τi)

(U)). (8)

To compute the cdf of W , we can use the additivity of the inverse cdfs of comono-
tonic risks.

4



Proposition 1 Let Y1, . . . , Yn be n comonotonic risks with marginals F1, . . . , Fn.
Then

F−1
S (p) =

n∑
i=1

F−1
i (p), p ∈ [0, 1],

with S = Y1 + . . .+ Yn.

For a proof of this result, we refer the interested reader to Dennenberg (1994).
Remark that, for any strictly decreasing function φ and any cdf FX ,

φ(F−1
X (p)) = F−1

φ(X)(1 − p), p ∈ [0, 1].

So, for strictly positive cash-flows ci and strictly increasing FX(τi), the tail function
FW := 1 − FW is implicitely given by

n∑
i=1

φi(F
−1
X(τi)

(FW (x))) = x. (9)

Notice that we only need to know the inverse marginal cdfs F−1
X(τi)

to compute
the upper bound. If all ci < 0, then FW is implicitely given by

n∑
i=1

φi(F
−1
X(τi)

(FW (x))) = x. (10)

The case when certain ci are negative and other are positive is considered in
Goovaerts et al (2000). Theorem 1 can also be used to determine an upper
bound for the price of an arithmetic Asian option, see Simon et al (2000).

3 Convex Lower Bound

Starting from Jensen’s inequality for conditional expectations,

E[f(V )|Z] ≥ f(E[V |Z]), (11)

where f : R → R is a convex function, we can derive a convex lower bound
for V0. This inequality has also been used by Rogers & Shi (1995) to obtain a
lower bound for the price of an Asian option, while Feynman & Hibbs (1965)
applied it to introduce a variational result for essentially the same quantity, c.q.
the partition matrix, an important quantity in mathematical physics.

Proposition 2 For any two rvs Y and Z, let L := E(Y |Z). Then

L ≤cx Y (12)
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Proof. As (·)+ = max(·, 0) is a convex function, we find for all k

E[Y − k]+ = E[E((Y − k)+|Z)]
≥ E[E(Y − k|Z)]+
= E[L− k]+

Furthermore, L and Y have the same mean, so again equation (6) completes the
proof. �

Replacing Y by V0 and choosing an appropriate conditioning variable Z, we get
an expression for the stop-loss transform E(L − k)+ of the convex lower bound
L. To compute the cdf FL out of E(L− k)+, remark that

E(X − k)+ =

∫ +∞

k

(x− k)dFX(x),

hence
d

dk
E(X − k)+ = −

∫ +∞

k

dFX(x) = FX(k) − 1. (13)

4 Application: Vasicek & Ho-Lee Model

Solving the stochastic differential equation for the Vasicek model results in

r(s) = e−βsr(0) +
α

β
(1 − e−βs) + γe−βs

∫ s

0

eβudW (u), (14)

∼ N

(
e−βsr(0) +

α

β
(1 − e−βs),

γ2

2β
(1 − e−2βs).

)
(15)

Straightforward calculus then yields, for X(τ) :=
∫ τ

0
r(s)ds,

X(τ) =
α

β
τ +

1

β
(r(0) − α

β
)(1 − e−βτ ) +

γ

β

∫ τ

0

(1 − eβ(u−τ))dW (u),

which in turn has a normal distribution with mean

µ(τ) =
α

β
τ +

1

β
(r(0) − α

β
)(1 − e−βτ )

and variance

σ2(τ) =
γ2

β2

(
τ − 2

β
(1 − e−βτ ) +

1

2β
(1 − e−2βτ )

)
.

For the Ho-Lee model we get

r(s) = r(0) +

∫ s

0

α(u)du+ γW (s), (16)

∼ N

(
r(0) +

∫ s

0

α(u)du, γ2s

)
. (17)
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Consequently, X(τ) is normally distributed with mean

µ(τ) = r(0)τ + ϕα(τ)

and variance

σ2(τ) =
γ2τ 3

3
,

where we used the abbreviation ϕα(τ) :=
∫ τ

0
α(u)(τ − u)du.

The convex upper bound for V0 for both models follows from

n∑
i=0

ci exp
{−µ(τi) − σ(τi)Φ

−1(FW (k))
}

= k (18)

where Φ denotes the standard normal cdf. Equivalently,

FW (k) = 1 − Φ(uk) (19)

with uk determined by

n∑
i=0

ci exp {−µ(τi) − σ(τi)uk} = k. (20)

To compute the convex lower bound, we first have to choose a conditioning vari-
able Z. Therefore, define

Iδ := −
∫ δ

0

X(τ)dτ,

which is clearly again normally distributed, say, with mean µδ and variance σ2
δ .

Now we choose

Zδ :=
Iδ − µδ

σδ

∼ N(0, 1), (21)

as conditioning variable. Recall that when a normal rv −X(τ) is conditioned on
a standard normal rv Zδ, it remains normal with mean

E(−X(τ)|Zδ) = −E(X(τ)) + kτ,δZδ

and variance
V ar(−X(τ)|Zδ) = V ar(X(τ)) − k2

τ,δ,

where

kτ,δ = Cov(−X(τ), Zδ) =
1

σδ

∫ δ

0

Cov(X(τ), X(ν))dν.
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The stop-loss transform of the lower bound L is given by

E(L− k)+ = E

[
E

(
n∑

i=1

cie
−X(τi) | Zδ

)
− k

]
+

= E

[
n∑

i=1

ciE
(
e−X(τi)|Zδ

)− k

]
+

= E

[
n∑

i=1

ci exp

{
−µ(τi) + kτi,δZδ +

1

2
(σ2(τi) − k2

τi,δ
)

}
− k

]
+

=

∫ 1

0

[
n∑

i=1

ci exp

{
−µ(τi) + kτi,δΦ

−1(u) +
1

2
(σ2(τi) − k2

τi,δ
)

}
− k

]
+

du

Notice that the integrand is a non-decreasing function of u, at least if ci ≥ 0 and
kτi,δ ≥ 0 (i = 1, . . . , n). This means that the integrand equals zero for all u ≤ uk,
with uk determined by

n∑
i=1

ci exp

{
−µ(τi) + kτi,δΦ

−1(uk) +
1

2
(σ2(τi) − k2

τi,δ
)

}
= k. (22)

Consequently

E(L− k)+ =

∫ 1

uk

n∑
i=1

ci exp

{
−µ(τi) + kτi,δΦ

−1(u) +
1

2
(σ2(τi) − k2

τi,δ
)

}
− k du

and
d

dk
E(L− k)+ =

∫ 1

uk

(−1) du = uk − 1.

Finally, using equation (13), we find

FL(k) = uk. (23)

If however ci < 0,∀i, then

d

dk
E(L− k)+ =

∫ uk

0

(−1) du = −uk,

and FL(k) = 1 − uk.

For the Vasicek model, some lengthy yet simple calculations yield

kτ,δ =
1

σδ

∫ δ

0

γ2

β2

{
(τ ∧ ν) − 1

β
(eβ(τ∧ν) − 1)(e−βτ + e−βν) +

1

2β
(eβ(τ∧ν) − e−β(τ∧ν))

}
dν

=
1

σδ

γ2

β2

{
τδ − τ 2

2
+

1

β
(δ +

e−βδ

β
)(e−βτ − 1) − 1

2β2
(e−2βτ + 1)

}
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where τ ≤ δ and

σδ =
γ

β2

{
βδ2

(
βδ

3
− 1

)
− δ

(
2e−βδ − 1

)− 1

2β

(
e−2βδ − 1

)} 1
2

.

Remark that

Cov(r(u), r(s)) = e−β(u+s) γ
2

2β

(
e2β(u∧s) − 1

) ≥ 0

which implies the positivity of kτ,δ. Analogous, for the Ho-Lee model we get

kτ,δ =
1

σδ

∫ δ

0

{
γ2

2
(τ ∧ ν)2(τ + ν) − 2

3
γ2(τ ∧ ν)3

}
dν

=
γ2τ 2

2σδ

{
τ 2

12
− τδ

3
+
δ2

2

}

where τ ≤ δ and

σδ =
γδ2

2

√
δ/5.

The kτi,δ are here also positive, because

Cov(r(u), r(s)) = γ2(u ∧ s) ≥ 0.

5 Accuracy of the bounds

In this section we investigate the accuracy of the proposed bounds for the present
value function V0, by comparing their cdf to the empirical cdf obtained with
Monte Carlo simulation. We also construct a QQ-plot to visualise the goodness-
of-fit. Finally, we determine the maximum stop-loss error, relatively to the ex-
pected value of V0, by calculating the stop-loss premiums of the upper and lower
bound respectively:

E(W − k)+ − E(L− k)+

E(V0)

The first case considered is the Vasicek model with parameters α = 0.0038438,
β = 0.044688 and γ = 0.0015313, see De Winne (1995). We set ci = 100, τi = i
(i = 1, . . . , 30) and choose r(0) = 0.08, δ = 30.

Figure 1 shows the distribution functions and the corresponding QQ-plots of
the upper and lower bounds, compared to the empirical distribution based on
10000 randomly generated, normally distributed vectors. The distribution func-
tions are remarkably close to each other and enclose the simulated cdf nicely.
This is confirmed by the QQ-plot where we also see that the comonotonic upper
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bound has somewhat heavier tails. In figure 2 we plot the upper and lower stop-
loss premiums, E(W − k)+ and E(L− k)+ respectively, for several retentions k.
The vertical line indicates the mean present value E(V0) = 1074.987. For the
maximal value of the maximum relative stop-loss error, we find

max
k

(
E(W − k)+ − E(L− k)+

E(V0)

)
≈ 0.08%.

We now construct a Ho-Lee model where, besides a lineair part, r(·) consists of a
harmonically damped oscillation and some normally distributed error. Therefore,
we define

α(τ) := B + Ae−gτ [ω cos(ωτ) − g sin(ωτ)]

with γ = 0.01, A = 0.003, B = 0.01, g = 0.01 and w = 3. Hence,

ϕα(τ) =
Bτ 2

2
+

Aω

g2 + ω2
− Ae−gτ [ω cos(ωτ) + g sin(ωτ)]

g2 + ω2

Again, we assume equal payments ci = 100 at times τi = i (i = 1, . . . , 30) and
choose δ = 30. The initial interest rate r(0) is set to 0.5, so E(V0) = 839.4933.
Figures 3 and 4 again indicate the high accuracy of the bounds: e.g. the maxi-
mum relative stop-loss error stays below 0.6%.

Intuitively, we expect the bounds to perform worse when the payments ci are
no longer constant or when γ increases. We therefore revisit the Vasicek model
and set ci = i. Moreover, we increase γ by a factor 10, so E(V0) = 121.4577.
Despite the absence of the ci in the conditioning variable Zδ, both upper and
lower bounds remain excellent approximations (see figures 5 en 6).
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Figure 1: Distribution function and QQ-plot of the upper & lower bounds (Va-
sicek model), compared to Monte Carlo simulation.
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Figure 4: Stop-loss premiums for the upper & lower bounds and the corresponding
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Figure 5: Distribution function and QQ-plot of the upper & lower bounds (Va-
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