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Abstract

The distribution of the present value of a series of cash flows under stochastic
interest rates has been investigated by many researchers. One of the main
problems in this context is the fact that the calculation of exact analytical
results for this type of distributions turns out to be rather complicated, and is
known only for special cases. An interesting solution to this difficulty consists
of determining computable upper bounds, as close as possible to the real
distribution.

In the present contribution, we want to show how it is possible to compute
such bounds for the present value of cash flows when not only the interest
rates but also volatilities are stochastic. We derive results for the stop loss
premium and distribution of these bounds.

1 Introduction

When investigating sums of dependent variables, one of the main problems
that arise is the fact that due to the dependencies it is almost impossible to
find the real distribution of such a sum. In some recent papers, we suggested
to solve this problem by calculating upper bounds. Using the concept of
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comonotonicity, we are able to determine bounds in convexity order that are
rather close to the original variable, and much easier to compute. For the
meaning and consequences of this approach, we refer to section 2.

One of the applications of this kind of problems is the investigation of the
present value of a series of non-negative payments at times 1 up to n

A =
n∑

t=1

αte
−Y1 − Y2 − ...− Yt, (1)

where Yt represents the stochastic continuous compounded rate of return over
the period [t− 1, t] (see also [4]).
In the classical assumption, prices are log-normally distributed, and thus the
variables Yt are independent and normally distributed. In other words,

Yt ∼ N
(
µt, σ

2
t

)
(2)

where µt and σt are constants.

In the present contribution, we will generalize this classical assumption by
replacing the constant σt by a random variable σ̃t, where we assume that the
volatilities σ̃t for the periods [t−1, t] are mutually independent variables. For
any realization σt we then have that

Yt | σ̃t = σt ∼ N
(
µt, σ

2
t

)
. (3)

This idea has been borrowed from [6].

In correspondence with the financial paradigma, in equation (1) we should
correct the variables Yt by means of their volatility, or

A =
n∑

t=1

αte
−(Y1 −

1
2
σ̃2

1)− (Y2 −
1
2
σ̃2

2)− ...− (Yt −
1
2
σ̃2

t ) (4)

=
n∑

t=1

αte
−Y (t)+ 1

2
Σ(t), (5)

where Y (t) = Y1 + Y2 + ... + Yt is used to denote the total compounded
rate of return over the period [0, t], and where Σ(t) is defined as Σ(t) =
σ̃2

1 + σ̃2
2 + ... + σ̃2

t . The reason for this change by means of the volatility as

2



suggested in equations (4) and (5) has to be found in the fact that with this
adaptation, for the (new) accumulated values we then have the identity

E
[
e(Yt− 1

2
σ̃2

t )
]
· e−µt = 1. (6)

Note that for the variable Y (t) we have the obvious (conditional) moments

E[Y (t)|σ̃1, ..., σ̃t] = µ1 + ...+ µt (7)
V ar[Y (t)|σ̃1, ..., σ̃t] = σ̃2

1 + ...+ σ̃2
t = Σ(t). (8)

For the distributions of the variables Y (t) and Σ(t), we will use the notations
Ft(x) and Gt(x), or

Ft(x) = Prob[Y (t) ≤ x] ft(x) =
d

dx
Ft(x) (9)

and
Gt(x) = Prob[Σ(t) ≤ x] gt(x) =

d

dx
Gt(x). (10)

Since we already fixed the model for Y (t), the function Ft(x) is known. For the
calculation of Gt(x), we need to specify a model for the stochastic volatilities.

In order to study the distribution of the present value (5), we will use recent
results concerning bounds for sums of stochastic variables. In the following
section, we will explain the methodology we used for finding the desired ans-
wers. We will briefly repeat the most important results. Section 3 contains
an expression for the function Gt(x) for a few volatility models. The concrete
boundary results for the quantity A of equation (5) are presented in section 4
and 5. Finally in section 6, we will give some numerical illustrations.

2 Methodology

2.1. Looking at the structure of the variable A in (5), we see that this
quantity belongs to the class of variables

A =
n∑

t=1

φt(Y (t),Σ(t)). (11)

For the present problem the functions φt : �2 → � : (x, s) �→ φt(x, s) are
mainly exponential.

3



Even in case the distributions of the random variables Y (t) and Σ(t) are
known, the calculation of the distribution function for random variables in
this form is far from self-evident. The most important difficulty arises from
the fact that neither the random variables Y (t) nor the variables Σ(t) are
mutually independent. A “simple” convolution of the different individual
distribution functions thus is not correct, since also the dependency structures
of the random vectors (Y (1), ..., Y (n)) and (Σ(1), ...,Σ(n)) have to be taken
into account. And this, unfortunately, is almost impossible to obtain in most
cases.

Instead of calculating the exact distribution of the variable A, we therefore will
look for bounds, in the sense of “less favourable / more dangerous” variables,
with a simpler structure and as close as possible to the original variable. We
briefly repeat the meaning and most important results of this technique. For
proofs and more details, we refer to recent publications e.g. [1, 2, 4].

2.2. The notion “less favourable” or “more dangerous” variable can be
formalized by means of the convex ordering, see [5], with the following defini-
tion :

Definition 2.1 If two random variables V and W are such that for each
convex function u : � → � : x �→ u(x) the expected values (provided they
exist) are ordered as

E [u(V )] ≤ E [u(W )] , (12)

the variable V is said to be smaller in convex ordering than a variable W ,
which is denoted as

V ≤cx W. (13)

Since convex functions are functions that take on their largest values in the
tails, this means that the variable W is more likely to take on extreme values
than the variable V , and thus it can be considered to be more dangerous.

Condition (12) on the expectations can be rewritten as

E [u(−V )] ≥ E [u(−W )] (14)

for arbitrary concave utility functions u : � → � : x �→ u(x). Thus, for any
risk averse decision maker, the expected utility of the loss W is smaller than
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the expected utility of the loss V . This means that replacing the unknown
distribution function of the variable V by the distribution function of the
variable W is a prudent stategy.

The functions u(x) = x, u(x) = −x and u(x) = x2 are all convex functions,
and thus it follows immediately that V ≤cx W implies E[V ] = E[W ] as well
as V ar[V ] ≤ V ar[W ].

An equivalent characterisation of convex order is formulated in the following
lemma, a proof of which can be found in [5] :

Lemma 2.1 If two variables V and W are such that E[V ] = E[W ], then

V ≤cx W ⇔ E[(V − k)+] ≤ E[(W − k)+] for all k, (15)

with (x)+ = max(0, x).

Since more dangerous risks will correspond to higher (so-called) stop-loss pre-
miums E[(V − k)+], again it can be seen that the notion of convex order is
very adequate to describe an ordering in dangerousness. Indeed, E[(V − k)+]
denotes the expected loss (in financial terms) of realizations exceeding k.

2.3. The notion of convex ordering can be extended from two single variables
to two sums of variables, as is proved in [1, 2, 4]. In the following results, we
use the notation

FX(x) = Prob(X ≤ x) (16)

for the distribution of a random variable X, where x ∈ �, and

F−1
X (p) = inf{x ∈ � : FX(x) ≥ p} (17)

for the inverse distribution of X, where p ∈ [0, 1].
We will start by presenting bounds in convexity for ‘ordinary’ sums of vari-
ables, and continue with bounds for sums of functions of variables.

Proposition 2.1 Consider an arbitrary sum of random variables

V = X1 + ...+Xn, (18)
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and define the related stochastic quantities

Vupp = F−1
X1
(U) + ...+ F−1

Xn
(U) (19)

Vupp∗ = F−1
X1|Z(U) + ...+ F−1

Xn|Z(U) , (20)

with U an arbitrary random variable that is uniformly distributed on [0, 1],
and with Z an arbitrary random variable that is independent of U .

We then have
V ≤cx Vupp∗ ≤cx Vupp (21)

and thus the stop-loss premiums satisfy the relation

E[(V − k)+] ≤cx E[(Vupp∗ − k)+] ≤cx E[(Vupp − k)+]. (22)

The corresponding terms in the original variable V and in the upper bounds
Vupp and Vupp∗ are all mutually identically distributed, or

Xj
d
= F−1

Xj
(U) d

= F−1
Xj |Z(U) . (23)

In fact, by construction the upper bound Vupp is the most dangerous combi-
nation of variables with the same marginal distributions as the original terms
Xj in V . Indeed, the sum now consists of a sum of comonotonous variables all
depending on the same stochastic U , and thus not usable as hedges against
each other. The upper bound Vupp∗ is an improved bound, which is closer to
V due to the extra information through conditioning.

The second proposition extends the previous results from ordinary sums of
variables to sums of functions of variables.

Proposition 2.2 Consider a sum of functions of random variables

V = φ1(X1) + ...+ φn(Xn). (24)

For an arbitrary random variable U that is uniformly distributed on [0, 1], and
an arbitrary random variable Z which is independent of U , define the related
stochastic quantities

Vupp = φ1(F−1
X1
(U)) + ...+ φn(F−1

Xn
(U)) (25)

Vupp∗ = φ1(F−1
X1|Z(U)) + ...+ φn(F−1

Xn|Z(U)) (26)

6



in case each function φt : � → � : x �→ φt(x) is increasing, and

Vupp = φ1(F−1
X1
(1− U)) + ...+ φn(F−1

Xn
(1− U)) (27)

Vupp∗ = φ1(F−1
X1|Z(1− U)) + ...+ φn(F−1

Xn|Z(1− U)) (28)

in case each function φt : � → � : x �→ φt(x) is decreasing.

We then have
V ≤cx Vupp∗ ≤cx Vupp (29)

and thus also

E[(V − k)+] ≤cx E[(Vupp∗ − k)+] ≤cx E[(Vupp − k)+]. (30)

Both results are mainly based on the first proposition, combined with the
property that for any increasing function φ and for any p ∈ [0, 1] it is true
that

F−1
φ(X)(p) = φ(F−1

X (p)), (31)

and that for any decreasing function φ and for any p ∈ [0, 1] we have the
equality

F−1
φ(X)(p) = φ(F−1

X (1− p)). (32)

Finally, once the boundary values for the investigated quantity and their stop-
loss premiums are found, the distribution function follows immediately when
use is made of lemma 2.2.

Lemma 2.2 Consider an arbitrary variable A with distribution function

FA(k) = Prob[A ≤ k] . (33)

Provided the expectations exist, the relation between stop-loss premiums and
distribution function is given by

d

dk
E
[
(A− k)+

]
= FA(k)− 1 . (34)
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3 Distribution of Σ(t)

For the numerical illustration, we will need to know the concrete distribution
of Σ(t), which can be calculated if a model for the distribution of the stochastic
volatilities σ̃t is specified.
As mentioned before, we assume the volatilities to be all independent and
identically distributed. We suggest the following two models :

• an exponential distribution for σ̃2
t , or

σ̃2
t ∼ exp (α) , (35)

where α is chosen large enough to minimize the chance of too large and
unrealistic values for σ̃2

t ;

• a normal distribution for σ̃t, or

σ̃t ∼ N
(
σ, ξ2

)
, (36)

where again ξ is chosen small enough to minimize the risk of negative
values for σ̃t.

The results for the distribution Gt(x) are formulated in the following lemmas.

Lemma 3.1 Define Σ(t) as the sum Σ(t) = σ̃2
1 + σ̃2

2 + ... + σ̃2
t , with the

variables σ̃2
j independent and identically exponentially distributed,

σ̃2
j ∼ exp (α) . (37)

Then the distribution of Σ(t) can be written as

Gt(x) = 1− e−αx
t−1∑
k=0

(αx)k

k!
= 1− Γ(t, αx)

Γ(t)
(38)

with Γ(t, z) =
∫+∞
z yt−1e−y dy the incomplete Gamma-function.

Proof. Trivial.
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Lemma 3.2 Define Σ(t) as the sum Σ(t) = σ̃2
1 + σ̃2

2 + ... + σ̃2
t , with the

variables σ̃j independent and identically normally distributed,

σ̃j ∼ N
(
σ, ξ2

)
. (39)

Then the distribution of Σ(t) is a convolution of

(i) a Gamma distribution with parameters α = t
2 and β = 2ξ2, and

(ii) a compound Poisson distribution with parameter λ = tσ2

2ξ2 and with claim
size exponentially distributed with parameter 2ξ2.

For the probability density, we have

gt(x) =
1
2ξ2

e
− tσ2

2ξ2
− x

2ξ2
(

x

tσ2

)t/4−1/2

It/2−1

(√
xtσ2

ξ2

)
. (40)

Proof. We start by calculating the Laplace transform Lt(u) of gt(x). A
straightforward calculation gives

E

[
e−u σ̃2

1

]
=

∫ +∞

−∞
e−u s2

dΦ
(
s− σ

ξ

)

=
1√

1 + 2uξ2
exp

{
σ2

2ξ2

(
1

1 + 2uξ2
− 1

)}
, (41)

and thus

Lt(u) =
(

1
1 + 2uξ2

)t/2
exp

{
tσ2

2ξ2

(
1

1 + 2uξ2
− 1

)}
, (42)

which proves the convolution.

Next, in order to find the denstiy function, we work out the Laplace inversion.
At this stage, use can be made of the integral identity∫ +∞

0
e−uxxβI2β

(
2
√
λx
)

= λβu−1− 2βeλ/β. (43)

A few transformations now lead to expression (40).
Q.E.D.
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Combining the methods as described in section 2 with these distributional
results, we will be able to calculate the bounds for the present value of a
series of payments with stochastic interest rates and with stochastic volatility.
Where needed, we will use the classical notation Φ(x) for the cumulative
probabilities of the standard normal distribution.

4 Upper bound

We now return to the real problem of this contribution, the present value of
a stochastic cash flow

A =
n∑

t=1

αte
−(Y1 −

1
2
σ̃2

1)− (Y2 −
1
2
σ̃2

2)− ...− (Yt −
1
2
σ̃2

t ) (44)

=
n∑

t=1

αte
−Y (t)+ 1

2
Σ(t), (45)

where all payments αj (j = 1, ..., n) are non-negative, and with the variables
modeled as specified in the introduction.

Since both interest rate and volatility are stochastic, we will need two suc-
cessive applications of the results of the previous sections when calculating
upper bounds. Indeed, in the first step we calculate an upper bound conditi-
onally on all volatilities ; the second step is needed in order to eliminate this
conditioning.
The results seem to be interesting even if the models of the volatility are not
realistic in practical situations (see [6]), and they represent a first result on
comonotonic bounds for scalar products of stochastic vectors.

4.1 General result

We will start by presenting the boundary variable for the present value A,
and continue by calculating the stop-loss premiums and distribution.

Proposition 4.1 Let U and V be independent variables which are uniformly
distributed on [0, 1], and define the variable

Wupp(t) =
1
2
Σ(t) + Φ−1(U)

√
Σ(t) (46)
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with conditional distribution

Ht,upp(x|u) = Prob [Wupp(t) ≤ x|U = u] . (47)

We then have

A ≤cx Aupp =
def

n∑
t=1

αte
− (µ1 + ...+ µt) +Xt,upp(U, V ) (48)

with Xt,upp(U, V ) defined by its realizations Xt,upp(u, v) = H−1
t,upp(v|u).

Proof. We first apply proposition 2.2 (decreasing functions) to A, with res-
pect to the variables Y (t) and conditionally on the volatilities σ̃1, ..., σ̃n. This
gives

A ≤cx Ã =
def

n∑
t=1

αte
−F−1

t (1− U)+ 1
2
Σ(t), (49)

where U is a uniformly distributed variable on [0, 1], and where

Ft(x) = Φ

(
x− (µ1 + ...+ µt)√

Σ(t)

)
. (50)

The sum Ã can be rewritten as

Ã =
n∑

t=1

αte
−(µ1 + ...+ µt) +

√
Σ(t)Φ−1(U)+ 1

2
Σ(t)

, (51)

or

Ã =
n∑

t=1

αte
−(µ1 + ...+ µt) +Wupp(t), (52)

where we defined Wupp(t) as in equation (46).

A second application of proposition 2.2 (increasing functions), now for Ã with
respect to the variables Wupp(t) gives the result displayed in (48).

Q.E.D.

Starting from the previous result, we arrive at the stop-loss premiums and
distribution, as summarized in the following proposition.
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Proposition 4.2 Consider the quantity Aupp as mentioned in proposition 4.1.
The stop-loss premium for this variable can be calculated as

E
[
(Aupp − k)+

]
(53)

=
∫ 1

0
du

∫ 1

0
dv

(
n∑

t=1

αte
−(µ1 + ...+ µt) +Xt,upp(u, v) − k

)
+

;

the distribution follows as

Fupp(k) = Prob [Aupp ≤ k] = area(R(k)) , (54)

where the region R(k) ⊂ {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1} is the collection of all
combinations of u and v for which

n∑
t=1

αte
−(µ1 + ...+ µt) +Xt,upp(u, v) ≤ k . (55)

4.2 Calculation of the values Xt,upp(u, v)

In order to find an expression for the values Xt,upp(u, v), we first have to de-
termine the distribution function Ht,upp(x|u) of the variable Wupp(t) of equa-
tion (46). Since this variable Wupp(t) is a specific transformation of the vari-
able Σ(t), the distribution Ht,upp(x|u) of the first variable can be deduced by
means of the distribution Gt(x) of the second one (see section 3).

The following result can be applied :

Proposition 4.3 Consider a non-negative variable X for which the distribu-
tion F (x) = Prob[X ≤ x] is known. For positive constants a and b, define the
variables {

Z1 = aX + b
√
X

Z2 = aX − b
√
X

(56)

with distribution functions denoted by{
H1(z) = Prob[Z1 ≤ z]
H2(z) = Prob[Z2 ≤ z].

(57)
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Then

H1(z) =



0 if z ≤ 0

F

((√
z
a +

b2

4a2 − b
2a

)2
)

if z > 0 ,
(58)

and

H2(z) =




0 if z ≤ − b2

4a

F

((√
z
a +

b2

4a2 + b
2a

)2
)

−F

((√
z
a +

b2

4a2 − b
2a

)2
)

if − b2

4a < z ≤ 0

F

((√
z
a +

b2

4a2 + b
2a

)2
)

if z > 0 .

(59)

Proof. Both results can be found in a straightforward way, making use of
the probability identity

Prob
[
aX ± b

√
X ≤ z

]
= Prob

[(√
X ± b

2a

)2

≤ z

a
+

b2

4a2

]
. (60)

Q.E.D.

Making use of the results of this proposition, with a = 1
2 , b = ±Φ−1(u), and

F (x) = Gt(x), the distribution Ht,upp(x|u) can be written down immediately :

• if u ≥ 1/2,

Ht,upp(x|u) =




0
if x ≤ 0

Gt

((√
2x+Φ−1(u)2 − Φ−1(u)

)2
)

if x > 0 ;

(61)
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• if u ≤ 1/2,

Ht,upp(x|u) =




0

if x ≤ −1
2
Φ−1(u)2

Gt

((√
2x+Φ−1(u)2 − Φ−1(u)

)2
)

−Gt

((√
2x+Φ−1(u)2 +Φ−1(u)

)2
)

if − 1
2
Φ−1(u)2 < x ≤ 0

Gt

((√
2x+Φ−1(u)2 − Φ−1(u)

)2
)

if x > 0 .

(62)

A few calculations lead to the inverse Xt,upp(u, v) :

• if u ≥ 1/2,

Xt,upp(u, v) =
1
2
G−1

t (v) + Φ−1(u)
√
G−1

t (v) ; (63)

• if u ≤ 1/2 and v ≥ Gt

(
4Φ−1(u)2

)
,

Xt,upp(u, v) =
1
2
G−1

t (v) + Φ−1(u)
√
G−1

t (v) ; (64)

• if u ≤ 1/2 and v < Gt
(
4Φ−1(u)2

)
,

Xt,upp(u, v) = C (65)

with C ∈
[
−1

2Φ
−1(u)2, 0

[
defined implicitely as the solution of

Gt

((√
Φ−1(u)2 + 2C − Φ−1(u)

)2
)

−Gt

((√
Φ−1(u)2 + 2C +Φ−1(u)

)2
)
= v. (66)
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5 Improved upper bound

For the improved bound, we have to condition on a variable Z which has
some resemblance to the investigated quantity. As in [4], we will choose linear
combinations of the one-period compounded rates of return

Z =
n∑

t=1

βtYt (67)

and we use the notation ρt for the correlation between this variable Z and
the compounded interest Y (t) = Y1+ ...+ Yt. Note that conditionally on this
variable Z, again the variable Y (t) is normally distributed, with

E[Y (t)|Z, σ̃1, ..., σ̃t] = (µ1 + ...+ µt) + ρt

√
Σ(t)

(
Z −E[Z]√
V ar[Z]

)
(68)

V ar[Y (t)|Z, σ̃1, ..., σ̃t] = (1− ρ2
t )Σ(t). (69)

The correlation ρt can be calculated as

ρt =
1√
Σ(t)

∑t
j=1 βj σ̃

2
j√∑n

j=1 β
2
j σ̃

2
j

. (70)

Due to the stochasticity of the volatilities, of course this correlation is also
stochastic.

5.1 General result

We keep the same structure, starting by presenting the boundary variable for
the present value A, and continuing by calculating the stop-loss premiums
and distribution.

Proposition 5.1 Let Ua, Ub and V be independent variables which are uni-
formly distributed on [0, 1], and define the variable

Wupp∗(t) =
1
2
Σ(t)− ρtΦ−1(Ua)

√
Σ(t) +

√
1− ρ2

tΦ
−1(Ub)

√
Σ(t) (71)

with conditional distribution

Ht,upp∗(x|ua, ub) = Prob [Wupp∗(t) ≤ x|Ua = ua, Ub = ub] . (72)
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We then have

A ≤cx Aupp∗ =
def

n∑
t=1

αte
− (µ1 + ...+ µt) +Xt,upp∗(Ua, Ub, V ) (73)

with Xt,upp∗(ua, ub, v) = H−1
t,upp∗(v|ua, ub).

Proof. We first apply proposition 2.2 (decreasing functions) to A, with res-
pect to the variables Y (t) and conditionally on the volatilities σ̃1, ..., σ̃n. This
gives

A ≤cx Ã∗ =
def

n∑
t=1

αte
−F−1

t|Z (1− U)+ 1
2
Σ(t)

, (74)

where U is a uniformly distributed variable on [0, 1], and where due to equa-
tions (68) and (69)

Ft|Z(x) = Φ


x− (µ1 + ...+ µt)− ρt

√
Σ(t)Φ−1(Ua)√

(1− ρ2
t )Σ(t)


 . (75)

The sum Ã∗ can be rewritten as

Ã∗ =
n∑

t=1

αte
−(µ1 + ...+ µt)+ 1

2
Σ(t) (76)

· e
−ρt

√
Σ(t)Φ−1(Ua) +

√
1− ρ2

t

√
Σ(t)Φ−1(Ub), (77)

or

Ã∗ =
n∑

t=1

αte
−(µ1 + ...+ µt) +Wupp∗(t), (78)

where we defined Wupp∗(t) as in equation (71).

A second application of proposition 2.2 (increasing functions), now for Ã∗

with respect to the variables Wupp∗(t) now gives the result of (73).
Q.E.D.

Starting from the previous result, we arrive at the stop-loss premiums and
distribution, as summarized in the following proposition.
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Proposition 5.2 Consider the quantity Aupp∗ as mentioned in proposition 5.1.
The stop-loss premium for this variable can be calculated as

E
[
(Aupp∗ − k)+

]
(79)

=
∫ 1

0
dua

∫ 1

0
dub

∫ 1

0
dv(

n∑
t=1

αte
−(µ1 + ...+ µt) +Xt,upp∗(ua, ub, v) − k

)
+

;

the distribution follows as

Fupp∗(k) = Prob [Aupp∗ ≤ k] = volume(R∗(k)) , (80)

where the region R∗(k) ⊂ {(ua, ub, v)|0 ≤ ua ≤ 1, 0 ≤ ub ≤ 1, 0 ≤ v ≤ 1} is the
collection of all combinations of ua, ub and v for which

n∑
t=1

αte
−(µ1 + ...+ µt) +Xt,upp∗(ua, ub, v) ≤ k . (81)

5.2 Calculation of the values Xt,upp∗(ua, ub, v)

As can be seen in equation (71), the variable Wupp∗(t) no longer depends on
the variable Σ(t) alone, but on a combination of the n variables Σ(1), ...,Σ(n)
through the correlation ρt. As a consequence, the derivation of the distribu-
tion Ht,upp∗(x|ua, ub) and thus of Xt,upp∗(ua, ub, v) becomes more and more
complicated as the linear combination for Z is more complete. This should
not be surprising, since the improved upper bound becomes closer to the
original variable A, the more the variables Z and A are alike. Under the pre-
sent circumstances, this corresponds with a linear combination as complete
as possible.

We will show the effect of a “small” conditioning by giving the results in
case we take β2 = ... = βn = 0 and β1 = 1, or Z = Y (1). This choice for
the conditioning is not unreasonable, since this means that we condition on
the rate of return for the first period, for which a forecast seems to be more
reliable than for periods later on.
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When conditioning on Z = Y (1), the correlation ρt (see equation (70)) can
be simplified to

ρt =

√
Σ(1)
Σ(t)

. (82)

In this case, the variable Wupp∗(t) can be written as

Wupp∗(t) =
1
2
Σ(t)− Φ−1(Ua)

√
Σ(1) + Φ−1(Ub)

√
Σ(t)− Σ(1)

= WA(t) +WB(t) (83)

where due to the assumptions about the volatilities the variables

WA(t) =
1
2
Σ(1)− Φ−1(Ua)

√
Σ(1) (84)

and WB(t) =
1
2
(Σ(t)− Σ(1)) + Φ−1(Ub)

√
Σ(t)− Σ(1) (85)

are independent.

If we use the notations

Ht,A(x|ua) = Prob [WA(t) ≤ x|Ua = ua] (86)

and
Ht,B(x|ub) = Prob [WB(t) ≤ x|Ub = ub] , (87)

it follows from (83) that the convolution of these two distributions results in
the distribution Ht,upp∗(x|ua, ub) of Wupp∗(t).

In order to calculate the distributions of (86) and (87), proposition 4.3 can be
used with a = 1

2 , b = ±Φ−1(ua) and F (x) = G1(x) for Ht,A(x|ua), and with
a = 1

2 , b = ±Φ−1(ub) and F (x) = Gt−1(x) for Ht,B(x|ub).

We find

• if ua ≤ 1/2,

Ht,A(x|ua) =




0
if x ≤ 0

G1

((√
2x+Φ−1(ua)2 +Φ−1(ua)

)2
)

if x > 0 ;

(88)
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• if ua ≥ 1/2,

Ht,A(x|ua) =




0

if x ≤ −1
2
Φ−1(ua)2

G1

((√
2x+Φ−1(ua)2 +Φ−1(ua)

)2
)

−G1

((√
2x+Φ−1(ua)2 − Φ−1(ua)

)2
)

if − 1
2
Φ−1(ua)2 < x ≤ 0

G1

((√
2x+Φ−1(ua)2 +Φ−1(ua)

)2
)

if x > 0 ;

(89)

• if ub ≤ 1/2,

Ht,B(x|ub) =




0

if x ≤ −1
2
Φ−1(ub)2

Gt−1

((√
2x+Φ−1(ub)2 − Φ−1(ub)

)2
)

−Gt−1

((√
2x+Φ−1(ub)2 +Φ−1(ub)

)2
)

if − 1
2
Φ−1(ub)2 < x ≤ 0

Gt−1

((√
2x+Φ−1(ub)2 − Φ−1(ub)

)2
)

if x > 0 ;

(90)

• if ub ≥ 1/2,

Ht,B(x|ub) =




0
if x ≤ 0

Gt−1

((√
2x+Φ−1(ub)2 −Φ−1(ub)

)2
)

if x > 0 .

(91)

6 Numerical illustration

In this last section, we want to examine the accuracy of the upper bounds in
comparison with the exact present value. In order to do so, we will investigate
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the first upper bound (the bound with the smallest precision) for three cash-
flows with different structure :

• αt = 10 for t = 1, ..., 10 ;

• αt = t for t = 1, ..., 10 ;

• αt = 11− t for t = 1, ..., 10.

For the normal distribution of the stochastic interest rate (see equation (3)),
we choose µt = 0.07 for each time point t ; the squared stochastic volatility
(see equation (35)) is assumed to be exponentially distributed with parameter
20, i.e. with mean 0.05.

In figures 1, 3 and 5 (matching the three cases mentioned above) the distribu-
tion of the upper bound is depicted, together with an empirical distribution
of the original present value obtained by Monte-Carlo simulation. In each of
the three cases we see that the upper bound performs rather well and thus
provide a good approximation of the exact distribution of the present value.

In order to show the calculation method of the distribution function as given
in equation (54), figures 2, 4 and 6 give an idea of how the region R(k) looks
by graphing the surface

sum(u, v) =
n∑

t=1

αte
−(µ1 + ...+ µt) +Xt,upp(u, v) (92)

with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 for the same three cash-flows.
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Figure 1: Distribution function of the upper bound Aupp (black) for αt = 10 (t =
1, ..., 10), compared to a simulated version of the distribution of A (grey).

Figure 2: The surface sum(u, v) (see (92)) for αt = 10 (t = 1, ..., 10).
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Figure 3: Distribution function of the upper bound Aupp (black) for αt = t (t =
1, ..., 10), compared to a simulated version of the distribution of A (grey).

Figure 4: The surface sum(u, v) (see (92)) for αt = t (t = 1, ..., 10).
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Figure 5: Distribution function of the upper bound Aupp (black) for αt = 11 − t
(t = 1, ..., 10), compared to a simulated version of the distribution of A (grey).

Figure 6: The surface sum(u, v) (see (92)) for αt = 11− t (t = 1, ..., 10).
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