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Abstract

In an insurance context, one is often interested in the distribution
function of a sum of random variables. Such a sum appears when
considering the aggregate claims of an insurance portfolio over a cer-
tain reference period. It also appears when considering discounted
payments related to a single policy or a portfolio at different future
points in time. The assumption of mutual independence between the
components of the sum is very convenient from a computational point
of view, but sometimes not realistic. We will determine approxima-
tions for sums of random variables, when the distributions of the terms
are known, but the stochastic dependence structure between them is
unknown or too cumbersome to work with. In this paper, the theoret-
ical aspects are considered. Applications of this theory are considered
in a subsequent paper. Both papers are to a large extent an overview
of recent research results obtained by the authors, but also new theo-
retical and practical results are presented.

1 Introduction

In traditional risk theory, the individual risks of a portfolio are usually as-
sumed to be mutually independent. Standard techniques for determining the
distribution function of aggregate claims, such as Panjer’s recursion, De Pril’s
recursion, convolution or moment based approximations, are based on the in-
dependence assumption. Insurance is based on the fact that by increasing
the number of insured risks, which are assumed to be mutually independent
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and identically distributed, the average risk gets more and more predictable
because of the Law of Large Numbers. This is because a loss on one policy
might be compensated by more favorable results on others. The other well-
known fundamental law of statistics, the Central Limit Theorem, states that
under the assumption of mutual independence, the aggregate claims of the
portfolio will be approximately normally distributed, provided the number
of insured risks is large enough. Assuming independence is very convenient
since the mathematics for dependent risks are less tractable, and also because
in general the statistics gathered by the insurer only give information about
the marginal distributions of the risks, not about their joint distribution, i.e.
the way these risks are interrelated.

A trend in actuarial science is to combine the (actuarial) technical risk
with the (financial) investment risk. Assume that the nominal random pay-
ments Xi are due at fixed and known times ti, i = 1, 2, . . . , n. Let Yt denote
the nominal discount factor over the interval [0, t], t ≥ 0. This means that
the amount one needs to invest at time 0 to get an amount 1 at time t is
the random variable Yt. By nominal we mean that there is no correction
for inflation. In this case, a random variable of interest will be the scalar
product of two random vectors:

S =
n∑

i=1

XiYti .

If the payments Xi at time ti are independent of inflation, then the vectors
X = (X1, X2, . . . , Xn) and Y = (Yt1 , Yt2 , . . . , Ytn) can be assumed to be mu-
tually independent. On the other hand, if the payments are adjusted for
inflation, the vectors X and Y are not mutually independent anymore. De-
noting the inflation factor over the period [0, t] by Zt, the random variable S
can in this case be rewritten as S =

∑n
i=1X

′
iY

′
ti

where the real payments X
′
i

and the real discount factors Y
′
ti

are given by X
′
i = Xi/Zti and Y

′
ti

= Yti Zti

respectively. Hence, in this case S is the scalar product of the two mutually
independent random vectors

(
X

′
1, X

′
2, . . . , X

′
n

)
and

(
Y

′
t1
, Y

′
t2
, . . . , Y

′
tn

)
.

In general however, each vector on its own will have dependent components.
Especially the factors of the discount vector will possess a strong positive
dependence.
Introduction of the stochastic financial aspects in actuarial models immedi-
ately reveals the necessity of determining distribution functions of sums of
dependent random variables. Hereafter we describe some situations where
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random variables, which are scalar products of two vectors, arise.
First, consider the random variable S =

∑n
i=1XiYi, where the Xi repre-

sent the claim amounts of one policy (or one portfolio) at different times i,
i = 1, 2, . . . , n. Even if the discount factors Yi are deterministic, S will often
be a sum of dependent random variables in this case. An example is a life an-
nuity on a single life (x) which pays an amount equal to 1 at times 1, 2, . . . , n
provided the insured (x) is alive at that time. It is clear that the stochas-
tic payments Xi possess a strong positive dependence in this case. Another
example is the case of an individual automobile insurance policy where Xi

represents the loss in year i of the policy under consideration. High values
of X1 and X2 might indicate that the insured is a bad risk with high claim
frequencies and/or severities also in the coming years.
In case of stochastic discount factors Yi, the sum S =

∑n
i=1XiYi will be a

sum of strongly positive dependent random variables, where the dependence
is also caused by the dependence between the Yi. Consider for instance Yi

and Yi+j, with j small. Discounting over the period [0, i+ j] is equal to dis-
counting over the period [0, i]∪ (i, i+ j]. Hence, in any realistic model these
discount factors Yi and Yi+j will possess a strong positive dependence.
Intuitively, in the presence of positive dependencies, large values of one term
in a sum of random variables tend to go hand in hand with large values of
the other terms. The Law of Large Numbers will not hold and the aggregate
risk S will exhibit greater variation than in the case of a sum of mutually
independent random variables. So in this case, the independence assumption
tends to underestimate the tails of the distribution function of S.

Second, consider the case where theXi represent the claims or gains/losses
of the different policies in an insurance portfolio and that all ti are identical
and equal to t. The random variable S =

∑n
i=1XiYt can then be interpreted

as the aggregate claims of the portfolio over a certain reference period, for
instance one year.
If the discount factor Yt is stochastic, then S is a sum of strongly positive de-
pendent random variables as each individual random variable XiYt contains
the same discount factor Yt.
If the discount factor Yt is assumed to be deterministic, then the indepen-
dence assumption will often be not too far from reality, and can be used for
determining the distribution of S. Moreover, one can force a portfolio of risks
to satisfy the independence assumption as much as possible by diversifying,
not including too many related risks like the fire risks of different floors of
the same building or the risks concerning several layers of the same large
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reinsured risk.
In certain situations, however, the individual risks Xi will not be mutually
independent because they are subject to the same claim generating mecha-
nism or are influenced by the same economic or physical environment. The
independence assumption is then violated and just isn’t an adequate way to
describe the relations between the different random variables involved.The
individual risks of an earthquake or flooding risk portfolio which are located
in the same geographic area are correlated, since individual claims are con-
tingent on the occurrence and severity of the same earthquake or flood. On
a foggy day all cars of a region have higher probability to be involved in an
accident. During dry hot summers, all wooden cottages are more exposed to
fire. More generally, one can say that if the density of insured risks in a cer-
tain area or organization is high enough, then catastrophes such as storms,
explosions, earthquakes, epidemics and so on can cause an accumulation of
claims for the insurer. As a financial example, consider a bond portfolio. In-
dividual bond default experience may be conditionally independent for given
market conditions. However, the underlying economic environment (for in-
stance interest rates) affects all individual bonds in the market in a similar
way. In life insurance, there is ample evidence that the lifetimes of husbands
and their wives are positively associated. There may be certain selection
mechanisms in the matching of couples (“birds of a feather flock together”):
both partners often belong to the same social class and have the same life
style. Further, it is known that the mortality rate increases after the passing
away of one’s spouse (the “broken heart syndrome”). These phenomena have
implications on the valuation of aggregate claims in life insurance portfolios.
Another example in a life insurance context is a pension fund that covers the
pensions of persons working for the same company. These persons work at
the same location, they take the same flights. It is evident that the mortality
of these persons will be dependent, at least to a certain extent.

As a theoretical example, consider an insurance portfolio consisting of n
risks. The payments to be made by the insurer are described by a random
vector (X1, X2, . . . , Xn), where Xi is the claim amount of policy i during the
insurance period. We assume that all payments have to be done at the end
of the insurance period [0, 1]. In a deterministic financial setting, the present
value at time 0 of the aggregate claims X1 +X2 + . . .+Xn to be paid by the
insurer at time 1 is determined by

S = (X1 +X2 + . . .+Xn) v,
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where v = (1+r)−1 is the deterministic discount factor and r is the technical
interest rate. This will be chosen in a conservative way (i.e. sufficiently
low), if the insurer doesn’t want to underestimate his future obligations. To
demonstrate the effect of introducing random interest on insurance business,
we look at the following special case. Assume all risks Xi to be non-negative,

independent and identically distributed, and let X
d
= Xi, where the symbol

d
= is used to indicate equality in distribution. The average payment S

n
has

mean and variance

E

[
S

n

]
= v E [X] ; V ar

[
S

n

]
=
v2

n
V ar[X].

The stability necessary for both insureds and insurer is maintained by the
Law of Large Numbers, provided that n is indeed ‘large’ and that the risks are
mutually independent and rather well-behaved, not describing for instance
risks of catastrophic nature for which the variance might be very large or
even infinite.

Now let us examine the consequences of introducing stochastic discount-
ing. Replacing the fixed discount factor v by a random variable Y , repre-
senting the stochastic amount to be invested at time 0 with value 1 at the
end of the period [0, 1], the present value of the aggregate claims becomes

S = (X1 +X2 + . . .+Xn) Y.

If we assume that the discount factor is independent of the payments, we
find that the average payment per policy S

n
has mean and variance

E

[
S

n

]
= E [X] E [Y ] ; V ar

[
S

n

]
=
V ar [X]

n
E

[
Y 2

]
+ (E [X])2 V ar [Y ]

Assuming that E [X] and V ar [Y ] are positive, the Law of Large Numbers
no longer eliminates the risk involved. This is because for n → ∞, V ar[S

n
]

converges to its second term. So to evaluate the total risk, both the distribu-
tions of insurance risk and financial risk are needed. Risk pooling and large
portfolios are no longer sufficient tools to eliminate or reduce the average risk
associated with a portfolio. This observation implies that the introduction
of stochastic financial aspects in actuarial models immediately leads to the
necessity of determining distribution functions of sums of dependent random
variables.
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Under the assumption that the vectors X = (X1, X2, . . . , Xn) and Y =
(Yt1 , Yt2 , . . . , Ytn) are mutually independent and that the marginal distribu-
tions of the Xi and the Yti are given, the problem of determining bounds for
the distribution function of S =

∑n
i=1XiYti can be reduced to determining

bounds for the distribution function of a sum

S = Z1 + Z2 + . . .+ Zn

of random variables Z1, Z2, . . . , Zn with given marginal distributions, but
of which the joint distribution is either unspecified or too cumbersome to
work with. The unknown or complex nature of the dependence between
the random variables Zi is the reason why it is impossible to derive the
distribution function of S exactly.

Recently, several authors in the actuarial literature have derived stochas-
tic lower and upper bounds for sums S of this type. These bounds are
bounds in the sense of convex order. The concept of convex order is closely
related to the notion of stop-loss order which is more familiar in actuarial
circles. Both stochastic orders express which of two random variables is the
“less dangerous” one. Replacing S by a less attractive random variable S ′

will be a safe strategy from the viewpoint of the insurer. Considering also
“more attractive” random variables will help to give an idea of the degree of
overestimation of the real risk.

In this paper, we will describe how to make safe decisions in case we
have a sum of random variables with given marginal distribution functions
but of which the stochastic dependent structure is unknown. We will give
an overview of the recent actuarial literature on this topic. This paper is
partly based on the results described in Dhaene & Goovaerts (1996, 1997),
Wang & Dhaene (1998), Goovaerts & Redant (1999), Goovaerts & Dhaene
(1999), Goovaerts & Kaas (2001), Dhaene, Wang, Young & Goovaerts (2000),
Goovaerts, Dhaene & De Schepper (2000), Simon, Goovaerts & Dhaene
(2000), Vyncke, Goovaerts & Dhaene (2001), Kaas, Dhaene & Goovaerts
(2000), Denuit, Dhaene, Le Bailly De Tilleghem & Teghem (2001), De Vylder
& Dhaene (2001), Kaas, Dhaene, Vyncke, Goovaerts, Denuit (2001). It is the
first text integrating these results in a consistent way. The paper also con-
tains several new results and simplified proofs of existing results. Actuarial-
financial applications, demonstrating the practical usability of this theory,
are considered in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002). De-
pendence in portfolios and related stochastic orders are also considered in
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Denuit & Lefèvre (1997), Müller (1997), Bäuerle & Müller (1998), Wang
& Young (1998), Denuit, De Vijlder & Lefèvre (1999), Denuit and Cornet
(1999), Denuit, Genest & Marceau (1999, 2001), Dhaene & Denuit (1999),
Embrechts, Mc.Neil and Straumann (1999), Cossette, Denuit & Marceau
(2000), Dhaene, Vanneste & Wolthuis (2000), Cossette, Denuit, Dhaene &
Marceau (2001), Denuit, Dhaene & Ribas (2001), amongst others.

2 Ordering random variables

In the sequel, we will always consider random variables with finite mean. This
implies that for any random variable X we have that limx→∞ x (1 − FX(x)) =
limx→−∞ xFX(x) = 0, where FX(x) = Pr [X ≤ x] is used to denote the cu-
mulative distribution function (cdf) of X. Using the technique of integration

by parts on both terms of the right-hand side in E [X] =
∫ 0

−∞ x dFX(x) −∫ ∞
0
x d (1 − FX(x)), we find the following expression for E [X] :

E [X] = −
∫ 0

−∞
FX(x)dx+

∫ ∞

0

(1 − FX(x)) dx. (1)

In the actuarial literature it is common practice to replace a random vari-
able by a “less attractive” random variable which has a simpler structure,
making it easier to determine its distribution function, see e.g. Goovaerts,
Kaas, Van Heerwaarden & Bauwelinckx (1990), Kaas, Van Heerwaarden &
Goovaerts (1994) or Denuit, de Vylder & Lefèvre (1999). Performing the
computations (of premiums, reserves and so on) with the less attractive ran-
dom variable is a prudent strategy. Of course, we have to clarify what we
mean by a less attractive random variable. For this purpose we first intro-
duce the notion of “stop-loss premium”. The stop-loss premium with reten-
tion d of random variable X is defined by E[(X − d)+], with the notation
(x − d)+ = max (x− d, 0). Using an integration by parts, we immediately
find that

E[(X − d)+] =

∫ ∞

d

(1 − FX(x)) dx, −∞ < d < +∞, (2)

from which we see that the stop-loss premium with retention d can be con-
sidered as the weight of an upper tail of (the distribution function of) X: it
is the surface between the cdf FX of X and the constant function 1, from d
on. Also useful is the observation that E[(X−d)+] is a decreasing continuous
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function of d, with derivative FX(d) − 1 at d, which vanishes at +∞.
Now, we are able to define the stop-loss order between random variables.

Definition 1 Consider two random variables X and Y . Then X is said to
precede Y in the stop-loss order sense, notation X ≤sl Y , if and only if X
has lower stop-loss premiums than Y :

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞. (3)

Hence, X ≤sl Y means that X has uniformly smaller upper tails than
Y , which in turn means that a payment Y is indeed less attractive than a
payment X. Stop-loss order has a natural economic interpretation in terms
of expected utility. Indeed, it can be shown that X ≤sl Y if and only if
E [u (−X)] ≥ E [u (−Y )] holds for all non-decreasing concave real functions
u for which the expectations exist. This means that any risk-averse decision
maker would prefer to pay X instead of Y , which implies that acting as if
the obligations X are replaced by Y indeed leads to conservative/prudent
decisions. The characterization of stop-loss order in terms of utility func-
tions is equivalent to E [v (X)] ≤ E [v (Y )] holding for all non-decreasing
convex functions v for which the expectations exist. Therefore, stop-loss or-
der is often called “increasing convex order” and denoted by ≤icx. For more
details and properties of stop-loss order in a general context, see Shaked &
Shanthikumar (1994) or Kaas, Van Heerwaarden & Goovaerts (1994), where
stochastic orders are considered in an actuarial context.

Stop-loss order between random variables X and Y implies a correspond-
ing ordering of their means. To prove this, assume that d < 0. From the
expression (2) of stop-loss premiums as upper tails, we immediately find the
following equality:

d+ E[(X − d)+] = −
∫ 0

d

FX(x)dx+

∫ ∞

0

(1 − FX(x)) dx,

and also, letting d→ −∞,

lim
d→−∞

(d+ E[(X − d)+]) = E [X] .

Hence, adding d to both members of the inequality (3) in Definition 1, and
taking the limit for d→ −∞, we get E[X] ≤ E[Y ].

A sufficient condition for X ≤sl Y to hold is that E[X] ≤ E[Y ], together
with the condition that their cumulative distribution functions only cross
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once. This means that there exists a real number c such that FX(x) ≤ FY (x)
for x < c, but FX(x) ≥ FY (x) for x ≥ c. Indeed, considering the function
f(d) = E[(Y − d)+]− E[(X − d)+], we have that limd→−∞ f(d) = E[Y ] −
E[X] ≥ 0, and limd→+∞ f(d) = 0. Further, f(d) first increases, and then
decreases (from c on) but remains non-negative.

Recall that our original problem was to replace a random payment X by a
less favorable random payment Y , for which the distribution function is easier
to obtain. If X ≤sl Y , then also E[X] ≤ E[Y ], and it is intuitively clear that
the best approximations arise in the borderline case where E[X] = E[Y ].
This leads to the so-called convex order.

Definition 2 Consider two random variables X and Y . Then X is said to
precede Y in the convex order sense, notation X ≤cx Y , if and only if

E [X] = E [Y ] ,

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞. (4)

From E[(X − d)+] − E [(d−X)+] = E [X] − d, we find

X ≤cx Y ⇔
{
E[X] = E[Y ],
E [(d−X)+] ≤ E [(d− Y )+] , −∞ < d < +∞.

(5)

Note that partial integration leads to

E [(d−X)+] =

∫ d

−∞
FX(x) dx, (6)

which means that E [(d−X)+] can be interpreted as the weight of a lower
tail of X: it is the surface between the constant function and the cdf of X,
from −∞ to d. We have seen that stop-loss order entails uniformly heavier
upper tails. The additional condition of equal means implies that convex
order also leads to uniformly heavier lower tails.

Let d > 0. From (6) we find

d− E[(d−X)+] = −
∫ 0

−∞
FX(x)dx+

∫ d

0

(1 − FX(x)) dx,

and also
lim

d→+∞
(d− E[(d−X)+]) = E [X] .
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This implies that convex order can also be characterized as follows:

X ≤cx Y ⇔
{
E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞,
E [(d−X)+] ≤ E [(d− Y )+] , −∞ < d < +∞.

(7)

Indeed, the ⇐ implication follows from observing that the upper tail inequali-
ties imply E[X] ≤ E[Y ], while the lower tail inequalities imply E[X] ≥ E[Y ],
hence E[X] = E[Y ] must hold.

Note that with stop-loss order, we are concerned with large values of a
random loss, and call the random variable Y less attractive than X if the
expected values of all top parts (Y −d)+ are larger than those of X. Negative
values for these random variables are actually gains. With stability in mind,
excessive gains might also be unattractive for the decision maker, for instance
for tax reasons. In this situation, X could be considered to be more attractive
than Y if both the top parts(X − d)+ and the bottom parts (d−X)+ have
a lower expected value than for Y . Both conditions just define the convex
order introduced above.

A sufficient condition for X ≤cx Y to hold is that E[X] = E[Y ], together
with the condition that their cdf’s only cross once. This once-crossing con-
dition can be observed to hold in most natural examples, but it is of course
easy to construct examples with X ≤cx Y and cdf’s that cross more than
once.

It can be proven that X ≤cx Y if and only E [v (X)] ≤ E [v (Y )] for all
convex functions v, provided the expectations exist. This explains the name
“convex order”. Note that when characterizing stop-loss order, the convex
functions v are additionally required to be non-decreasing. Hence, stop-loss
order is weaker: more pairs of random variables are ordered.

We also find that X ≤cx Y if and only E [X] = E [Y ] and E [u (−X)] ≥
E [u (−Y )] for all non-decreasing concave functions u, provided the expecta-
tions exist. Hence, in a utility context, convex order represents the common
preferences of all risk-averse decision makers between random variables with
equal mean.

In case X ≤cx Y, the upper tails as well as the lower tails of Y eclipse the
corresponding tails of X, which means that extreme values are more likely
to occur for Y than for X. This observation also implies that X ≤cx Y is
equivalent to −X ≤cx −Y. Hence, the interpretation of the random variables
as payments or as incomes is irrelevant for the convex order.

As the function v defined by v(x) = x2 is a convex function, it follows im-
mediately that X ≤cx Y implies V ar [X] ≤ V ar [Y ]. The reverse implication
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does not hold in general.
Note that comparing variances is meaningful when comparing stop-loss

premiums of convex ordered random variables, see, e.g. Kaas, Van Heerwaar-
den & Goovaerts (1994, p. 68). The following relation links variances and
stop-loss premiums:

1

2
V ar[X] =

∫ ∞

−∞
(E[(X − t)+] − (E[X] − t)+) dt. (8)

To prove this relation, write∫ ∞

−∞
(E[(X − t)+] − (E[X] − t)+) dt =

∫ E[X]

−∞
E[(t−X)+] dt+

∫ ∞

E[X]

E[(X−t)+] dt.

Interchanging the order of the integrations and using partial integration, one
finds∫ E[X]

−∞
E[(t−X)+] dt =

∫ E[X]

−∞

∫ t

−∞
FX(x) dx dt =

1

2

∫ E[X]

−∞
(x−E[X])2 dFX(x).

Similarly, ∫ ∞

E[X]

E[(X − t)+] dt =
1

2

∫ ∞

E[X]

(x− E[X])2 dFX(x).

This proves (8). From (8) we deduce that if X ≤cx Y ,∫ ∞

−∞
|E[(Y − t)+] − (E[(X − t)+]| dt =

1

2
{V ar[Y ] − V ar[X]} (9)

A graphical interpretation of relations (8) and (9) is given in Figure 1.
Thus, if X ≤cx Y , their stop-loss distance, i.e. the integrated absolute

difference of their respective stop-loss premiums, equals half the variance
difference between these two random variables. The integrand above is non-
negative, so if in addition V ar[X] = V ar[Y ], then X and Y must necessary
have equal stop-loss premiums, which implies that they are equal in distri-
bution. We also find that if X ≤cx Y , and X and Y are not equal in distri-
bution, then V ar[X] < V ar[Y ] must hold. Note that (8) and (9) have been
derived under the additional conditions that both limx→∞ x2 (1 − FX(x)) and
limx→−∞ x2FX(x) are equal to 0 (and similar for Y ). A sufficient condition
for these requirements is that X and Y have finite second moments.
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E[(X−t) ]+

E[X] t

E[X]−t

Var[X]½
E[(Y−t) ]+

Figure 1: Two stop-loss transforms πX(t) = E[(X−t)+] and πY (t) = E[(Y −
t)+] where X ≤cx Y .

3 Inverse distribution functions

The cdf FX(x) = P [X ≤ x] of a random variable X is a right-continuous
(further abbreviated as r.c.) non-decreasing function with

FX (−∞) = lim
x→−∞

FX(x) = 0, FX (+∞) = lim
x→+∞

FX(x) = 1.

The usual definition of the inverse of a distribution function is the non-
decreasing and left-continuous (l.c.) function F−1

X (p) defined by

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1] (10)

with inf ∅ = +∞ by convention. For all x ∈ R and p ∈ [0, 1], we have

F−1
X (p) ≤ x⇔ p ≤ FX(x). (11)

In this paper, we will use a more sophisticated definition for inverses of
distribution functions. For any real p ∈ [0, 1], a possible choice for the inverse
of FX in p is any point in the closed interval

[inf {x ∈ R | FX(x) ≥ p} , sup {x ∈ R | FX(x) ≤ p}] ,

12



where, as before, inf ∅ = +∞, and also sup ∅ = −∞. Taking the left hand
border of this interval to be the value of the inverse cdf at p, we get F−1

X (p).
Similarly, we define F−1+

X (p) as the right hand border of the interval:

F−1+
X (p) = sup {x ∈ R | FX(x) ≤ p} , p ∈ [0, 1] (12)

which is a non-decreasing and r.c. function. Note that F−1
X (0) = −∞,

F−1+
X (1) = +∞ and that all the probability mass of X is contained in the

interval
[
F−1+

X (0), F−1
X (1)

]
. Also note that F−1

X (p) and F−1+
X (p) are finite

for all p ∈ (0, 1) . In the sequel, we will always use p as a variable ranging
over the open interval (0, 1), unless stated otherwise.

For any α ∈ [0, 1] , we define the α-mixed inverse function of FX as follows:

F
−1(α)
X (p) = α F−1

X (p) + (1 − α) F−1+
X (p), p ∈ (0, 1) , (13)

which is a non-decreasing function. In particular, we find F
−1(0)
X (p) = F−1+

X (p)

and F
−1(1)
X (p) = F−1

X (p). One immediately finds that for all α ∈ [0, 1],

F−1
X (p) ≤ F

−1(α)
X (p) ≤ F−1+

X (p), p ∈ (0, 1). (14)

Note that only values of p corresponding to a horizontal segment of FX lead
to different values of F−1

X (p), F−1+
X (p) and F

−1(α)
X (p). This phenomenon is

illustrated in Figure 2.
Now let d be such that 0 < FX(d) < 1. Then F−1

X (FX(d)) and F−1+
X (FX(d))

are finite, and F−1
X (FX(d)) ≤ d ≤ F−1+

X (FX(d)). So for some value αd ∈
[0, 1], d can be expressed as d = αd F

−1
X (FX(d)) + (1 − αd) F−1+

X (FX(d)) =

F
−1(αd)
X (FX(d)). This implies that for any random variable X and any d with

0 < FX(d) < 1, there exists an αd ∈ [0, 1] such that F
−1(αd)
X (FX(d)) = d.

In the following theorem, we state the relation between the inverse dis-
tribution functions of the random variables X and g (X) for a monotone
function g.

Theorem 1 Let X and g(X) be real-valued random variables, and let 0 <
p < 1.
(a) If g is non-decreasing and l.c., then

F−1
g(X)(p) = g

(
F−1

X (p)
)
. (15)

(b) If g is non-decreasing and r.c., then

F−1+
g(X)(p) = g

(
F−1+

X (p)
)
. (16)
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p

F   (p)
X

−1
F       (p)

X

−1(α)
F     (p)

X

−1+

q

F   (q) =
X

−1
F     (q)

X

−1+

Figure 2: Graphical definition of F−1
X , F−1+

X and F
−1(α)
X .

(c) If g is non-increasing and l.c., then

F−1+
g(X)(p) = g

(
F−1

X (1 − p)
)
. (17)

(d) If g is non-increasing and r.c., then

F−1
g(X)(p) = g

(
F−1+

X (1 − p)
)
. (18)

Proof. We will prove (a). The other results can be proven similarly. Let
0 < p < 1 and consider a non-decreasing and left-continuous function g. For
any real x we find from (11) that

F−1
g(X)(p) ≤ x⇔ p ≤ Fg(X)(x).

As g is l.c., we have that

g(z) ≤ x⇔ z ≤ sup {y | g(y) ≤ x}

14



holds for all real z and x. Hence,

p ≤ Fg(X)(x) ⇔ p ≤ FX [sup {y | g (y) ≤ x}]

If sup {y | g (y) ≤ x} is finite then we find from (11) and the equivalence
above

p ≤ FX [sup {y | g (y) ≤ x}] ⇔ F−1
X (p) ≤ sup {y | g (y) ≤ x} .

In case sup {y | g (y) ≤ x} is +∞ or −∞, we cannot use (11), but one can
verify that the equivalence above also holds in this case. Indeed, if the
supremum equals −∞, then the equivalence becomes p ≤ 0 ⇔ F−1

X (p) ≤
−∞. If the supremum equals +∞, then the equivalence becomes p ≤ 1 ⇔
F−1

X (p) ≤ +∞.
Because g is non-decreasing and l.c., we get that

F−1
X (p) ≤ sup {y | g (y) ≤ x} ⇔ g

(
F−1

X (p)
) ≤ x

Combining the equivalences, we finally find that

F−1
g(X)(p) ≤ x⇔ g

(
F−1

X (p)
) ≤ x

holds for all values of x, which means that (a) must hold.
For the special cases that g and FX are continuous and strictly increas-

ing on
[
F−1+

X (0), F−1
X (1)

]
, a simpler proof is possible. Indeed, in this case

we have that Fg(X)(x) = (FX ◦ g−1) (x), which is a continuous and strictly
increasing function of x. The results (a) and (b) then follow by inversion
of this relation. A similar proof holds for (c) and (d) if g and FX are both
continuous, while g is strictly decreasing and FX is strictly increasing.

Hereafter, we will reserve the notation U for a uniform(0, 1) random vari-
able, i.e. FU (p) = p and F−1

U (p) = p for all 0 < p < 1. One can prove that
for all α ∈ [0, 1],

X
d
= F−1

X (U)
d
= F−1+

X (U)
d
= F

−1(α)
X (U). (19)

The first distributional equality is known as the quantile transform theorem
and follows immediately from (11). It states that a sample of random num-
bers from a general distribution function FX can be generated from a sample
of uniform random numbers. Note that FX has at most a countable num-
ber of horizontal segments, implying that the last three random variables in
(19) only differ in a null-set of values of U . This implies that these random
variables are equal with probability one.
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4 Comonotonicity

4.1 Comonotonic sets and random vectors

As mentioned in the introduction, quite often in financial actuarial situations
one encounters random variables of the type S =

∑n
i=1Xi where the terms Xi

are not mutually independent, but the multivariate distribution function of
the random vector X = (X1, X2, . . . , Xn) is not completely specified because
one only knows the marginal distribution functions of the random variables
Xi. In such cases, to be able to make decisions, it may be helpful to find
the dependence structure for the random vector (X1, . . . , Xn) producing the
least favorable aggregate claims S with the given marginals. Therefore, given
the marginal distributions of the terms in a random variable S =

∑n
i=1Xi,

we will look for the joint distribution with the largest sum, in the convex
order sense. As we will prove in Section 5.1, the convex-largest sum of the
components of a random vector with given marginals will be obtained in the
case that the random vector (X1, . . . , Xn) has the comonotonic distribution,
which means that each two possible outcomes (x1, . . . , xn) and (y1, . . . , yn)
of (X1, . . . , Xn) are ordered componentwise.

We start by defining comonotonicity of a set of n-vectors in R
n. A n-

vector (x1, x2, . . . , xn) will be denoted by x. For two n-vectors x and y, the
notation x ≤ y will be used for the componentwise order which is defined by
xi ≤ yi for all i = 1, 2, . . . , n.

Definition 3 The set A ⊆ R
n is said to be comonotonic if for any x and y

in A, either x ≤ y or y ≤ x holds.

So, a set A ⊆ R
n is comonotonic if for any x and y in A, if xi < yi for

some i, then x ≤ y must hold. Hence, a comonotonic set is simultaneously
non-decreasing in each component. Notice that a comonotonic set is a ’thin’
set: it cannot contain any subset of dimension larger than 1. Any subset of
a comonotonic set is also comonotonic.

We will denote the (i, j)-projection of a set A in R
n by Ai,j. It is defined

by
Ai,j = {(xi, xj) | x ∈ A} (20)

Lemma 2 A ⊆ R
n is comonotonic if and only if Ai,j is comonotonic for all

i �= j in {1, 2, . . . , n} .
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The proof of Lemma 2 is straightforward.
For a general set A, comonotonicity of the (i, i + 1)-projections Ai,i+1,

(i = 1, 2, . . . , n− 1), will not necessarily imply that A is comonotonic. As an
example, consider the set A = {(x1, 1, x3) | 0 < x1, x3 < 1}. This set is not
comonotonic, although A1,2 and A2,3 are comonotonic.

Next, we will define the notion of support of an n-dimensional random
vector X = (X1, . . . , Xn). Any subset A ⊆ R

n will be called a support of
X if Pr [X ∈ A] = 1 holds true. In general we will be interested in supports
which are “as small as possible”. Informally, the smallest support of a ran-
dom vector X is the subset of R

n that is obtained by subtracting of R
nall

points which have a zero-probability neighborhood (with respect to X). This
support can be interpreted as the set of all possible outcomes of X.

Next, we will define comonotonicity of random vectors.

Definition 4 A random vector X = (X1, . . . , Xn) is said to be comonotonic
if it has a comonotonic support.

From the definition, we can conclude that comonotonicity is a very strong
positive dependency structure. Indeed, if x and y are elements of the (comono-
tonic) support of X, i.e. x and y are possible outcomes of X, then they must
be ordered componentwise. This explains why the term comonotonic (com-
mon monotonic) is used.
Comonotonicity of a random vectorX implies that the higher the value of one
component Xj, the higher the value of any other component Xk. This means
that comonotonicity entails that no Xj is in any way a “hedge”, perfect or
imperfect, for another component Xk.

In the following theorem, some equivalent characterizations are given for
comonotonicity of a random vector.

Theorem 3 A random vector X = (X1, X2, . . . , Xn) is comonotonic if and
only if one of the following equivalent conditions holds:
(1) X has a comonotonic support;
(2) For all x = (x1, x2, . . . , xn), we have

FX (x) = min {FX1(x1), FX2(x2), . . . , FXn(xn)} ; (21)

(3) For U ∼ Uniform(0,1), we have

X
d
= (F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)); (22)
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(4) There exist a random variable Z and non-decreasing functions fi, (i = 1, 2, . . . , n) ,
such that

X
d
= (f1(Z), f2(Z), . . . , fn(Z)). (23)

Proof. (1)⇒(2):Assume that X has comonotonic support B. Let x ∈ R
n

and let Aj be defined by

Aj =
{
y ∈ B | yj ≤ xj

}
, j = 1, 2, . . . , n.

Because of the comonotonicity of B, there exists an i such that Ai = ∩n
j=1Aj.

Hence, we find

FX (x) = Pr
(
X ∈ ∩n

j=1Aj

)
= Pr (X ∈ Ai) = FXi

(xi)

= min {FX1(x1), FX2(x2), . . . , FXn(xn)} .
The last equality follows from Ai ⊂ Aj so that FXi

(xi) ≤ FXj
(xj) holds for

all values of j.
(2)⇒(3): Now assume that FX (x) = min {FX1(x1), FX2(x2), . . . , FXn(xn)}
for all x = (x1, x2, . . . , xn). Then we find by (11)

Pr[F−1
X1

(U) ≤ x1, . . . , F
−1
Xn

(U) ≤ xn]

= Pr[U ≤ FX1(x1), . . . , U ≤ FXn(xn)]

= Pr[U ≤ min
j=1,...,n

{
FXj

(xj)
}

]

= min
j=1,...,n

{
FXj

(xj)
}
.

(3)⇒(4): straightforward.
(4)⇒(1): Assume that there exists a random variable Z with support B,
and non-decreasing functions fi, (i = 1, 2, . . . , n), such that

X
d
= (f1(Z), f2(Z), . . . , fn(Z)).

The set of possible outcomes of X is {(f1(z), f2(z), . . . , fn(z)) | z ∈ B} which
is obviously comonotonic, which implies that X is indeed comonotonic.

From (21) we see that, in order to find the probability of all the outcomes
of n comonotonic risks Xi being less than xi, (i = 1, . . . , n), one simply takes
the probability of the least likely of these n events. It is obvious that for
any random vector (X1, . . . , Xn), not necessarily comonotonic, the following
inequality holds:

Pr [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn] ≤ min {FX1(x1), FX2(x2), . . . , FXn(xn)} ,
(24)
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and since Hoeffding (1940) and Fréchet (1951) it is known that the func-
tion min {FX1(x1), FX2(x2), . . . , FXn(xn)} is indeed the multivariate cdf of
a random vector, i.c. (F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)), which has the same

marginals as (X1, . . . , Xn). The inequality (24) states that in the class of
all random vectors (X1, . . . , Xn) with the same marginals, the probability
that all Xi simultaneously realize ’small’ values is maximized if the vector is
comonotonic, suggesting that comonotonicity is indeed a very strong positive
dependency structure.

From (22) we find that in the special case that all marginal distribution
functions FXi

are identical, comonotonicity of X is equivalent to saying that
X1 = X2 = . . . = Xn holds almost surely.

A standard way of modelling situations where individual random vari-
ables X1, . . . , Xn are subject to the same external mechanism is to use a
secondary mixing distribution. The uncertainty about the external mecha-
nism is then described by a structure variable z, which is a realization of
a random variable Z, and acts as a (random) parameter of the distribution
of X. The aggregate claims can then be seen as a two-stage process: first,
the external parameter Z = z is drawn from the distribution function FZ

of z. The claim amount of each individual risk Xi is then obtained as a
realization from the conditional distribution function of Xi given Z = z. A
special type of such a mixing model is the case where given Z = z, the claim
amounts Xi are degenerate on xi, where the xi = xi(z) are non-decreasing in

z. This means that (X1, . . . , Xn)
d
= (f1 (Z) , . . . , fn(Z)) where all functions

fi are non-decreasing. Hence, (X1, . . . , Xn) is comonotonic. Such a model is
in a sense an extreme form of a mixing model, as in this case the external
parameter Z = z completely determines the aggregate claims.

As the random vectors (F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)) and (F
−1(α1)
X1

(U),

F
−1(α2)
X2

(U), . . . , F
−1(αn)
Xn

(U)) are equal with probability one, we find that
comonotonicity of X can be characterized by

X
d
= (F

−1(α1)
X1

(U), F
−1(α2)
X2

(U), . . . , F
−1(αn)
Xn

(U)) (25)

for U ∼ Uniform(0,1) and given real numbers αi ∈ [0, 1].
If U ∼ Uniform(0,1), then also 1 − U ∼ Uniform(0,1). This implies that

comonotonicity of X can also be characterized by

X
d
= (F−1

X1
(1 − U), F−1

X2
(1 − U), . . . , F−1

Xn
(1 − U)). (26)
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One can prove that X is comonotonic if and only if there exist a random
variable Z and non-increasing functions fi, (i = 1, 2, . . . , n), such that

X
d
= (f1(Z), f2(Z), . . . , fn(Z)). (27)

The proof is similar to the proof of the characterization (4) in Theorem 3.
In the sequel, for any random vector (X1, . . . , Xn) , the notation (Xc

1, . . . , X
c
n)

will be used to indicate a comonotonic random vector with the same marginals
as (X1, . . . , Xn). From (22), we find that for any random vector X the out-
come of its comonotonic counterpart Xc = (Xc

1, . . . , X
c
n) is with probability

1 in the following set{(
F−1

X1
(p), F−1

X2
(p), . . . , F−1

Xn
(p)

) | 0 < p < 1
}
. (28)

This support of Xc is not necessarily a connected curve. Indeed, all hori-
zontal segments of the cdf of Xi lead to “missing pieces” in this curve. This
support can be seen to be a series of ordered connected curves. Now by
connecting the endpoints of consecutive curves by straight lines, we obtain a
comonotonic connected curve in R

n. Hence, it may be traversed in a direc-
tion which is upwards for all components simultaneously. We will call this
set the connected support of Xc. It might be parameterized as follows:{(

F
−1(α)
X1

(p), F
−1(α)
X2

(p), . . . , F
−1(α)
Xn

(p)
)
| 0 < p < 1, 0 ≤ α ≤ 1

}
. (29)

Observe that this parameterization is not necessarily unique: there may be
elements in the connected support which can be characterized by different
values of α.

Theorem 4 A random vector X is comonotonic if and only if (Xi, Xj) is
comonotonic for all i �= j in {1, 2, . . . , n} .

Proof. The proof of the “⇒”-implication is straightforward.
For the proof of the “⇐”-implication, consider the set A in R

n defined by

A =
{(
F−1

X1
(p), F−1

X2
(p), . . . , F−1

Xn
(p)

) | 0 < p < 1
}
.

Its (i, j)-projections are given by

Ai,j =
{(
F−1

Xi
(p), F−1

Xj
(p)

)
| 0 < p < 1

}
.

20



The event “X ∈ A” is equivalent with the event “(Xi, Xj) ∈ Ai,j for all (i, j)”.
Because of the comonotonicity of the pairs (Xi, Xj), the latter event is the
certain event. Hence we find that Pr [X ∈ A] = 1, so that the comonotonic
set A is a support of X. This implies that X is a comonotonic random vector.

The theorem states that comonotonicity of a random vector is equivalent
with pairwise comonotonicity.

Consider the random vector (U, 1, V ) where U and V are mutually inde-
pendent random variables that are both uniformly distributed on the unit-
interval (0, 1). It is clear that (U, 1) and (1, V ) are both comonotonic pairs,
but (U, 1, V ) isn’t comonotonic. Hence, for a general random vector X,
comonotonicity of the pairs (Xi, Xi+1) , (i = 1, 2, . . . , n− 1) , will not neces-
sary imply comonotonicity of X.

4.2 Some examples

First, we give an example with continuous distributions. Let X ∼ Uniform
on the set (0, 1

2
) ∪ (1, 3

2
), Y ∼ Beta(2,2), hence FY (y) = 3y2 − 2y3 on (0, 1),

and Z ∼ Normal(0, 1).
If X, Y and Z are mutually independent, then the support of (X,Y, Z) is
the set

{(x, y, z)) | x ∈ (0,
1

2
) ∪ (1,

3

2
), y ∈ (0, 1), z ∈ R}.

The support of the comonotonic random vector (Xc, Y c, Zc) is given by

{(F−1
X (p), F−1

Y (p), F−1
Z (p)) | 0 < p < 1},

see Figure 3. Actually, not all of this support is depicted. The part left out
corresponds to p /∈ (Φ(−2),Φ(2)) and extends along the vertical asymptotes
(0, 0, z) and (3

2
, 1, z). The thick continuous line is the support of Xc, while

the dotted line is the straight line needed to transform this support into the
connected support. Note that FX has a horizontal segment between 1

2
and

1. The projection of the connected curve along the z-axis can also be seen
to constitute an increasing curve, as do projections along the other axes.
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Figure 3: A continuous example with n = 3.

For an example with discrete distributions, take X ∼ Uniform{0, 1, 2, 3}
and Y ∼ Binomial(3, 1

2
). It is easy to verify that

(F−1
X (p), F−1

Y (p)) = (0, 0) for 0 < p ≤ 1

8
,

= (0, 1) for
1

8
< p ≤ 2

8
,

= (1, 1) for
2

8
< p ≤ 4

8
,

= (2, 2) for
4

8
< p ≤ 6

8
,

= (3, 2) for
6

8
< p ≤ 7

8
,

= (3, 3) for
7

8
< p < 1.

The support of (Xc, Y c) is just these six points, and the connected support
arises by simply connecting them consecutively with straight lines, the dotted
lines in Figure 4. The straight line connecting (1, 1) and (2, 2) is not along
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X

0

1
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3

Y

Figure 4: A discrete example.

one of the axes. This happens because at level p = 1
2
, both FX(y) and FY (y)

have horizontal segments. Note that any non-decreasing curve connecting
(1, 1) and (2, 2) would have led to a feasible connected curve. These two
points have probability 2

8
, the other points 1

8
.

4.3 Location-scale families of distribution functions

For a random couple (X,Y ), Pearson’s correlation coefficient is defined by

r(X,Y ) =
Cov [X,Y ]√

V ar [X] V ar [Y ]

where
Cov [X,Y ] = E [(X − E [X]) (Y − E [Y ])]

is the covariance of X and Y . Recall that r(X,Y ) = 1 if and only if real
numbers a > 0 and b exist such that Y = aX + b holds with probability one.
Hence, r(X,Y ) = 1 implies comonotonicity of the couple (X,Y ). In this case
the connected support is a straight line. In this sense, comonotonicity is an
extension of the concept of positive perfect correlation.
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As is shown in Theorem 3, in the class of all n-dimensional random variables
with given marginal distribution functions Fi, i = 1, 2, . . . , n, the comono-
tonic upper bound is reached by

(
F−1

1 (U), F−1
2 (U), . . . , F−1

n (U)
)
. On the

other hand, it is only rarely possible to find a pair (X,Y ) with r(X,Y ) = 1
in the class of all bivariate random variables with given marginals F1 and F2,
since for this to hold, a > 0 and b must exist such that F2(y) = F1(

y−b
a

) for
all y, which means that F1 and F2 belong to the same location-scale family
of distributions.

Definition 5 The random vector X has marginal cdf ’s FXi
that belong to the

same location-scale family of distributions, if there exist a random variable
Y , positive real constants ai and real constants bi such that the relation

Xi
d
= aiY + bi (30)

holds for i = 1, 2, . . . , n.

Note that the condition in the definition above is equivalent with saying
that there exists a cdf FY , positive real constants ai and real constants bi

such that FXi
(x) = FY

(
x−bi

ai

)
holds for i = 1, 2, . . . , n.

For a random vector X with marginal cdf’s FXi
belonging to the same

location-scale family, one finds from Theorem 1 that

F−1
Xi

(p) = aiF
−1
Y (p) + bi, p ∈ (0, 1) . (31)

In this case, we also find that the comonotonic sum

Xc
1 + . . .+Xc

n
d
=

n∑
i=1

ai F
−1
Y (U) +

n∑
i=1

bi (32)

has a distribution function that also belongs to the same location-scale family.

Theorem 5 A random vector X with marginal cdf ’s FXi
belonging to the

same location-scale family is comonotonic if and only if r(Xi, Xj) = 1 for all
i, j ∈ {1, 2, . . . , n}.

Proof. From (31) and Theorem 3, we find that X is comonotonic if and
only if

X
d
=

(
a1F

−1
Y (U) + b1, . . . , anF

−1
Y (U) + bn

)
.
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Hence, comonotonicity of X implies that r(Xi, Xj) = 1 for all pairs (i, j) .
Conversely, if all correlations are equal to 1, then all couples (Xi, Xj) are
comonotonic, which means that X is a comonotonic random vector by The-
orem 4.

Example 1 (Uniform marginals)

Consider a random vector X with uniform marginals FXi
: for each Xi we

assume that Xi ∼ Uniform(αi, βi ), with αi < βi. In this case, the marginals
belong to the same location-scale family of distributions since for each Xi,
we have that

Xi
d
= αi + (βi − αi) U. (33)

We also have that

F−1
Xi

(p) = αi + (βi − αi) p, 0 < p < 1, (34)

from which we find that

Sc = Xc
1 + . . .+Xc

n
d
=

n∑
i=1

αi +
n∑

i=1

(βi − αi) U. (35)

Hence, Sc is uniform on the interval (
∑n

i=1 αi,
∑n

i=1 βi).�

Example 2 (Normal marginals)

Consider a random vector X with normal marginals FXi
: for each Xi we

have that Xi ∼ N (µi, σ
2
i ) . In this case, the marginals belong to the same

location-scale family of distributions since

Xi
d
= σi Z + µi (36)

where Z ∼ N (0, 1). We find that

F−1
Xi

(p) = σiΦ
−1(p) + µi, p ∈ (0, 1) , (37)

where Φ is the standard normal cdf. From Theorem 5, we find that X is
comonotonic if and only if r(Xi, Xj) = 1 for all i, j ∈ {1, 2, . . . , n}. We
also have that Xc

1 + . . .+Xc
n is normally distributed with mean

∑n
i=1 µi and

variance (
∑n

i=1 σi)
2
. Note that if the Xi were independent, we would get the

normal distribution with mean
∑n

i=1 µi and variance
∑n

i=1 σ
2
i ≤ (

∑n
i=1 σi)

2
.�
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4.4 Sums of comonotonic random variables

In the sequel, the notation Sc will be used for the sum of the compo-
nents of the comonotonic counterpart (Xc

1, X
c
2, . . . , X

c
n) of a random vector

(X1, X2, . . . , Xn):
Sc = Xc

1 +Xc
2 + . . .+Xc

n. (38)

Further on in this paper, we will prove that approximating the distri-
bution function of S = X1 + X2 + . . . + Xn by the distribution function of
the comonotonic sum Sc is a prudent strategy in the sense that S ≤cx S

c.
Performing this approximation will only be meaningful if we can easily de-
termine the distribution function and the stop-loss premiums of Sc. In the
two next theorems, we will prove that these quantities can indeed easily be
determined from the marginal distribution functions of the terms in the sum.

In the next theorem we prove that the inverse distribution function of
a sum of comonotonic random variables is simply the sum of the inverse
distribution functions of the marginal distributions.

Theorem 6 The α-inverse distribution function F
−1(α)
Sc of a sum Sc of comono-

tonic random variables (Xc
1, X

c
2, . . . , X

c
n) is given by

F
−1(α)
Sc (p) =

n∑
i=1

F
−1(α)
Xi

(p), 0 < p < 1, 0 ≤ α ≤ 1. (39)

Proof. Consider the random vector (X1, X2, . . . , Xn) and its comonotonic

counterpart (Xc
1, X

c
2, . . . , X

c
n). Then Sc = Xc

1 +Xc
2 + . . .+Xc

n
d
= g (U), with

U uniformly distributed on (0, 1) and with the function g defined by

g (u) =
n∑

i=1

F−1
Xi

(u), 0 < u < 1.

It is clear that g is non-decreasing and left-continuous. Application of The-
orem 1(a) leads to

F−1
Sc (p) = F−1

g(U)(p) = g
(
F−1

U (p)
)

= g(p), 0 < p < 1,

so the inverse distribution function of Sc can be computed from

F−1
Sc (p) =

n∑
i=1

F−1
Xi

(p), 0 < p < 1.
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Similarly, from Theorem 1(b), we find that

F−1+
Sc (p) =

n∑
i=1

F−1+
Xi

(p), 0 < p < 1.

Multiplying the last two equalities by α and 1 − α respectively, and adding
up, we find the desired result.

Note that

Sc d
=

n∑
i=1

F
−1(α)
Xi

(U). (40)

By the theorem above, we find that the connected support of Sc is given by{
F

−1(α)
Sc (p) | 0 < p < 1, 0 ≤ α ≤ 1

}

=

{
n∑

i=1

F
−1(α)
Xi

(p) | 0 < p < 1, 0 ≤ α ≤ 1

}
.

This implies

F−1+
Sc (0) =

n∑
i=1

F−1+
Xi

(0), (41)

F−1
Sc (1) =

n∑
i=1

F−1
Xi

(1). (42)

Hence, the minimal value of the comonotonic sum equals the sum of the
minimal values of each term. Similarly, the maximal value of the comono-
tonic sum equals the sum of the maximal values of each term. The number∑n

i=1 F
−1+
Xi

(0), which is either finite or −∞ (if any of the terms in the sum is

−∞), is the minimum possible value of Sc, and
∑n

i=1 F
−1
Xi

(1) is the maximum.
Also note that

F−1+
Sc (1) =

n∑
i=1

F−1+
Xi

(1) = +∞,

F−1
Sc (0) =

n∑
i=1

F−1+
Xi

(0) = −∞.
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For any (X1, X2, . . . , Xn), we have that S = X1+X2+. . .+Xn ≥ ∑n
i=1 F

−1+
Xi

(0)
must hold with probability 1. This implies

n∑
i=1

F−1+
Xi

(0) ≤ F−1+
S (0). (43)

Similarly, we find

F−1
S (1) ≤

n∑
i=1

F−1
Xi

(1). (44)

This means that the sum S of the components of any random vector (X1, X2, . . . , Xn)
has a support that is contained in the interval

[∑n
i=1 F

−1+
Xi

(0),
∑n

i=1 F
−1
Xi

(1)
]
.

The minimal value of S is larger than or equal to the one of Sc, since by
comonotonicity all terms of the latter are small simultaneously.

Given the inverse functions F−1
Xi

, the cdf of Sc = Xc
1 +Xc

2 + . . .+Xc
n can

be determined as follows:

FSc(x) = sup {p ∈ (0, 1) | FSc(x) ≥ p}
= sup

{
p ∈ (0, 1) | F−1

Sc (p) ≤ x
}

= sup

{
p ∈ (0, 1) |

n∑
i=1

F−1
Xi

(p) ≤ x

}
. (45)

In the sequel, for any random variable X, the expression “FX is strictly
increasing” should always be interpreted as “FX is strictly increasing on(
F−1+

X (0), F−1
X (1)

)
”.

Observe that for any random variable X, the following equivalences hold:

FX is strictly increasing ⇐⇒ F−1
X is continuous on (0, 1), (46)

and also

FX is continuous ⇐⇒ F−1
X is strictly increasing on (0, 1). (47)

Now assume that the marginal distribution functions FXi
, i = 1, . . . , n

of the comonotonic random vector (Xc
1, X

c
2, . . . , X

c
n) are strictly increasing

and continuous. Then each inverse distribution function F−1
Xi

is contin-

uous on (0, 1), which implies that F−1
Sc is continuous on (0, 1) because

F−1
Sc (p) =

∑n
i=1 F

−1
Xi

(p) holds for 0 < p < 1. This in turn implies that FSc is
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strictly increasing on
(
F−1+

Sc (0), F−1
Sc (1)

)
. Further, by a similar reasoning we

find that FSc is continuous.
Hence, in case of strictly increasing and continuous marginals, for any F−1+

Sc (0) <
x < F−1

Sc (1), the probability FSc(x) is uniquely determined by F−1
Sc (FSc (x)) =

x, or equivalently,

n∑
i=1

F−1
Xi

(FSc (x)) = x, F−1+
Sc (0) < x < F−1

Sc (1). (48)

It suffices thus to solve the latter equation to get FSc (x).
In the following theorem, we prove that also the stop-loss premiums of

a sum of comonotonic random variables can be obtained from the stop-loss
premiums of the terms.

Theorem 7 The stop-loss premiums of the sum Sc of the components of the
comonotonic random vector (Xc

1, X
c
2, . . . , X

c
n) are given by

E
[
(Sc − d)+

]
=

n∑
i=1

E
[
(Xi − di)+

]
, (F−1+

Sc (0) < d < F−1
Sc (1)), (49)

with the di given by

di = F
−1(αd)
Xi

(FSc (d)) , (i = 1, 2, . . . , n) (50)

and αd ∈ [0, 1] determined by

F
−1(αd)
Sc (FSc (d)) = d. (51)

Proof. Let d ∈ (F−1+
Sc (0), F−1

Sc (1)), hence 0 < FSc(d) < 1.
As the connected support of Xc as defined in (29) is comonotonic, it can have
at most one point of intersection with the hyperplane {x | x1 + . . .+xn = d}.
This is because the hyperplane contains no different points x and y such that
x ≤ y or x ≥ y holds.
Now we will prove that the vector d = (d1, d2, . . . , dn) as defined above is the
unique point of this intersection. As 0 < FSc(d) < 1 must hold, we know
from Section 3 that there exists an αd ∈ [0, 1] that fulfils condition (51). Also
note that by Theorem 6, we have that

∑n
i=1 di = d. Hence, the vector d with

the di defined in (50) and (51) is an element of both the connected support
of Xc and the hyperplane {x | x1 + . . .+ xn = d}.
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We can conclude that d is the unique element of the intersection of the
connected support and the hyperplane.

Let x be an element of the connected support of Xc. Then the following
equality holds:

(x1 + x2 + . . .+ xn − d)+ ≡ (x1 − d1)+ + (x2 − d2)+ + . . .+ (xn − dn)+.

This is because x and d are both elements of the connected support of Xc,
and hence, if there exists any j such that xj > dj holds, then we also have
xk ≥ dk for all k, and the left hand side equals the right hand side because∑n

i=1 di = d. On the other hand, when all xj ≤ dj, obviously the left hand
side is 0 as well.
Now replacing constants by the corresponding random variables in the equal-
ity above and taking expectations, we find (49).

Note that we also find that

E
[
(Sc − d)+

]
=

n∑
i=1

E [Xi] − d, if d ≤ F−1+
Sc (0) (52)

and
E

[
(Sc − d)+

]
= 0, if d ≥ F−1

Sc (1). (53)

So from (41), (42), (52), (53) and Theorem 7 we can conclude that for
any real d, there exist di with

∑n
i=1 di = d, such that E

[
(Sc − d)+

]
=∑n

i=1E
[
(Xi − di)+

]
holds.

The expression for the stop-loss premiums of a comonotonic sum Sc can
also be written in terms of the usual inverse distribution functions. Indeed,
for any retention d ∈ (

F−1+
Sc (0), F−1

Sc (1)
)
, we have

E
[
(Xi − F

−1(αd)
Xi

(FSc(d)))+

]
= E

[
(Xi − F−1

Xi
(FSc(d)))+

] − (
F

−1(αd)
Xi

(FSc(d)) − F−1
Xi

(FSc(d))
)

(1 − FSc(d))

Summing over i, and taking into account the definition of αd, we find the
expression derived in Dhaene, Wang, Young & Goovaerts (2000), where the
random variables were assumed to be non-negative. This expression holds
for any retention d ∈ (

F−1+
Sc (0), F−1

Sc (1)
)

:

E [(Sc − d)+] =
n∑

i=1

E
[
(Xi − F−1

Xi
(FSc(d)))+

]
− (

d− F−1
Sc (FSc(d))

)
(1 − FSc(d)) . (54)
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In case the marginal cdf’s FXi
are strictly increasing, (54) reduces to

E[(Sc − d)+] =
n∑

i=1

E
[
(Xi − F−1

Xi
(FSc(d))+

]
, d ∈ (

F−1+
Sc (0), F−1

Sc (1)
)
.

(55)
From Theorem 7, we can conclude that any stop-loss premium of a sum of
comonotonic random variables can be written as the sum of stop-loss premi-
ums for the individual random variables involved. The theorem provides an
algorithm for directly computing stop-loss premiums of sums of comonotonic
random variables, without having to compute the entire distribution function
of the sum itself. Indeed, in order to compute the stop-loss premium with
retention d, we only need to know FSc(d), which can be computed directly
from (45).

Application of the relation E[(X − d)+] = E [(d−X)+] + E [X] − d for
Sc and the Xi in relation (49) leads to the following expression for the lower
tails of a sum of comonotonic random variables:

E
[
(d− Sc)+

]
=

n∑
i=1

E
[
(di −Xi)+

]
, F−1+

Sc (0) < d < F−1
Sc (1), (56)

with the di as defined in (50) and (51).

Example 3 (Exponential marginals)

Consider a random vectorX with exponential marginals: Xi ∼ Exp(1/βi).
Then

FXi
(x) = 1 − e

− x
βi , βi > 0, x ≥ 0. (57)

We find the following expression for the inverse distribution function:

F−1
Xi

(p) = −βi ln (1 − p) , 0 < p < 1. (58)

One can easily verify that the stop-loss premium with retention d is given by

E[(Xi − d)+] = βi e
− d

βi , 0 < d <∞ (59)

The inverse distribution function of the comonotonic sum Sc is given by

F−1
Sc (p) = −

(
n∑

i=1

βi

)
ln (1 − p) , 0 < p < 1. (60)
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This means that the comonotonic sum of exponentially distributed random
variables is again exponentially distributed with parameter β =

∑n
i=1 βi.

The stop-loss premiums of Sc are given by

E [Sc − d]+ = β e−
d
β , 0 < d <∞. (61)

The case n = 2 is considered in Heilmann (1986).�

Example 4 (Pareto marginals)

Consider a random vectorX with Pareto distributed marginals: Xi ∼Pareto(α, xi).
Then

FXi
(x) = 1 −

(xi

x

)α

, α > 0, x > xi > 0. (62)

The inverse cdf is given by

F−1
Xi

(p) =
xi

(1 − p)
1
a

, 0 < p < 1. (63)

One can easily verify that

E[(Xi − d)+] =
(xi

d

)α−1 xi

α− 1
, xi < d <∞, α > 1. (64)

The inverse distribution function of the comonotonic sum Sc is given by

F−1
Sc (p) =

∑n
i=1 xi

(1 − p)
1
a

, 0 < p < 1. (65)

This means that the comonotonic sum of Pareto distributed random variables
(with identical first parameter) is again Pareto distributed.�

Similarly, one can prove that the comonotonic sum of Inverse Gaus-
sian distributed random variables has an Inverse Gaussian distribution, see
Dhaene, Wang, Young & Goovaerts (2000). Also the comonotonic sum of
Gamma distributed random variables with fixed first parameter is Gamma
distributed.
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5 Convex bounds for sums of random vari-

ables

5.1 The comonotonic upper bound for
∑n

i=1Xi

In this section we will derive bounds for sums S = X1 +X2 + . . .+Xn of ran-
dom variables X1, X2, . . . , Xn of which the marginal distributions are given.
The bounds are random variables that are larger (or smaller) than S in the
sense of convex order. Therefore, we will call these bounds convex bounds.
The reason we will resort to convex bounds is that the joint distribution of
the random vector (X1, X2, . . . , Xn) is either unspecified or too cumbersome
to work with.
The upper bound that we will derive in this subsection is actually attain-
able in the class of all random vectors with given marginals, it is reached
by the comonotonic random vectors in this class. So, the upper bound is a
supremum in the sense of convex order.

Theorem 8 For any random vector (X1, X2, . . . , Xn) we have

X1 +X2 + . . .+Xn ≤cx X
c
1 +Xc

2 + . . .+Xc
n. (66)

Proof. It suffices to prove stop-loss order, since it is obvious that the means
of these two sums are equal. Hence, we have to prove that

E[(X1 +X2 + . . .+Xn − d)+] ≤ E[(Xc
1 +Xc

2 + . . .+Xc
n − d)+]

holds for all retentions d with d ∈ (
F−1+

Sc (0), F−1
Sc (1)

)
, since the stop-loss

premiums can be seen to be equal for other values of d.
The following holds for all (x1, x2, . . . , xn) when d1 + d2 + . . .+ dn = d:

(x1 + x2 + . . .+ xn − d)+

= ((x1 − d1) + (x2 − d2) + . . .+ (xn − dn))+

≤ ((x1 − d1)+ + (x2 − d2)+ + . . .+ (xn − dn)+)+

= (x1 − d1)+ + (x2 − d2)+ + . . .+ (xn − dn)+.

Now replacing constants by the corresponding random variables in the in-
equality above and taking expectations, we get that

E[(X1+X2+. . .+Xn−d)+] ≤ E[(X1−d1)+]+E[(X2−d2)+]+. . .+E[(Xn−dn)+]
(67)
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holds for all d and di such that
∑n

i=1 di = d.
By choosing d ∈ (

F−1+
Sc (0), F−1

Sc (1)
)

and the di as in Theorem 7, the above
inequality becomes the one that was to be proven.

The theorem above states that the least attractive random vector (X1, . . . , Xn)
with given marginals Fi, in the sense that the sum of their components is
largest in the convex order, has the comonotonic joint distribution, which
means that it has the joint distribution of

(
F−1

1 (U), F−1
2 (U), . . . , F−1

n (U)
)
.

The components of this random vector are maximally dependent, all compo-
nents being non-decreasing functions of the same random variable. Several
proofs gave been given for this result, see e.g. Denneberg (1994), Dhaene
& Goovaerts (1996), Müller (1997) or Dhaene, Wang, Young & Goovaerts
(2000).

Note that the inequality (67) holds in particular if (X1, . . . , Xn) is comono-
tonic. From the Theorems 7 and 8, we find that for any random vector X
the inequalities

E[(X1 +X2 + . . .+Xn − d)+] ≤
n∑

i=1

E[(Xi − F
−1(αd)
Xi

(FSc (d)))+]

≤
n∑

i=1

E[(Xi − di)+] (68)

holds for all d ∈ (
F−1+

Sc (0), F−1
Sc (1)

)
such that

∑n
i=1 di = d. Hence, the

smallest upper bound of the form
∑n

i=1E[(Xi − di)+] with
∑n

i=1 di = d for
the stop-loss premium E[(X1 +X2 + . . .+Xn−d)+] is the comonotonic upper
bound.

We can generalize Theorem 8 above as follows.

Corollary 9 Consider the random vectors (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn). If
Xi ≤sl Yi holds for all i = 1, . . . , n, then

X1 +X2 + . . .+Xn ≤sl Y
c
1 + Y c

2 + . . .+ Y c
n . (69)

Proof. Since Y c
1 + . . . + Y c

n is comonotonic, for any real d, one can find
d1, . . . , dn with d = d1+. . .+dn andE [(Y c

1 + . . .+ Y c
n − d)+] = E [(Y1 − d1)]++

. . .+ E [(Yn − dn)+]. Hence

E[(X1 +X2 + . . .+Xn − d)+] ≤ E[(X1 − d1)+] + . . .+ E[(Xn − dn)+]

≤ E[(Y1 − d1)+] + . . .+ E[(Yn − dn)+]

= E [(Y c
1 + . . .+ Y c

n − d)+] .
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In Theorem 5, we proved that a random vector with marginals that belong
to the same location-scale family of distributions is comonotonic if and only if
the correlation of each pair of marginal components equals 1. Using the fact
that in the class of all random vectors with given marginals the comonotonic
sum is the largest in the sense of convex order, we can prove that comono-
tonicity can be characterized by maximal correlations of all pairs of random
variables involved. In order to prove this result, we need an expression for
the stop-loss premiums of a sum of two random variables in terms of the
bivariate distribution function.

Lemma 10 For any bivariate random variable (X,Y ) and any real number
d, the stop-loss premium of X + Y at retention d is given by

E
[
(X + Y − d)+

]
= E [X] + E [Y ] − d+

∫ +∞

−∞
FX,Y (x, d− x) dx (70)

Proof. By reversing the order of the integration, we find

E
[
(d−X − Y )+

]
=

∫ +∞

x=−∞

∫ d−x

y=−∞

∫ d−y

t=x

dt dFX,Y (x, y)

=

∫ +∞

t=−∞

∫ t

x=−∞

∫ d−t

y=−∞
dFX,Y (x, y) dx

=

∫ +∞

t=−∞
FX,Y (t, d− t) dt,

from which we find the desired result.

Theorem 11 A random vector X is comonotonic if and only if r(Xi, Xj) =
r
(
Xc

i , X
c
j

)
for all i, j ∈ {1, 2, . . . , n}.

Proof. Because comonotonicity is equivalent with pairwise comonotonicity,
it suffices to give the proof for a two-dimensional random vector (Xi, Xj).
The proof of the “⇒”-implication is straightforward.
In order to prove the “⇐”- implication, note that r(Xi, Xj) = r

(
Xc

i , X
c
j

)
is

equivalent to V ar [Xi +Xj] = V ar
[
Xc

i +Xc
j

]
. As we have that Xi +Xj ≤cx

Xc
i + Xc

j , this implies Xi + Xj
d
= Xc

i + Xc
j . Hence, for all real d, we must

have that
E

[
(Xi +Xj − d)+

]
= E

[(
Xc

i +Xc
j − d

)
+

]
.
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Using Lemma 10, this equality can be written as∫ +∞

−∞

[
FXc

i ,Xc
j
(x, d− x) − FXi,Xj

(x, d− x)
]
dx = 0,

From (24), we have that the integrand is non-negative,which implies that

FXi,Xj
(x, d− x) = FXc

i ,Xc
j
(x, d− x)

must hold for all values of x. As this must hold for all values of d, we have
proven the theorem.

From the proof of Theorem 11 we also find that random vector X is
comonotonic if and only if V ar(Xi + Xj) = V ar

(
Xc

i +Xc
j

)
for all i, j ∈

{1, 2, . . . , n} .
From the convex ordering relation in Theorem 8, we find that for any

random vector (X1, X2) the following inequality holds:

V ar [X1 +X2] ≤ V ar [Xc
1 +Xc

2] , (71)

which is equivalent with

r(X1, X2) ≤ r (Xc
1, X

c
2) , (72)

with strict inequalities when (X1, X2) is not comonotonic. As a special case
of (72), we find that r (Xc

1, X
c
2) ≥ 0 always hold. Also note that a random

vector (X1, X2) is comonotonic and has mutual independent components if
and only if X1 or X2 is degenerate, see Luan (2001).

Example 5 (Lognormal marginals)

Consider a random vector (α1X1, α2X2, . . . , αnXn) of which the αi are
non-zero real numbers and the Xi are lognormal distributed: ln (Xi) ∼
N (µi, σ

2
i ). We have that

E [Xi] = eµi+
1
2
σ2

i , (73)

V ar [Xi] = e2µi+σ2
i

(
eσ2

i − 1
)
. (74)

Consider e.g. the situation where the αi are deterministic payments at times
i, and the Xi are the corresponding lognormal distributed discount factors.
Then (α1X1, α2X2, . . . , αnXn) is the vector of the stochastically discounted
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deterministic payments. As Φ−1(1 − p) = −Φ−1(p), we find from Theorem 1
that

F−1
αiXi

(p) = αi e
µi+sign(αi) σiΦ

−1(p), 0 < p < 1, (75)

where sign (αi) equals 1 if αi > 0 and −1 if αi < 0. In particular, we
find that the product of n comonotonic lognormal random variables is again
lognormal:

Πn
i=1F

−1
Xi

(U)
d
= e

∑n
i=1 µi+

∑n
i=1 σiΦ

−1(U). (76)

The stop-loss premiums of a lognormal distributed random variable are given
by

E[(Xi − di)+] = eµi+
σ2

i
2 Φ(di,1) − di Φ(di,2), di > 0. (77)

where di,1 and di,2 are determined by

di,1 =
µi + σ2

i − ln (di)

σi

, di,2 = di,1 − σi. (78)

This result can easily be proven. Indeed, by differentiating both sides of (77)
with respect to di, one sees that both derivatives are equal to FX(di) − 1.
Also, for di → ∞, both sides tend to zero.
For the lower tails we find

E[(di −Xi)+] = −eµi+
σ2

i
2 Φ(−di,1) + di Φ(−di,2), di > 0. (79)

As E[(αi(Xi − di))+] = −αi E[(di−Xi)+] if αi is negative, we find from (78)
and (79)

E[(αi(Xi − di))+] = αi e
µi+

σ2
i
2 Φ(sign(αi) di,1)−αi di Φ(sign(αi) di,2), di > 0,

(80)
with di,1 and di,2 as defined above.
Let S = α1X1 + . . . + αnXn, and Sc its comonotonic counterpart: Sc =
F−1

α1X1
(U) + . . . + F−1

αnXn
(U). Then S ≤cx S

c. As the marginal distribution
functions are strictly increasing and continuous, by (48) we find that the
distribution function FSc (x) is implicitly defined by F−1

Sc (FSc (x)) = x, or
equivalently,

n∑
i=1

αi e
µi+sign(αi) σiΦ

−1(FSc (x)) = x, F−1+
Sc (0) < x < F−1

Sc (1). (81)

37



For F−1+
Sc (0) < d < F−1

Sc (1), the stop-loss premium of Sc at retention d follows
from (55):

E[(Sc − d)+] =
n∑

i=1

E[(αiXi − F−1
αiXi

(FSc (d)))+]

=
n∑

i=1

E[
(
αi

(
Xi − eµi+sign(αi) σiΦ

−1(FSc (d))
))

+
].

Using (80) and (81), we finally find the following expression for the stop-loss
premium at retention d with F−1+

Sc (0) < d < F−1
Sc (1):

E[(Sc−d)+] =
n∑

i=1

αi e
µi+

σ2
i
2 Φ

(
sign (αi) σi − Φ−1 (FSc(d))

)−d (1 − FSc(d)) .

(82)
The lower tails are given by

E[(d− Sc)+] = −
n∑

i=1

αi e
µi+

σ2
i
2 Φ

(−sign (αi) σi + Φ−1 (FSc(d))
)

+ d FSc(d).

(83)
We also find the following expression for the correlation coefficient of two
comonotonic lognormally distributed random variables with variances given
by σ2

i and σ2
j respectively:

r
(
F−1

Xi
(U), F−1

Xj
(U)

)
=

eσiσj − 1√
eσ2

i − 1
√
eσ2

j − 1
. (84)

As in Embrechts, McNeil & Straumann (2001), consider the special case
that lnX1 ∼ N (0, 1) and lnX2 ∼ N (0, σ2), then the correlation coefficient
becomes

r
(
F−1

X1
(U), F−1

X2
(U)

)
=

eσ − 1√
eσ2 − 1

√
e− 1

which approaches 0 if σ → ∞, see Figure 5. As a consequence, there ex-
ist comonotonic random couples of which the correlation is almost 0. As
comonotonicity leads to the highest correlation possible for a given pair of
marginals, this observation clearly demonstrates that a correlation coefficient
equal to 1 is not always attainable in the class of random vectors with given
marginals. �
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Figure 5: The correlation coefficient of the comonotonic random couple
(X1, X2) as a function of σ.

We end this section by summarizing the main advantages of using Sc =
Xc

1 + . . .+Xc
n instead of S = X1 + . . .+Xn:

• Replacing the cdf of S by the cdf of Sc is a prudent strategy in the
framework of utility theory: the real cdf is replaced by a less attractive
one.

• The random variables S and Sc have the same expected value. As these
random variables are ordered in the convex order sense, we have that
the moment of order 2k (k = 1, 2, . . .) of S is smaller than the corre-
sponding moment of Sc. Many actuarially relevant quantities reflect
convex order, for instance both the ruin probability and the Lundberg
upper bound for it increase when the claim size distribution is replaced
by a convex larger one. Other examples are zero-utility premiums such
as the exponential premium, and of course stop-loss premiums for any
retention d.

• The cdf of Sc is easily obtained; essentially, Sc has a one-dimensional
distribution, depending only on the random variable U . The cdf of S
can only be obtained if the dependency structure is known. Even if
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this dependency structure is known, it can be hard to determine the
cdf of S from it.

• The stop-loss premiums of Sc follow from stop-loss premiums of the
marginal random variables involved. Computing the stop-loss premi-
ums of S can only be carried out when the dependency structure is
known, and in general requires n integrations to be performed.

5.2 Improved upper bounds for
∑n

i=1Xi

If the only information available concerning the multivariate distribution
function of the random vector (X1, . . . , Xn) consists of the marginal distri-
bution functions of the Xi, then the distribution function of Sc = F−1

X1
(U) +

F−1
2 (U) + . . . + F−1

n (U) is a prudent choice for approximating the unknown
distribution function of S = X1 + . . . + Xn. It is a supremum in terms of
convex order, hence it is the best upper bound that can be derived under the
given conditions.

Let us now assume that we have some additional information available
concerning the stochastic nature of (X1, . . . , Xn). More precisely, we assume
that there exists some random variable Λ with a given distribution function,
such that we know the conditional cdf’s, given Λ = λ, of the random variables
Xi, for all possible values of λ. We will show that in this case we can derive
improved upper bounds in terms of convex order for S, which are smaller in
convex order than the upper bound Sc. Essentially, the idea of this subsection
is to determine comonotonic upper bounds for the sum S, conditionally given
Λ = λ. Next, we mix the resulting distributions with weights dFΛ(λ). By this
procedure, convex order is maintained. The upper bound obtained in this
way turns out to be sharper than the comonotonic upper bound Sc because
it still has the right marginal cdf’s for its terms.

In the following theorem, we introduce the notation F−1
Xi|Λ(U) for the

random variable fi(U,Λ), where the function fi is defined by fi(u, λ) =
F−1

Xi|Λ=λ(u).

Theorem 12 Let U be uniform(0,1), and independent of the random vari-
able Λ. Then we have

X1 +X2 + . . .+Xn ≤cx F
−1
X1|Λ(U) + F−1

X2|Λ(U) + . . .+ F−1
Xn|Λ(U). (85)

40



Proof. From Theorem 8, we get for any convex function v,

E [v (X1 + . . .+Xn)] =

∫ +∞

−∞
E [v (X1 + . . .+Xn) | Λ = λ] dFΛ(λ)

≤
∫ +∞

−∞
E [v (f1(U, λ) + . . .+ fn(U, λ))] dFΛ(λ)

= E [v (f1(U,Λ) + . . .+ fn(U,Λ))]

from which the stated result follows directly.

Note that the random vector
(
F−1

X1|Λ(U), F−1
X2|Λ(U), . . . , F−1

Xn|Λ(U)
)

has

marginals FX1 , FX2 , . . . , FXn , because

FXi
(x) =

∫ ∞

−∞
Pr [Xi ≤ x | Λ = λ] dFΛ(λ)

=

∫ ∞

−∞
Pr

[
F−1

Xi|Λ=λ(U) ≤ x
]
dFΛ(λ)

=

∫ ∞

−∞
Pr [fi(U, λ) ≤ x ] dFΛ(λ)

= Pr [fi(U,Λ) ≤ x] .

In view of Theorem 8 this implies

F−1
X1|Λ(U) + . . .+ F−1

Xn|Λ(U) ≤cx F
−1
X1

(U) + . . .+ F−1
Xn

(U), (86)

which means that the upper bound derived in this subsection is indeed an
improved upper bound.
If Λ is independent of allX1, X2, . . . , Xn, then we actually do not have any ex-
tra information at all and the improved upper bound reduces to the comono-
tonic upper bound derived in Theorem 8.

Let S and Su be defined by

S = X1 +X2 + . . .+Xn (87)

and
Su = F−1

X1|Λ(U) + F−1
X2|Λ(U) + . . .+ F−1

Xn|Λ(U). (88)

If the random vector (X1, . . . , Xn) is comonotonic, any choice of Λ is optimal
as it leads to the exact distribution function for the sum. We also find that

41



if for any possible outcome λ, conditionally on Λ = λ, the random vector

(X1, X2, . . . , Xn, ) is comonotonic, then S
d
= Su.

In general, to judge the quality of the stochastic upper bound Su, we
might compare its variance with the variance of S.As we have that V ar [E (Su | Λ)] =
V ar [E (S | Λ)], we find that V ar [Su] = V ar [S] if and only ifE [V ar (Su | Λ)] =
E [V ar (S | Λ)]. This condition will hold if for any outcome λ of Λ, we have
that V ar (Su | Λ = λ) = V ar (S | Λ = λ). Hence, if we find a conditioning
random variable Λ such that for any outcome λ of Λ, we have that con-
ditionally given Λ = λ, the vector (X1, . . . , Xn) is comonotonic, then the
distribution function of the improved upper bound coincides with the exact
distribution function.

As a special case, assume for the moment that S = X1 + X2. In this
case the optimal choice is to take Λ ≡ X1 (or Λ ≡ X2), since then the cdf’s
of S and Su coincide. This example illustrates the fact that the optimal
conditioning random variable Λ will in general not be S.
It is clear that in general, the optimal choice for the conditioning random
variable Λ will strongly depend on the dependency structure of the random
vector (X1, . . . , Xn) .

In order to obtain the distribution function of Su, observe that given
the event Λ = λ, the random variable Su is a sum of comonotonic random
variables. Hence,

F−1
Su|Λ=λ(p) =

n∑
i=1

F−1
Xi|Λ=λ(p), p ∈ (0, 1) . (89)

Given Λ = λ, the cdf of Su follows from (45):

FSu|Λ=λ(x) = sup

{
p ∈ (0, 1) |

n∑
i=1

F−1
Xi|Λ=λ(p) ≤ x

}
. (90)

The cdf of Su then follows from

FSu(x) =

∫ +∞

−∞
FSu|Λ=λ(x) dFΛ(λ). (91)

If the marginal cdf’s FXi|Λ=λ are strictly increasing and continuous, then
FSu|Λ=λ(x) follows by solving

n∑
i=1

F−1
Xi | Λ=λ

(
FSu | Λ=λ(x)

)
= x, F−1+

Su | Λ=λ(0) < x < F−1
Su | Λ=λ(1), (92)
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see (48). In this case, we also find from (55) that for any d ∈
(
F−1+

Su|Λ=λ(0), F−1
Su|Λ=λ(1)

)
:

E
[
(Su − d)+ | Λ = λ

]
=

n∑
i=1

E

[(
Xi − F−1

Xi|Λ=λ

(
FSu|Λ=λ(d)

))
+
| Λ = λ

]
,

(93)
from which the stop-loss premium at retention d of Su can be determined. An
application of the results presented in this subsection to lognormal marginals
Xi is considered in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002).

5.3 Lower bounds for
∑n

i=1Xi

LetX = (X1, . . . , Xn) be a random vector with given marginal cdf’s FX1 , FX2 , . . . , FXn .
As in the previous subsection, we assume that there exists some random vari-
able Λ with a given distribution function, such that we know the conditional
cdf’s, given Λ = λ, of the random variables Xi, for all possible values of λ.
We will show how to obtain a lower bound, in the sense of convex order, for
S = X1 + X2 + . . . + Xn by conditioning on this random variable. Consid-
ering a more attractive random variable than S will help to give an idea of
the degree of overestimation of the risk involved by replacing S by the less
attractive random variables Su or Sc.

The idea of this subsection is to observe that the expectation of a random
variable is always smaller than or equal in convex order than the random
variable itself, and also that convex order is maintained under mixing.

Theorem 13 For any random vector X and any random variable Λ, we
have

E [X1 | Λ] + E [X2 | Λ] + . . .+ E [Xn | Λ] ≤cx X1 +X2 + . . .+Xn. (94)

Proof. By Jensen’s inequality, we find that for any convex function v, the
following inequality holds:

E [v (X1 +X2 + . . .+Xn)] = EΛ E [v (X1 +X2 + . . .+Xn) | Λ]

≥ EΛ [v (E [X1 +X2 + . . .+Xn | Λ])]

= EΛ [v (E [X1 | Λ] + . . .+ E [Xn | Λ])] .

This proves the stated result.
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Let S be defined as above, and let Sl be defined by

Sl = E [S | Λ] (95)

Note that if Λ and S are mutually independent, we find the trivial result

E [S] ≤cx S. (96)

On the other hand, if Λ and S have a one-to-one relation (i.e. Λ com-
pletely determines S), the lower bound coincides with S. Note further that
E [E [Xi | Λ]] = E [Xi] always holds, but V ar [E [Xi | Λ]] < V ar [Xi] unless
E [V ar [Xi | Λ]] = 0 which means that Xi, given Λ = λ, is degenerate for each
λ. This implies that the random vector (E [X1 | Λ] , E [X2 | Λ] , . . . , E [Xn | Λ])
will in general not have the same marginal distribution functions as X. But
if we can find a conditioning random variable Λ with the property that all
random variables E [Xi | Λ] are non-increasing functions of Λ (or all are non-
decreasing functions of Λ), the lower bound Sl is a sum of n comonotonic
random variables. The cdf of this sum can then be obtained by previous
results. Applications of Theorem 13 in the case of lognormal marginals Xi

is considered Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002).
To judge the quality of the stochastic lower bound E[S | Λ], we might

look at its variance. To maximize it, i.e. to make it as close as possible to
V ar [S], the average value of V ar[S | Λ = λ] should be minimized. In other
words, to get the best lower bound, Λ and S should be as alike as possible.

Let’s further assume that the random variable Λ is such that all gi (λ) ≡
E [Xi | Λ = λ] are non-increasing and continuous functions of λ. The quan-
tiles of the lower bound Sl then follow from

F−1
Sl (p) =

n∑
i=1

F−1
E[Xi|Λ](p) =

n∑
i=1

F−1
gi(Λ)(p)

=
n∑

i=1

E
[
Xi | Λ = F−1+

Λ (1 − p)
]
, p ∈ (0, 1) . (97)

Further, the cdf of Sl follows from (45):

FSl(x) = sup

{
p ∈ (0, 1) |

n∑
i=1

E
[
Xi | Λ = F−1+

Λ (1 − p)
] ≤ x

}
(98)
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If we now additionally assume that the cdf’s of the random variables
E [Xi | Λ] are strictly increasing and continuous, then the cdf of Sl is also

strictly increasing and continuous, and from (48) we get for all x ∈
(
F−1+

E[S|Λ] (0) , F−1
E[S|Λ] (1)

)
,

n∑
i=1

F−1
E[Xi|Λ] (FSl(x)) = x,

or equivalently,

n∑
i=1

E
[
Xi | Λ = F−1+

Λ (1 − FSl(x))
]

= x, (99)

which unambiguously determines the cdf of the convex order lower bound
Sl = E [S | Λ] for S.

Under the same assumptions, the stop-loss premiums of Sl can be deter-
mined from (55):

E
[(
Sl − d

)
+

]
=

n∑
i=1

E
[(
E [Xi | Λ] − E

[
Xi | Λ = F−1+

Λ (1 − FSl(d))
])

+

]
,

(100)
which holds for all retentions d ∈ (

F−1+
Sl (0) , F−1

Sl (1)
)
.

So far, we considered the case that all E [Xi | Λ] are non-increasing func-
tions of Λ. The case where all E [Xi | Λ] are non-decreasing functions of Λ
also leads to a comonotonic vector (E [X1 | Λ] , E [X2 | Λ] , . . . , E [Xn | Λ]),
and can be treated in a similar way.

Let us now consider the general case where not all E [Xi | Λ] are non-
increasing (or not all are non-decreasing). In this case the lower bound is
not a sum of comonotonic random variables, making the determination of
the distribution function of the lower bound more complicated. The cdf and
the stop-loss premiums of Sl can be determined as follows in this case:

FSl(x) =

∫ +∞

−∞
Pr

[
n∑

i=1

E [Xi | Λ] ≤ x | Λ = λ

]
dFΛ (λ)

=

∫ +∞

−∞
I

(
n∑

i=1

E [Xi | Λ = λ] ≤ x

)
dFΛ (λ) ; (101)

E
[(
Sl − d

)
+

]
=

∫ +∞

−∞

(
n∑

i=1

E [Xi | Λ = λ] − d

)
+

dFΛ (λ) . (102)
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A somewhat different procedure can be used when FΛ is continuous and
strictly increasing. In this case, define the random variable U ≡ FΛ(Λ) which
is uniformly distributed on the unit interval. We have that U = u ⇔ Λ =
F−1

Λ (u) holds for all 0 < u < 1. Hence, the cdf and the stop-loss premiums
of Sl then follow from

FSl(x) =

∫ 1

0

Pr

[
n∑

i=1

E [Xi|Λ] ≤ x | U = u

]
du

=

∫ 1

0

I

(
n∑

i=1

E
[
Xi|Λ = F−1

Λ (u)
] ≤ x

)
du (103)

E
[(
Sl − d

)
+

]
=

∫ 1

0

(
n∑

i=1

E
[
Xi|Λ = F−1

Λ (u)
] − d

)
+

du. (104)

The technique for deriving lower bounds as explained in this section is also
considered (for some special cases) in Vyncke, Goovaerts & Dhaene (2000).
The idea of this technique stems from mathematical physics, and was applied
by Rogers & Shi (1995) to derive approximate values for the price of Asian
options.

6 Conclusions

In this paper, we presented some simple yet powerful techniques to deal
with sums of dependent random variables whose marginal distributions are
known but with an unknown or complicated joint distribution. The central
idea consists in replacing the original sum by another one, with a simpler
dependence structure, and which is considered to be less favorable by all
risk-averse decision makers. This extremal sum involves the components of
the comonotonic version of the original random vector.

The main advantage of this approach is that it leads to easily computable
distribution functions and stop-loss premiums, while the evaluations are al-
ways conservative. Moreover, considering comonotonic random vectors es-
sentially reduces the multidimensional problem to a univariate one.

In some cases, improved approximations can be obtained when additional
information is available. Specifically, if the marginal distributions of the
summands, given some other random variable, are known, more accurate
bounds on actuarial quantities can be derived.
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The present paper aimed to describe the theoretical aspects of the prob-
lem. In a subsequent paper, Dhaene, Denuit, Goovaerts, Kaas & Vyncke
(2002), we propose several applications of the techniques considered in this
paper to various financial-actuarial problems.

7 Acknowledgements

Michel Denuit, Jan Dhaene and Marc Goovaerts would like to acknowledge
the financial support of the Committee on Knowledge Extension Research
of the Society of Actuaries for the project “Actuarial Aspects of Dependen-
cies in Insurance Portfolios”. The current paper and also Dhaene, Denuit,
Goovaerts, Kaas & Vyncke (2002) result from this project.
Marc Goovaerts and Jan Dhaene also acknowledge the financial support of
the Onderzoeksfonds K.U. Leuven (GOA/02: Actuariële, financiële en statis-
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