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Abstract

Following the ”time-capital” approach of De Vylder (1997) it is
shown that a fair life insurance contract can uniquely be separated
into a fair savings and a fair pure risk contract. It is also shown that
a fair life insurance contract can be separated into a fair associated
stochastic savings contract and a fair associated pure risk contract.

1 Introduction

Essentially, life actuaries consider ”(random) amounts that are payable at
(random) times”, e.g. a whole life insurance guarantees an amount of 1
payable at the moment of death of the insured. Following De Vylder (1997),
we will call the couple which describes a capital and its time of payment
a ”time-capital”. The single premium (also called the actuarial value, the
expected present value or the price) of a lot of time-capitals have well-known
notations, such as nAx for the continuous term life insurance. De Vylder

(1997) introduces a notation for the time-capitals themselves, such as nA
◦◦

x .

This enables us to write nA
◦◦

x instead of ”the insurance which pays an amount
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equal to 1 at the moment of death of the insured provided he dies before time
n”.

The paper is closely related to the book De Vylder (1997) since both
are based on the concept of ”time-capital”. No knowledge of the book is
required, since the concept of time-capital and the necessary related concepts
are treated here without assuming any pre-knowledge. The context of the
paper is however different in that we direct our attention on savings and
risk contracts, which are only partly considered in the Vylder (1997). In this
sense, this paper can be considered as a self-contained addendum to the book
of De Vylder (1997).

In this paper we will consider insurances on a single life (x) of age x at
policy issue. The remaining lifetime X of (x) is assumed to be non-negative
and continuous. The time of issue of the policy is the time origin 0. As
usual, we introduce the following notation for the distribution function of
the remaining lifetime of the insured: tqx � Pr[X ≤ t] and tpx � Pr[X > t];
the symbol ”� ” stands for ”is defined as”.

An amount c to be paid at time t is denoted by the couple (c, t). A deter-
ministic time-capital is a set of couples (ck, tk) , (k = 1, ..., n). A stochastic
time-capital is a set of couples (ck (X) , tk (X)) , (k = 1, ..., n) where the
ck (X) and the tk (X) may be functions of the remaining lifetime X.

A time-capital will often be denoted as a capital letter with the superscript
”◦◦” , e.g.

Q◦◦ = (c1 (X) , t1(X)) + (c2 (X) , t2(X)) + · · ·+ (cn (X) , tn(X))

=
n∑

k=1

(ck (X) , tk(X)) (1)

is the time-capital with random payments ck (X) at random times tk (X) ,
(k = 1, ..., n). Here the ”+”-notation and the ”

∑
”-notation are sugges-

tive. Summation and scalar multiplication of time-capitals are defined in the
obvious way.

The present value of a time-capital is defined as the discounted value at
the origin of time, i.e. at policy issue, of all future payments. Discounting will
always be performed with a deterministic discount factor v = 1

1+i
= 1

u
. The

present value of a time-capital Q◦◦ will be denoted by Q◦. If the time-capital
is defined by (1), then we have

2



Q◦ = c1 (X) vt1(X) + c2 (X) vt2(X) + · · ·+ cn (X) vtn(X)

=
n∑

k=1

ck (X) vtk(X). (2)

The actuarial value (or the price) of a time-capital is defined as the ex-
pected value (with respect to X) of the present value of the time-capital.
The actuarial value of a time-capital Q◦◦ will be denoted by Q. Hence,
Q = E [Q◦] . If the time-capital is defined by (1), then we have

Q = E
[
c1 (X) vt1(X) + c2 (X) vt2(X) + · · ·+ cn (X) vtn(X)

]
=

n∑
k=1

E
[
ck (X) vtk(X)

]
. (3)

We denote by �X� the integer part of X, and 	X
 the smallest integer
greater than or equal to X. The random variable X̂ is defined by

∧
X � �X�+ 	X


2
.

Relations between random variables are regarded as exact if they hold almost–
surely. E.g., we will write 	X
 = �X� + 1, which means that this relation
holds with probability one. Equality of time-capitals has to be interpreted
as equality (with probability 1) of the corresponding random variables. E.g.
the time-capitals (c, 	X
) and (c, �X�+ 1) are considered as equal.

In the sequel s and t will always be used to indicate non-negative real
numbers; while j, k, m and n will be used to indicate non-negative integers.
We also make the convention that

∑n
i=m ai = 0 if m > n.

Example 1 Some simple time-capitals

• n-year temporary annuity-due:

ä◦◦
n| �

n−1∑
k=0

(1, k) .
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• t-year pure endowment on a life aged x:

tE
◦◦
x � (1X>t, t) ,

where for any event B, the indicator function 1B equals 1 if B holds
true, and 0 otherwise.

• n-year temporary life annuity-due on a life aged x:

nä
◦◦
x �

n−1∑
k=0

kE
◦◦
x .

• whole life insurance on a life aged x, payable at the moment of death:

A
◦◦
x � (1, X) .

• n-year term life insurance on a life aged x, payable at the moment of
death:

nA
◦◦
x � (1X≤n, X) .

• n-year term life insurance, on a life aged x, payable at the end of the
year of death:

nA
◦◦
x � (1X≤n, 	X
) .

• n-year term life insurance, on a life aged x, payable in the middle of
the year of death:

nÂ
◦◦
x �

(
1X≤n,

∧
X

)
.

In Section 2 restricted time-capitals are introduced, and present values
and (conditional) expectations for those time-capitals are considered. An
introduction to the general savings contracts treated in Section 5 is given in
Section 3, where we introduce deterministic savings contracts. A straightfor-
ward definition of reserves for deterministic savings contracts is given. This
will make it easier to comprehend the definitions of reserves for life insur-
ance contracts. Life insurance contracts are defined in Section 4; this section
is mainly based on results by De Vylder. In Section 5 we define savings
contracts on a life (x) and their associated deterministic savings contract.
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(Actuarial) fairness of those contracts is also considered in Section 5. Pure
risk contracts are defined in Section 6. The combination of two life insurance
contracts is studied in Section 7. In Subsection 7.1 a general life insurance
contract is uniquely separated into a fair savings and a fair pure risk contract.
The following subsection deals with several types of fair associated savings
contracts and a fair associated risk contract. It is shown that a general life
policy can be separated into a fair associated savings contract and a fair
associated risk contract.

It is important to note that most results presented in this paper are not
new. The originality lies in the fact that they are presented in the context
of time-capitals and that an integrated approach is given for several types of
contracts (deterministic savings contracts and life insurance contracts). The
unicity of the separation of a fair life insurance contract into a fair savings
contract and a fair pure risk contract seems not to have appeared in the
literature before. The approach of associated savings and risk contracts is not
considered elsewhere in the way presented in the current paper. Furthermore
the relationship between deterministic and stochastic savings contracts is
made mathematically more clear.

2 Restricted time-capitals

In this section, Q◦◦ is a general time-capital on a life aged x. It is a linear
combination of deterministic time-capitals, pure endowments, life annuities
and life insurances on a life aged x. We will say that Q◦◦ is a time-capital
on (x). Note that a notation Q◦◦

x would lead to ambiguity in the formulas,
see e.g. the left hand side of (9).
The restriction of Q◦◦ to [s, s+ t[ is defined as the time-capital obtained from
Q◦◦, by setting all payments outside the interval [s, s + t[ equal to 0. The
restriction of Q◦◦ to [s, s + t[ is denoted by s|tQ◦◦.

The re-actualized restriction of Q◦◦ to [s, s+t[ is defined as the restriction
of Q◦◦ to [s, s + t[, where s is the new origin of time. Hence, all present
values are evaluated at time s instead of time 0. The re-actualized restriction
of Q◦◦ to [s, s+ t[ is denoted by •s|tQ◦◦. The dot indicates that s is the time
origin. If their is no explicit indication of the origin of time, then time 0 is
the time origin.

At time-capital level, there is no difference between the restriction and
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the re-actualized restriction of a time-capital:

s|tQ◦◦ = •s|tQ◦◦.

At present value level, the following relation holds:

s|tQ◦ = vs •s|tQ◦.

In the sequel we will often denote s|∞Q◦◦ as s|Q◦◦, and •0|tQ◦◦ and 0|tQ◦◦

as |tQ◦◦ or tQ
◦◦.

The present value of the time-capital •t|Q◦◦ is denoted as •t|Q◦. The
expectation (with respect to X) of the present value of all payments in [t, ∞[,
discounted at time t is denoted by •t|Q. Hence,

•t|Q � E[•t|Q◦], (4)

that is the expected present value at time t of all payments of Q◦◦ in [t,∞[ if
we do not have information about the status of (x) at t (life or death). This
expectation is evaluated with the information available at time 0, i.e. the
distribution function of X, which was determined at time 0.

Theorem 1 For any time-capital Q◦◦, the following expressions hold:
(a) Decomposition formula:

Q◦ = 0|tQ◦ + vt •t|Q◦, (t > 0), (5)

(b) Generalized decomposition formula:

•s|Q◦ = •s|t−sQ
◦ + vt−s •t|Q◦, (0 ≤ s < t), (6)

(c) Fouret’s formula (at present value level):

•k+1|Q◦ =
(
•k|Q◦ − •k|1Q◦)u. (7)

Proof.
(a) At time-capital level we have that Q◦◦ = 0|tQ◦◦ + •t|Q◦◦, from which

we find (5).
(b) At time-capital level, we immediately find •s|Q◦◦ = •s|t−sQ

◦◦+ •t|Q◦◦,
which leads to (6).
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(c) Taking s = k and t = k + 1 in (6) leads to (7).
Of course (5), (6) and (7) also hold at expected value level (i.e. without

the ”◦” symbol).
Now assume that at time t, the following information is available con-

cerning (x): ”(x) is alive at time t” or ”(x) died at time s, for a given
s < t”. In terms of the remaining lifetime X, this information can be

expressed as ”X > t” or ”X = s < t”. From the Law of Total Probability,
we derive the following expression for •t|Q :

•t|Q =

∫ t

0

E[•t|Q◦|X = s] dsqx + E[•t|Q◦|X > t] tpx. (8)

The conditional expectation of •t|Q◦, given that (x) is alive at t, is denoted
by •t|Qx :

•t|Qx � E
[
•t|Q◦|X > t

]
. (9)

•t|Qx is the expected present value at t of all payments of Q◦◦ in [t,∞[,
taking into account the information that (x) is alive at t. The conditional
expectation of •t|Q◦, given that (x) died at time s, before time t, is denoted
by •t|Qx|(s) :

•t|Qx|(s) � E
[
•t|Q◦|X = s

]
. (10)

•t|Qx|(s) is the expected present value at t of all payments of Q◦◦ in [t,∞[,
taking into account that (x) died at time s, for some non-negative real number
s smaller than t.
Relation (8) can be rewritten as:

•t|Q =

∫ t

0
•t|Qx|(s) dsqx + •t|Qx tpx. (11)

Note that if Q◦◦ is a deterministic time-capital (i.e. it does not depend on
the remaining lifetime X), then one has

•t|Q◦ = •t|Q = •t|Qx = •t|Qx|(s). (12)

For a time-capital Q◦◦ on a life (x) and s < t, we have that

•t|Q◦
x|(s) = •t|Qx|(s). (13)

Expression (13) follows from the fact that all payments of Q◦◦ in [t,∞[, given
that (x) died at s < t, are deterministic.
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3 Deterministic savings contracts

In this section we will consider deterministic savings contracts, i.e. contracts
between two parties, where the payments and the times-of- payment of both
parties are deterministic and fixed at contract issue.

Definition 1 A deterministic savings contract is a couple of two determin-
istic time-capitals (C◦◦, P ◦◦), where C◦◦ is the time-capital describing the
commitments of the bank (savings institution) and P ◦◦ is the time-capital
describing the commitments of the client (saver).

Examples of deterministic saving contracts are [(1, n) , (P, 0)] and[
m|a◦◦

n| , p
··
a
◦◦
m|
]
. Of course, we have p

··
a
◦◦
m|=

∑m−1
k=0 (p, k).

The reserve time-capital of a deterministic savings contract is defined by

V ◦◦ = C◦◦ − P ◦◦. (14)

The reserve time-capital describes the global payments of the savings insti-
tution related to the contract (C◦◦, P ◦◦), where payments of the client are
considered as negative payments of the savings institution. From the view-
point of the client, it describes his income (premium payments are regarded
as negative income) related to the savings contract.
The reserve at time t of a deterministic savings contract (C◦◦, P ◦◦) is defined
as the present value, evaluated at time t, of all payments of the time-capital
V ◦◦ in the interval [t,∞[. Hence, the reserve at time t is given by •t|V ◦ or,
equivalently, by •t|V.

Theorem 2 Consider a deterministic savings contract (C◦◦, P ◦◦), then we
have:
(a) Prospective expression of the reserves:

•t|V = •t|C − •t|P, (t ≥ 0), (15)

(b) Retrospective expression of the reserves:

•t|V = (V + 0|tP − 0|tC) ut, (t ≥ 0), (16)

(c) Fouret’s formula:

•k+1|V = (•k|V + •k|1P − •k|1C) u, (k = 0, 1, ...). (17)
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Proof.
(a) Follows from the definition of V ◦◦.
(b) From decomposition formula (5) we find

V ◦ = 0|tV ◦ + vt •t|V ◦

= (0|tC◦ − 0|tP ◦) + vt •t|V ◦

from which we find (16).
(c) From Fouret’s formula (7), we find

•k+1|V = (•k|V − •k|1V ) u, (k = 0, 1, ...)

which leads to (17).
In the sequel, we will say that a deterministic savings contract is fair if

and only if V = 0. Equivalently, a deterministic savings contract is fair if and
only if C = P.

Example 2 A deterministic savings contract

Consider (C◦◦, P ◦◦) with C◦◦ =
∑n

k=0(Lk, k) and P ◦◦ =
∑n

k=0(Pk, k).
Then we have according to Theorem 4

•k|V =
n∑

j=k

(Lj − Pj) vj−k, (k = 0, 1, ..., n), (18)

•k|V = V uk+
k−1∑
j=0

(Pj − Lj) uk−j, (k = 0, 1, ..., n), (19)

•k+1|V = (•k|V + Pk − Lk) u, (k = 0, 1, ..., n − 1). (20)

Assume for a moment that V > 0, such that the contract is not fair (but
advantageous for the client). In this case, in addition to accumulating the
yearly residual income (Pj −Lj), the savings institution will have to provide
an additional amount V in order to be able to meet its future obligations
related to the savings contract. This explains the term V uk in the retro-
spective expression of the reserves. If the liability of the savings institution
at time k is determined by •k|V , then V must be funded at contract issue.

A deterministic savings contract will be designed such that the reserve will
never become negative, implying that the savings institution has a liability
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vis-a-vis the saver. It is clear that the choice of a low interest rate is a safe
strategy, from the viewpoint of the savings institution.

In practice, most savings policies are not savings contracts as defined here,
where the obligations of both parties are fixed at contract issue. Instead,
most savings policies are what one could call ”flexible savings products”.
This means that they are directly based on Fouret’s formula (20), where the
savings amount Pk and the amount of withdrawal Lk can be chosen freely
by the saver at time k. The only restriction is that the reserve must remain
non-negative, i.e. Lk ≤ •k|V + Pk. Of course, for flexible savings products,
reserves can only be determined retrospectively.

A loan can be defined as a deterministic savings contract with a negative
reserve at any instant. In this case − •k|V is called the remaining debt.
A safe strategy for the bank institution is the choice of a sufficiently high
interest rate. As an example, consider an annuity-loan, which is a contract[
(1, 0) , P a◦◦

n|

]
.

4 Life insurance contracts

In this section, we consider life insurance contracts on a single life (x), with
remaining lifetime X. We consider classical life insurance contracts, where
the obligations of both parties are fixed at policy issue. The insurer deter-
mines the distribution function of X at policy issue. In order to determine
his liabilities at time t, the insurer will use the originally chosen life table in
addition to the information available concerning (x) at that time. We assume
that the information at time t is the status of (x), i.e. life or death at that
time, and in the case of death, the moment of death. This implies that at
any time t, when the insured is still alive, the survival probabilities will be
determined from the distribution function of X, conditional on the available
information.

Definition 2 A life insurance contract on a life (x) is a couple (C◦◦, P ◦◦) of
time-capitals C◦◦ and P ◦◦ depending on X, where C◦◦ is the time-capital de-
scribing the commitment of the insurer and P ◦◦ is the time-capital describing
the commitment of the insured.

We will assume that •t|Px|(s) = 0 for all 0 < s < t. This means that the
premium payments stop at the death of (x), as is the case in practice.
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For reasons of simplicity, in the remainder of this paper we will always assume
that the benefits at life and the premiums are only payable at integer time
points. Taking one year as the time unit, this means that these payments
are only due at the end or the beginning of the year. The results hereafter
can easily be generalized to the case of more payments than once a year,
e.g. by changing the time unit to one month (in case the payments are due
monthly).
We will also assume that the insurance period is [0, n[. This means that there
are no premiums and no benefits payable after time n. The survival benefit
and the premium payable at time k, (k = 0, 1, · · · , n) will be denoted by Lk

and Pk respectively. We will assume that L0 = Pn = 0.
The reserve time-capital V ◦◦ of a life insurance contract (C◦◦, P ◦◦) is de-

fined by V ◦◦ = C◦◦ − P ◦◦. The reserve time-capital describes the global
payments of the insurer related to the contract (C◦◦, P ◦◦), where payments
of the insured are considered as negative payments of the insurer. From the
viewpoint of the insured, it describes his future random income (premium
payments are regarded as negative income) related to the life insurance con-
tract.

Lemma 3 Consider a life insurance contract (C◦◦, P ◦◦), then we have (at
present value level):

•t|V ◦ = •t|C◦ − •t|P ◦, (t ≥ 0), (21)

•t|V ◦ =
(
V ◦ + 0|tP ◦ − 0|tC◦) ut, (t ≥ 0), (22)

•k+1|V ◦ =
(
•k|V ◦ + •k|1P ◦ − •k|1C◦) u, (k = 0, 1, ..., n − 1). (23)

Proof. The proof is identical to the proof of Theorem 4.
¿From (11) we find:

•t|V =

∫ t

0
•t|Vx|(s) dsqx + •t|Vx tpx, (t ≥ 0). (24)

The reserve at time t of the life insurance contract (C◦◦, P ◦◦) is hereby defined
as the conditional expectation of •t|V ◦, given the information concerning (x)
available at that time. When (x) is alive at time t, the reserve is given by

•t|Vx which is called the reserve at t when (x) is alive at that time. When
(x) died at time s < t, the reserve is given by •t|Vx|(s), which is called the
reserve at t when (x) died at s < t.
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We will say that a contract vanishes with (x) if •t|Vx|(s) = 0 for all 0 <
s < t. Earlier we assumed that •t|Px|(s) = 0 for all 0 < s < t. This implies
that a contract vanishes with (x) if •t|Cx|(s) = 0 for all 0 < s < t. This will
be the case if the life insurance components (= the payments at death) of
the life insurance contract are all payable immediately at death.

Theorem 4 (De Vylder (1997)) Let (C◦◦, P ◦◦) be a life insurance con-
tract on a life (x), then
(a) Prospective expression of reserves:

•t|Vx = •t|Cx − •t|Px, (t ≥ 0), (25)

•t|Vx| = •t|Cx| − •t|Px|, (t > 0), (26)

(b) Retrospective expression of reserves:

•t|Vx =
(
V + 0|tP − 0|tC

)
tE

−1
x , (t ≥ 0), (27)

(c) Fouret’s formula:

•k+1|Vx =
(
•k|Vx + •k|1Px − •k|1Cx

)
1E

−1
x+k, (k = 0, 1, ..., n − 1). (28)

For (b) and (c), we assumed that the contract vanishes with (x).

Proof.
(a) From (9) and (21) we find

•t|Vx = E[•t|V ◦|X > t] = E[•t|C◦|X > t]− E[•t|P ◦|X > t] = •t|Cx − •|tPx,

which is (25). The proof of (26) is similar.
(b) From (22) and (24) we have

•t|V =

∫ t

0
•t|Vx|(s) dsqx + •t|Vx tpx

= •t|Vx tpx =
(
V + 0|tP − 0|tC

)
ut,

which implies

•t|Vx = (V + 0|tP − 0|tC) tE
−1
x ,

since also •0|V = V = •0|Vx.
(c) From (23) we find

•k+1|V =
(
•k|V + •k|1P − •k|1C

)
u.
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As the contract vanishes with (x), we can rewrite this equation as

•k+1|Vx k+1px =
(
•k|Vx kpx + •k|1Px kpx − •k|1Cx kpx

)
u,

which is (28).
As we assumed that all payments stop at time n, we find that •n|Vx is

equal to the benefit the insurer has to pay if (x) is still alive at that time.
Formulas (27) and (28) are also valid for t = 0, 1, ... and k = 0, 1, ...

respectively for contracts that do not vanish with x, but for which •k|1Cx|(s) =
0 (k = 0, 1, .., n − 1 and s < k). Contracts that fulfill these conditions are
said to ”vanish before the end of the year-of-death”. This will be the case
e.g. if the life insurance components (= the payments at death) are due in
the middle of the year of death.

We will say that a life insurance contract (C◦◦, P ◦◦) on a life (x) is fair if
and only if V = 0, or equivalently, C = P .

Remark that a deterministic savings contract can be considered as a life
insurance contract on a status which exists eternally. Such a contract is a fair
life insurance contract if and only if it is a fair deterministic savings contract.

5 Savings contracts (on a life (x))

For each life insurance contract (C◦◦, P ◦◦) on a life (x) we define the as-
sociated deterministic savings contract (C(ads)◦◦, P (ads)◦◦) by replacing the
distribution function of X (= the remaining lifetime of (x)) by the distribu-
tion function of X(ads) which is the remaining lifetime of a status that will
exist eternally. Hence,

Pr
[
X(ads) = ∞] = 1. (29)

The associated deterministic savings contract is indeed a deterministic sav-
ings contract as defined in Section 3.
As an example, consider the life insurance contract

(C◦◦, P ◦◦) = (nE
◦◦
x , π ä◦◦

x:n| ).

The associated deterministic savings contract is given by

(C(ads)◦◦, P (ads)◦◦) =
(
(1, n), π ä◦◦

n| )
)
.
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The associated deterministic savings contract of a fair life insurance con-
tract is in general not a fair savings contract. This will only be the case if,
in addition to C = P , also the condition C(ads) = P (ads) holds.

Definition 3 A savings contract (on a life (x)) is a life insurance contract
(C◦◦, P ◦◦) on (x) such that the reserves at life •k|Vx (k = 0, 1, ..., n) are equal
to the corresponding reserves •k|V (ads) of the associated deterministic savings
contract (C(ads)◦◦, P (ads)◦◦), i.e.

•k|Vx = •k|V (ads), (k = 0, 1, ..., n).

For any savings contract with given time-capitals C◦◦ and P ◦◦, the re-
serves at life can be determined without knowledge of the survival probabili-
ties of (x). Further, note that each deterministic savings contract (as defined
in Section 3) is a savings contract.

As introduced above, let Pk and Lk be the premium and life benefit
payable at time k (k = 0, 1, ..., n) of the life insurance contract (C◦◦, P ◦◦)
in case (x) is alive at that time. Then we have

C◦◦ =
n∑

j=0

Lj jE
◦◦
x + benefits at death (30)

and

P ◦◦ =
n∑

j=0

Pj jE
◦◦
x =

n∑
j=0

(Pj 1X>j, j). (31)

Since the insurance period is [0, n[ there are no death benefits after time n.
We immediately find that the associated deterministic savings contract is
given by (C(ads)◦◦, P (ads)◦◦) with

C(ads)◦◦ =
n∑

j=0

(Lj, j). (32)

and

P (ads)◦◦ =
n∑

j=0

(Pj, j). (33)
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As a special case of Theorem 4, we get from (18), (19) and (20)

•k|V (ads) =
n∑

j=k

(Lj − Pj) vj−k, (k = 0, 1, ..., n), (34)

•k|V (ads) = V (ads) uk+
k−1∑
j=0

(Pj − Lj) uk−j, (k = 0, 1, ..., n),(35)

•k+1|V (ads) = (•k|V (ads) + Pk − Lk) u, (k = 0, 1, ..., n − 1) (36)

with V (ads) given by

V (ads) =
n∑

j=0

(Lj − Pj) vj. (37)

The associated deterministic savings contract (C(ads)◦◦, P (ads)◦◦) is fair
if and only if V (ads) = 0, or equivalently

n∑
j=0

(Lj − Pj) vj = 0. (38)

A savings contract on a life (x) is fair if and only if V = 0. As V =

V (ads) =
n∑

j=0

(Lj − Pj) vj, we find that a savings contract is fair if and only

if (38) holds.

Theorem 5 Consider a life insurance contract on a life (x). This contract
is a fair savings contract if and only if

•k|Vx =
k−1∑
j=0

(Pj − Lj) uk−j, (k = 0, 1, ..., n). (39)

Proof.
(a) Assume that (C◦◦, P ◦◦) is a fair savings contract. Then V (ads) = V = 0.
Hence, (39) follows from (35).
(b) Now assume that (C◦◦, P ◦◦) is a life insurance contract for which (39)
holds. We immediately find that V = •0|Vx = 0, which means that the
contract is fair. By (30), (31) and (39) for k = n, we find

•n|Vx = Ln − Pn =
n−1∑
j=0

(Pj − Lj) un−j.

15



This implies
n∑

j=0

(Lj − Pj) vj = 0,

which means that V (ads) = 0.
¿From (35) and (39) we then find that •k|V ads = •k|Vx, (k = 0, 1, ..., n).

In the following theorem, we consider life insurance contracts defined by
(30) and (31) with as additional requirement that the contracts vanish before
the end of the year of death.

Theorem 6 Consider a life insurance contract on a life (x), which vanishes
before the end of the year of death. This contract is a fair savings contract
if and only if the following conditions hold:

n∑
j=0

Pj vj =
n∑

j=0

Lj vj (40)

and

•k|1Cx = Lk+

(
k∑

j=0

(Pj − Lj) uk+1−j

)
1Ax+k, (k = 0, 1, ..., n−1). (41)

Proof.
(a) First assume that (C◦◦, P ◦◦) is a fair savings contract which vanishes at
the end of the year of death. Then, (40) must hold and by (28) we find

•k+1|V (ads) = •k+1|Vx =
(
•k|Vx + •k|1Px − •k|1Cx

)
1E

−1
x+k

=
(
•k|V (ads) + Pk − •k|1Cx

)
1E

−1
x+k, (k = 0, 1, ..., n − 1).

Using (36), this leads to

•k|1Cx = •k|V (ads) + Pk − •k+1|V (ads)
1Ex+k

= •k|V (ads) + Pk − •k+1|V (ads) v (1− qx+k)

=
(
•k|V (ads) + Pk − v •k+1|V (ads)

)
+ •k+1|Vx 1Ax+k

= Lk + •k+1|Vx 1Ax+k, (k = 0, 1, ..., n − 1),

which reduces to (41), by (39).
(b) Now assume that (C◦◦, P ◦◦) is a life insurance contract which vanishes

16



at the end of the year of death, and for which (40) and (41) hold.
We will prove by induction that (39) holds for k = 0, 1, ..., n.
First, (39) holds for k = 0, as (C◦◦, P ◦◦) is a fair contract. Indeed,

V = C − P

=
n∑

k=0

(Lk − Pk) kEx +
n−1∑
k=0

(
k∑

j=0

(Pj − Lj) uk+1−j

)
k|1Ax

=
n∑

k=0

(Lk − Pk) kEx +
n−1∑
k=0

(
k∑

j=0

(Pj − Lj) vj

)
(kpx − k+1px)

=
n∑

k=0

(Lk − Pk) kEx +
n−1∑
j=0

(Pj − Lj) vj

n−1∑
k=j

(kpx − k+1px)

=
n∑

k=0

(Lk − Pk) kEx +
n−1∑
j=0

(Pj − Lj) vj(jpx − npx)

= npx

n∑
k=0

(Lk − Pk) vk = 0.

Now, assume that (39) holds for a particular l in {0, 1, ..., n − 1} .
Then we have by (28) that

•l+1|Vx =
(
•l|Vx + Pl − •l|1Cx

)
1E

−1
x+l

=

[
l−1∑
j=0

(Pj − Lj) ul−j + Pl − Ll

−
(

l∑
j=0

(Pj − Lj) ul+1−j

)
1Ax+l

]
1E

−1
x+l

= (v − 1Ax+l)
l∑

j=0

(Pj − Lj) ul+1−j
1E

−1
x+l

=
l∑

j=0

(Pj − Lj) ul+1−j,

which ends the proof.
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Example 3 A fair savings contract

Consider the life insurance contract (C◦◦, P ◦◦) with

C◦◦ =
n∑

k=0

Lk kE
◦◦
x +

n−1∑
k=0

Dk k|1Â◦◦
x

and

P ◦◦ =
n−1∑
k=0

Pk kE
◦◦
x .

For ease of notation, we introduce L0 = 0. Clearly, this contract vanishes
before the end of the year of death. We have that

•k|1Cx = Lk + Dk 1Âx+k, (k = 0, 1, ..., n − 1).

Hence, the condition (41) reduces to

k∑
j=0

(Pj − Lj) uk+1−j
1Ax+k = Dk 1Âx+k, (k = 0, 1, ..., n − 1),

or equivalently,

Dk = v
1
2

k∑
j=0

(Pj − Lj) uk+1−j, (k = 0, 1, ..., n − 1). (42)

6 Pure risk contracts on a life (x)

In a sense, a pure risk contract is the counterpart of a savings contract.

Definition 4 A pure risk contract on a life (x) is a life insurance contract
where the commitment of the insurer only consists of payments-at-death (no
survival benefits) and such that

•k|Vx = 0, (k = 0, 1, ..., n). (43)

By its definition, a pure risk contract is always a fair life insurance con-
tract.

Let us now again assume that the premiums are only payable at integer
time points (once a year): Pk is the premium paid at time k, in case that (x)
is alive at that time, (k = 0, 1, ..., n − 1).
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Theorem 7 Consider a life insurance contract on a life (x) with no survival
benefits which vanishes before the end of the year of death. This contract is
a pure risk contract if and only if

•k|1Cx = Pk, (k = 0, 1, ..., n − 1). (44)

Proof. Condition (44) implies that

V =
n−1∑
k=0

kEx (•k|1Cx − Pk) = 0.

Further from (28) we find

•k+1|Vx =
(
•k|Vx + Pk − •k|1Cx

)
1E

−1
x+k, (k = 0, 1, ..., n − 1).

Using this recursive relation, it is straightforward to prove the theorem.
¿From the definition and the theorem above, we see that a ”pure risk”

contract contains no savings element in it: each yearly premium is used to
cover the price of a one year term insurance.

Example 4 A fair pure risk contract

Consider a life insurance contract (C◦◦, P ◦◦) with

C◦◦ =
n−1∑
k=0

Dk k|1Â◦◦
x

and

P ◦◦ =
n−1∑
k=0

Pk kE
◦◦
x .

This contract is a pure risk contract if and only if

Pk = Dk 1Âx+k. (k = 0, 1, ..., n − 1).
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7 Combination of contracts

Let (C(1)◦◦, P (1)◦◦) and (C(2)◦◦, P (2)◦◦) be two life insurance contracts. The
combined life insurance contract (C(1)◦◦, P (1)◦◦) + (C(2)◦◦, P (2)◦◦) is defined
as the contract (C◦◦, P ◦◦) =

(
C(1)◦◦ + C(2)◦◦, P (1)◦◦ + P (2)◦◦).

The reserve at life •t|Vx of the combined contract equals the sum of the
reserves of the two contracts:

•t|Vx = •t|V (1)
x + •t|V (2)

x , (t ≥ 0). (45)

Similarly, the reserve at death •t|Vx| of the combined contract equals the sum
of the corresponding reserves of the two contracts:

•t|Vx| = •t|V
(1)
x| + •t|V

(1)
x| , (t > 0). (46)

In the following we restrict ourselves to fair life insurance contracts
(C◦◦, P ◦◦) defined by

C◦◦ =
n∑

k=1

Lk kE
◦◦
x +

n−1∑
k=0

Dk k|1Â◦◦
x (47)

and

P ◦◦ =
n−1∑
k=0

Pk kE
◦◦
x . (48)

Hence, we restrict to the case that the payments-at-death Dk are payable in
the middle of the year of death. The contract of course vanishes before the
end of the year of death.

7.1 Combination of a fair savings and risk contract

In this subsection we will prove that each fair life insurance contract can be
considered as the (unique) combination of a fair savings contract and a pure
risk contract.

Theorem 8 (Payments-at-death due in the middle of the year of death)
Any fair life insurance contracts (C◦◦, P ◦◦) defined by (47) and (48) is the
unique combination of a fair savings contract (C(s)◦◦, P (s)◦◦) and a (fair) pure
risk contract (C(r)◦◦, P (r)◦◦).
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Proof.
(a) We first prove that there exists such a combination. In (b) we will

prove that the combination is unique.
Let •k|Vx be the reserve of (C◦◦, P ◦◦) at time k (k = 0, 1, ..., n).

Consider the contract (C(s)◦◦, P (s)◦◦) defined by

P (s)◦◦ =
n−1∑
k=0

P
(s)
k kE

◦◦
x (49)

with
P

(s)
k = •k+1|Vx v − (•k|Vx − Lk), (k = 0, 1, ..., n − 1) (50)

and

C(s)◦◦ =
n∑

k=1

Lk kE
◦◦
x +

n−1∑
k=0

(
k∑

j=0

(P
(s)
j − Lj) uk+1−j

)
v

1
2 k|1Â◦◦

x . (51)

Let us introduce the notation P
(s)
n = 0. Taking into account that (C◦◦, P ◦◦)

is a fair life insurance contract, we find from (50) that

•k|Vx =
k−1∑
j=0

(
uk−j−1 •j+1|Vx − uk−j •j|Vx

)

=
k−1∑
j=0

(P
(s)
j − Lj) uk−j, (k = 0, 1, ..., n). (52)

As •n|Vx = Ln, we find from (52) that

n∑
j=0

(P
(s)
j − Lj) vj = 0.

On the other hand, from (51), we immediately find that

•k|1C(s)
x = Lk +

k∑
j=0

(P
(s)
j − Lj) uk+1−j

1Ax+k, (k = 0, 1, ..., n − 1).
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Hence, from Theorem 11 it follows that (C(s)◦◦, P (s)◦◦) is a fair savings con-
tract.
Moreover, from (52) and Theorem 10, we find that

•k|V (s)
x =

k−1∑
j=0

(P
(s)
j − Lj) uk−j, (k = 0, 1, ..., n). (53)

Next, consider the contract (C(r)◦◦, P (r)◦◦) defined by

P (r)◦◦ =
n−1∑
k=0

P
(r)
k kE

◦◦
x (54)

with
P

(r)
k =

(
Dk − •k+1|Vx v

1
2

)
1Âx+k, (k = 0, 1, ..., n − 1) (55)

and

C(r)◦◦ =
n−1∑
k=0

(
Dk − •k+1|Vx v

1
2

)
k|1Â◦◦

x . (56)

We immediately find that

•k|1C(r)
x = P

(r)
k , (k = 0, 1, ..., n − 1). (57)

¿From Theorem 14, it follows that (C(r)◦◦, P (r)◦◦) is a pure risk contract.
It remains to prove that (C◦◦, P ◦◦) is the combination of (C(s)◦◦, P (s)◦◦)

and (C(r)◦◦, P (r)◦◦).
¿From (47), (51), (52) and (56), we immediately find that

C(s)◦◦ + C(r)◦◦ = C◦◦.

¿From (50), (55), (47) and (28) it follows that

P
(s)
k + P

(r)
k = •k+1|Vx v − (•k|Vx − Lk

)
+
(
Dk − •k+1|Vx v

1
2

)
1Âx+k

= •k+1|Vx 1Ex+k − •k|Vx + Lk + Dk 1Âx+k

= •k+1|Vx 1Ex+k − •k|Vx + •k|Cx

= Pk, (k = 0, 1, ..., n − 1).

(b) Now we prove that the combination is unique.
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Therefore, consider a fair savings contract (C(s)◦◦, P (s)◦◦) and a (fair) pure
risk contract (C(r)◦◦, P (r)◦◦) defined by

C(s)◦◦ =
n∑

k=1

L
(s)
k kE

◦◦
x +

n−1∑
k=0

D
(s)
k •k|1Â◦◦

x ,

P (s)◦◦ =
n−1∑
k=0

P
(s)
k kE

◦◦
x ,

C(r)◦◦ =
n−1∑
k=0

D
(r)
k •k|1Â◦◦

x ,

P (r)◦◦ =
n−1∑
k=0

P
(r)
k kE

◦◦
x

and such that

(C◦◦, P ◦◦) =
(
C(s)◦◦ + C(r)◦◦, P (s)◦◦ + P (r)◦◦)

We have that Lk = L
(s)
k (k = 1, ..., n). Hence, by Theorem 10,

•k|Vx = •k|V (s)
x + •k|V (r)

x

= •k|V (s)
x =

k−1∑
j=0

(
P

(s)
j − Lj

)
uk−j, (k = 0, 1, ..., n).

By (42) we then have

D
(s)
k = v

1
2

k∑
j=0

(
P

(s)
j − Lj

)
uk+1−j

= v
1
2 •k+1|Vx, (k = 0, 1, ..., n − 1).

Hence,

D
(r)
k = Dk − D

(s)
k = Dk − v

1
2 •k+1|Vx, (k = 0, 1, ..., n − 1).

Further as direct consequence of Theorem 14 (see Example 15),

P
(r)
k = D

(r)
k 1Âx+k =

(
Dk − v

1
2 •k+1|Vx

)
1Âx+k, (k = 0, 1, ..., n − 1).
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So we have proven that if (C◦◦, P ◦◦) can be written as a combination of
a fair savings contract and a (fair) risk contract, then the risk contract must
be equal to the one defined in part (a) of the proof. This immediately implies
that the savings contract is also uniquely determined.

For a life insurance contract defined by (47) and (48), the premium P
(s)
k

as defined in (50) is called the savings premium at time k. The premium

P
(r)
k as defined in (55) is called the risk premium at time k. The amount(
Dk − v

1
2 •k+1|Vx

)
is the amount-at-risk in the k-th year.

An adjusted version of the theorem can be proven for any fair life insur-
ance contract (C◦◦, P ◦◦) which vanishes before the end of the year-of-death.

Using (52) and the relation between premium, savings and risk premium,
it is easy to show that the the accumulated value at time k of the premiums
less life benefits of the life insurance contract minus the accumulated value
of the annual risk premiums (j = 0, 1, ..., k−1) equals the reserve at time k:

•k|Vx =
k−1∑
j=0

(
Pj − P

(r)
j − Lj

)
uk−j

=
k−1∑
j=0

(Pj − Lj) uk−j−
k−1∑
j=0

(
Dj − v

1
2 •j+1|Vx

)
1Âx+j uk−j

=
k−1∑
j=0

(Pj − Lj) uk−j−
k−1∑
j=0

qx+j D
(r)
j uk−j− 1

2 , (k = 0, 1, ..., n).

For a fair savings contract, this expression of the reserve at life reduces to
the first summation.

Example 5 (C◦◦, P ◦◦) = (nÂ
◦◦
x , P ä◦◦

x:n| ) with P = nÂx/ äx:n|

For this term insurance we have

(C(s)◦◦, P (s)◦◦) =

(
n−1∑
k=0

•k+1|Vx v
1
2 k|1Â◦◦

x ;
n−1∑
k=0

(
•k+1|Vx v − •k|Vx

)
kE

◦◦
x

)

and

(C(r)◦◦, P (r)◦◦) =
n−1

(
∑
k=0

(
1− •k+1|Vx v

1
2

)
k|1Â◦◦

x ;
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n−1∑
k=0

((
1− •k+1|Vx v

1
2

)
1Âx+k

)
kE

◦◦
x ).

For the reserve at life, we find

•k|Vx = P
..

s
k| −

k−1∑
j=0

qx+j

(
1− •j+1|Vx v

1
2

)
uk−j− 1

2 , (k = 0, 1, ..., n),

which shows that the reserve at life is lower than the accumulated value of
the premiums in this case.

Example 6 (C◦◦, P ◦◦) = (nE
◦◦
x , π ä◦◦

x:n| ) with π = nEx/ äx:n|

For this pure endowment policy we have

(C(s)◦◦, P (s)◦◦) = ( nE
◦◦
x +

n−1∑
k=0

•k+1|Vx v
1
2 k|1Â◦◦

x ;

n−1∑
k=0

(
•k+1|Vx v − •k|Vx

)
kE

◦◦
x )

and

(C(r)◦◦, P (r)◦◦) =

(
−

n−1∑
k=0

•k+1|Vx v
1
2 k|1Â◦◦

x ; −v
1
2

n−1∑
k=0

•k+1|Vx 1Âx+k kE
◦◦
x

)
.

For the reserve at life, we find the following expression:

•k|Vx = π
..

s
k| +

k−1∑
j=0

qx+j •j+1|Vx uk−j−1, (k = 0, 1, ..., n),

clearly showing that for a pure endowment policy the reserve at life is larger
than the accumulated value of the premiums paid. Besides, it shows that
the reserves of the persons who die are needed to establish the reserves for
persons that stay alive.

Example 7 Flexible life or universal life insurance.
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¿From the previous deductions, we find two recursions for •k|Vx for the
life insurance considered in this section (see (47) and (48)). First, from (28)
we have

•k+1|Vx =
(
•k|Vx − Lk + Pk − Dk 1Âx+k

)
1E

−1
x+k, (k = 0, 1, ..., n − 1). (58)

On the other hand, from (50), we find that

•k+1|Vx =
(
•k|Vx − Lk + P

(s)
k

)
u, (k = 0, 1, ..., n − 1) (59)

with
P

(s)
k = Pk − P

(r)
k

and
P

(r)
k =

(
Dk − v

1
2 •k+1|Vx

)
1Âx+k.

Flexible life or universal life insurance is different from the life insurance
studied until now, because the obligations of both parties are not fixed at
policy issue. Instead, these kind of insurances are based on (58), or equiva-
lently (59), where the insured is free (to a certain extent) to decide at time k
(if still alive) the sizes of Pk, Lk and Dk. Restrictions are imposed so that all
parameters remain positive and in order to prevent antiselection. Although
equivalent, the interpretations of (58) and (59) are completely different.
Interpretation of universal life with (58):
Assume that the insured is alive at time k. He owns the reserve at life •k|Vx.
He decides to pay Pk, to withdraw Lk, and he wants a death-benefit Dk if he
dies during the next year. If he is still alive at time k+1, then he owns the
reserve at life •k+1|Vx.

Interpretation of universal life with (59):
Assume that the insured is alive at time k. On his savings account, there is an
amount •k|Vx. He decides to pay Pk, to withdraw Lk, and he wants an amount
Dk (the amount on his savings account included) if he dies during the next

year. Let P
(r)
k be the cost of the one year insurance. As the insured wants

to receive Dk at death (assumed to be payable in the middle of the year),
while there will be •k+1|Vx on the savings account at time k+1, the capital to

be insured is Dk − v
1
2 •k+1|Vx. Hence, P

(r)
k =

(
Dk − v

1
2 •k+1|Vx

)
1Âx+k. An

amount of P
(s)
k = Pk − P

(r)
k is placed on the savings account. At the end of

the year the savings account has grown to •k+1|Vx =
(
•k|Vx − Lk + P

(s)
k

)
u.
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7.2 Combination of a fair associated savings contract

and a fair associated risk contract

In this subsection we will prove that each fair life insurance contract can
be separated into a corresponding fair associated stochastic savings contract
and a fair associated stochastic risk contract with similar premium structure
as the original contract. The mentioned associated savings contract has as
life benefits the pure endowment benefits of the original life policy, and death
benefits equal to the reserves of the associated deterministic savings contract
defined (times v1/2) in Section 5. The death benefits of the associated risk
contract are ”sums at risk” equal to the difference of the benefits of the
original policy and the end-of-year reserves of the associated deterministic
savings contract (also times v1/2). To arrive at this separation it is necessary
to first consider definitions of two associated deterministic savings contracts
of the original fair life insurance. In this subsection it is also shown that the
combination of a savings contract and pure risk contract can be considered
as a special type of associated contracts. Since we have, in general, two
different solutions for the associated contracts, also linear combinations of
both solutions satisfy our definition of associated stochastic contracts.

According to Section 5, the associated deterministic savings contract of
the fair life insurance contract (C◦◦, P ◦◦) defined by (47) and (48), is

C(ads)◦◦ =
n∑

k=1

(Lk, k) (60)

P (ads)◦◦ =
n∑

k=0

(Pk, k), (61)

with Pn = 0. As has been remarked in Section 5, this associated contract is in
general not a fair contract. Hence, we define a corresponding fair associated
deterministic savings contract (C(fads)◦◦, P (fads)◦◦) by

C(fads)◦◦ =
n∑

k=1

(Lk, k) (62)

P (fads)◦◦ =
n−1∑
k=0

(P
(fads)
k , k), (63)
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with P
(fads)
n = 0. The premiums P

(fads)
k in (63) are not uniquely defined,

but since this contract is assumed to be fair we find from (19)

•k|V (fads) =
k−1∑
j=0

(
P

(fads)
j − Lj

)
uk−j, (k = 0, 1, ..., n), (64)

which leads to

P
(fads)
k = •k+1|V (fads) v − (•k|V (fads) − Lk

)
, (k = 0, 1, ..., n − 1). (65)

As •n|V (fads) = Ln we find from (64)

n∑
j=0

(
P

(fads)
j − Lj

)
vj = 0, (66)

confirming the fact that this contract is fair.
To get some grip of the problem we first consider two special cases:
1) In case •k|V (fads) = •k|Vx, (k = 0, 1, ..., n), then the P

(fads)
k are uniquely

defined for k = 0, 1, ..., n − 1. In this case we have

P
(fads)
k = P

(s)
k , (k = 0, 1, ..., n − 1) (67)

(see (50) and Theorem 23). In this case we are back to the situation of the
previous subsection, which we will consider in more detail in Theorem 28.

2) In case the premiums Pk are level it is reasonable to assume that
the same holds for the premiums of the fair associated deterministic savings
contract, we then have

P
(fads)
k = P (fads) =

n∑
j=1

Lj vj/s̈n| , (k = 0, 1, ..., n − 1). (68)

Since the two savings contracts (C(ads)◦◦, P (ads)◦◦) and (C(fads)◦◦, P (fads)◦◦)
are deterministic contracts they can not immediately be combined with (fair)
life insurance contracts. Hence, as a third type of associated savings contract
we have to define:

Definition 5 An associated (stochastic) savings contract of (C◦◦, P ◦◦) de-
fined by (47) and (48) is a life insurance (C(fas)◦◦, P (fas)◦◦) defined by
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C(fas)◦◦ =
n∑

k=1

L
(fas)
k kE

◦◦
x +

n−1∑
k=0

D
(fas)
k k|1Â◦◦

x (69)

and

P (fas)◦◦ =
n∑

k=0

P
(fas)
k kE

◦◦
x , (70)

with
L

(fas)
k = Lk, (k = 0, 1, ..., n), (71)

D
(fas)
k = •k+1|V (fads) v

1
2 , (k = 0, 1, ..., n − 1) (72)

and
P

(fas)
k = P

(fads)
k , (k = 0, 1, ..., n). (73)

Hence, for the associated stochastic savings contract
1) the pure endowment benefits are the same as that for the original fair

life insurance contract (see (71)),
2) the death benefits equal the end-of-year reserve of the fair associated

deterministic contract, discounted to the middle of the year of death (see
(72)) and

3) the premiums are those from the associated fair deterministic contract
(see(73)).

Theorem 9 The associated stochastic savings contract defined in (69)-
(73) is fair and the reserve at integer times of this contract equals that of
the fair associated deterministic savings contract defined in (62) and (63):

•k|V (fas)
x = •k|V (fads), (k = 0, 1, ..., n). (74)

Proof.
¿From (64), (66) and (69)-(73) it follows that this contract is fair:

V (fas)

=
n∑

k=0

(
L

(fas)
k − P

(fas)
k

)
kEx+

n−1∑
k=0

•k+1|V (fads) v
1
2 k|1Âx

=
n∑

k=0

(
Lk − P

(fads)
k

)
kEx +

n−1∑
k=0

(
k∑

j=0

(
P

(fads)
j − Lj

)
uk+1−j

)
k|1Ax
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=
n∑

k=0

(
Lk − P

(fads)
k

)
kEx +

n−1∑
k=0

(
P

(fads)
k − Lk

)
vk (kpx − npx)

= − npx

n∑
k=0

(
P

(fads)
k − Lk

)
vk = 0. (75)

(In the notation of premiums and benefits we already used the fact that the
contract is fair.)

By Theorem 10 and (71) and (73) we now have

•k|V (fas)
x =

k−1∑
j=0

(
P

(fas)
k − L

(fas)
k

)
uk−j

=
k−1∑
j=0

(
P

(fads)
k − Lk

)
uk−j

= •k|V (fads), (k = 0, 1, ..., n), (76)

so the reserve of the fair associated stochastic savings contract equals that
of the reserve of the fair associated deterministic savings contract.

Definition 6 The fair associated risk contract (C(far)◦◦, P (far)◦◦) is defined
by

C(far)◦◦ =
n−1∑
k=0

(
Dk − •k+1|V (fads)v

1
2

)
k|1Â◦◦

x , (77)

P (far)◦◦ =
n−1∑
k=0

P
(far)
k kE

◦◦
x , (78)

with

n−1∑
k=0

P
(far)
k kEx =

n−1∑
k=0

(
Dk − •k+1|V (fads)v

1
2

)
k|1Âx. (79)

Note that the premiums P
(far)
k are not uniquely defined by (79).

Finally the fair life insurance will be separated into an associated stochas-
tic savings and an associated risk contract. We first consider the special type
of life insurance policy with level premiums in Theorem 23; immediately
afterwards we consider the general case.
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Theorem 10 (Payments-at-death due in the middle of the year of death)
Any fair life insurance contract (C◦◦, P ◦◦) defined by (47) and (48) with

Pk = P, k = 0, 1, ..., n − 1, is a combination of a fair associated (stochas-
tic) savings contract (C(fas)◦◦, P (fas)◦◦) and a (fair) associated risk contract

(C(far)◦◦, P (far)◦◦) with P
(fas)
k = P (fas) and P

(far)
k = P (far) for k = 0, 1, ..., n−

1.

Proof.
It is immediately clear from (47), (69), (71), (72) and (77) that C◦◦ =

C(fas)◦◦ + C(far)◦◦.
We have from (47) and (48)

P =

(
n∑

k=1

Lk kEx +
n−1∑
k=0

Dk k|1Âx

)
/äx:n| , (80)

by (68)

P
(fads)
k = P (fads) =

n∑
j=1

Lj vj/s̈n| , (k = 0, 1, ..., n − 1), (81)

and by (79)

P
(far)
k = P (far)

=

(
n−1∑
j=0

(
Dj − •j+1|V (fads) v

1
2

)
j|1Âx

)
/äx:n| , (82)

(k = 0, 1, ..., n − 1).

The latter is the premium of a fair life insurance contract but not a pure
risk contract as defined in Section 6.

¿From (80)-(82) and (75) we get(
P − P (far)

)
äx:n|

=
n∑

k=1

Lk kEx +
n−1∑
k=0

•k+1|V fadsv
1
2 k|1Âx

=
n∑

k=0

P
(fads)
k kEx
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+
n∑

k=0

(
L

(fas)
k − P

(fas)
k

)
kEx +

n−1∑
k=0

•k+1|V (fads) v
1
2 k|1Âx

= P (fads) äx:n| ,

Hence,
P = P (fads) + P (far). (83)

A direct consequence of Theorem 23 is that under the conditions of this
theorem we have:

•k|Vx = •k|V (fas)
x + •k|V (far)

x , (k = 0, 1, ..., n). (84)

From the proof of (83) it can easily be seen that the theorem can be
generalized. The only requirement is that

n−1∑
k=0

(
Pk − P

(far)
k

)
kEx =

n−1∑
k=0

P
(fas)
k kEx. (85)

Assuming P0 �= 0 we define

P
(far)
k = (Pk/P0)P

(far)
0 , (k = 1, 2, ..., n − 1) (86)

and
P

(fas)
k = (Pk/P0)P

(fas)
0 , (k = 1, 2, .., n − 1). (87)

According to (66) it is required that

P
(fas)
0 = P0

(
n∑

j=1

Lj vj/

n−1∑
j=0

Pj vj

)
. (88)

Further, we define
P

(far)
0 = P0 − P

(fas)
0 . (89)

Then we have

P
(far)
k = Pk − P

(fas)
k , (k = 0, 1, ..., n − 1) (90)

and (85) is immediately satisfied.

This demonstrates that any fair life insurance contract can be decomposes
into a fair associated savings contract and a fair associated risk contract,
which leads to Theorem 24:
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Theorem 11 (Payments-at-death due in the middle of the year of death)
Any fair life insurance contract (C◦◦, P ◦◦) defined by (47) and (48) with

P0 �= 0, is a combination of a fair associated (stochastic) savings contract
(C(fas)◦◦, P (fas)◦◦) and a (fair) associated risk contract (C(far)◦◦, P (far)◦◦)
with P

(fas)
k and P

(far)
k defined by (86) and (87) where P

(fas)
0 and P

(fas)
0 are

defined by (88) and (89).

IIllustrations of Theorem 24 are given below.

Example 8 (C◦◦, P ◦◦) = (nÂ
◦◦
x , P ä◦◦

x:n| ) with P = nÂx/äx:n|

For this term insurance we have (C◦◦, P ◦◦) ≡ (C(far)◦◦, P (far)◦◦). For
the associated savings contract all premiums and benefits are equal to zero.
We have P (far) = P.

Example 9 (C◦◦, P ◦◦) = (nE
◦◦
x , π ä◦◦

x:n| ), with π = nEx/äx:n|

The associated deterministic savings contract of this pure endowment
policy is given by

(C(ads)◦◦, P (ads)◦◦) =

(
(1, n),

n−1∑
k=0

(π, k)

)
.

The associated fair deterministic savings contract with level premiums is
equal to

(C(fads)◦◦, P (fads)◦◦) =

(
(1, n),

n−1∑
k=0

(
1

s̈n|
, k

))
,

the associated fair stochastic savings contract with level premiums is

(C(fas)◦◦, P (fas)◦◦) =

(
nE

◦◦
x +

n−1∑
k=0

s̈k+1|
s̈n|

v
1
2 k|1Â◦◦

x ,
n−1∑
k=0

1

s̈n|
kE

◦◦
x

)

and the associated fair risk contract with level premiums is

(C(far)◦◦, P (far)◦◦) =

(
n−1∑
k=0

(
− s̈k+1|

s̈n|
v

1
2

)
k|1Â◦◦

x , P (far) ä◦◦
x:n|

)

=

(
n−1∑
k=0

(
− •k+1|V (fas)v

1
2

)
k|1Â◦◦

x , P (far) ä◦◦
x:n|

)
.
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The associated risk contract is not a pure risk contract, since •k|V
(far)
x �= 0

for k = 0, 1, ..., n.
We have P (fas) = 1

s̈n|
, and negative premiums for the associated risk

contract:

P (far) =

(
n−1∑
k=0

(
− s̈k+1|

s̈n|
v

1
2

)
k|1Âx

)
/äx:n| .

Of course we have π = P (fas) + P (far).

Example 10 (C◦◦, P ◦◦) = (nE
◦◦
x + nÂ

◦◦
x , Π ä◦◦

x:n| ), with Π = (nEx +

nÂx)/äx:n| .

This example is an elaborated special case of Exercise 5.3 of Wolthuis
(1994). The associated deterministic savings contract is given by

(C(ads)◦◦, P (ads)◦◦) =

(
(1, n),

n−1∑
k=0

(Π, k)

)
.

The associated fair deterministic savings contract with level premiums
corresponds with that of the pure endowment policy of Example 26 and is
given by

(C(fads)◦◦, P (fads)◦◦) =

(
(1, n),

n−1∑
k=0

(
1

s̈n|
, k

))
,

the associated fair stochastic savings contract with level premiums is also the
same as that of Example 26:

(C(fas)◦◦, P (fas)◦◦) =

(
nE

◦◦
x +

n−1∑
k=0

s̈k+1|
s̈n|

v
1
2 k|1Â◦◦

x ,
n−1∑
k=0

1

s̈n|
kE

◦◦
x

)

and the associated fair risk contract with level premiums is

(C(far)◦◦, P (far)◦◦) =

(
n−1∑
k=0

(
1− s̈k+1|

s̈n|
v

1
2

)
k|1Â◦◦

x , P (far) ä◦◦
x:n|

)

=

(
n−1∑
k=0

(
1− •k+1|V (fads)v

1
2

)
k|1Â◦◦

x , P (far) ä◦◦
x:n|

)
.
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The associated risk contract is not a pure risk contract, since •k|V
(ar)
x �= 0

for k = 0, 1, ..., n.
Again we have P (fas) = 1

s̈n|
, and in this case positive premiums for the

associated risk contract:

P (far) =

(
n−1∑
k=0

(
1− s̈k+1|

s̈n|
v

1
2

)
k|1Âx

)
/äx:n| .

We have by definition Π = P (fas) + P (far).
This example is illustrative for a mortgage construction in the Nether-

lands, where a mortgage is combined with an endowment policy. In case a
person (homeowner) dies, the associated savings policy ”pays” an amount
equal to the accumulated value of the deterministic savings premiums, and
the associated risk policy replinishes this to the amount of the original mort-
gage. If the person still lives at the end of the insurance period the mortgage
is paid in full by the associated savings contract. During each year the in-
sured has to pay interest on the original mortgage amount (as long as the
policy does not end). In the Netherlands the interest ”income” on the savings
premiums (included in the associated savings contract) is not charged by the
tax authorities, while the annual interest on the original mortgage amount
can, up to this moment, be entirely deducted annually from ones personal
income. In practice, premiums are normally paid monthly, and interest rates
and savings premiums are adjusted every couple of years.

Theorem 12 (Payments-at-death due in the middle of the year of death)
Any fair life insurance contract (C◦◦, P ◦◦) defined by (46) and (47) that is

the combination of a fair associated savings contract (C(fas)◦◦, P (fas)◦◦) and
a (fair) associated risk contract (C(far)◦◦, P (far)◦◦), where the risk contract is
a pure risk contract, reduces to the combination of the fair savings contract
and the fair risk contract mentioned in Theorem 16.

Proof.
It has already been noted in the preceding theorem that C◦◦ = C(fas)◦◦+

C(far)◦◦.
We define

P
(far)
k =

(
Dk − •k+1|V (fads) v

1
2

)
1Âx+k, (k = 0, 1, ..., n − 1). (91)
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By (77) we have

C(far)◦◦ =
n−1∑
k=0

(
Dk − •k+1|V (fads) v

1
2

)
k|1Â◦◦

x ,

hence

•k|1C(far)
x = P

(far)
k , (k = 0, 1, ..., n − 1),

so by Theorem 14 we now have a pure risk process, leading to

•k|V (far) = 0, (k = 0, 1, ..., n).

Hence by (45) it is follows that

•k|V (fads) = •k|Vx, (k = 0, 1, ..., n). (92)

¿From (65), (73) and (50) we now have

P
(fas)
k = P

(fads)
k = P

(s)
k , (k = 0, 1, ..., n − 1),

and from (55) and (91) and (92)

P
(far)
k = P

(r)
k , (k = 0, 1, ..., n − 1).

This means we are back to the situation of Theorem 16.

Example 11 (C◦◦, P ◦◦) =
(

nE
◦◦
x + nÂ

◦◦
x ,

n−1∑
k=0

Pk kE
◦◦
x

)

For this special type of fair life insurance contract, with still unknown
premiums Pk, the associated deterministic savings contract is given by

(C(ads)◦◦, P (ads)◦◦) =

(
(1, n),

n−1∑
k=0

(Pk, k)

)

and the associated fair deterministic savings contract with level premiums is

(C(fads)◦◦, P (fads)◦◦) =

(
(1, n),

n−1∑
k=0

(
1

s̈n|
, k

))
.
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The associated fair stochastic savings contract (= fair savings contract)
with level premiums is

(C(fas)◦◦, P (fas)◦◦) = (C(s)◦◦, P (s)◦◦)

=

(
nE

◦◦
x +

n−1∑
k=0

s̈k+1|
s̈n|

v
1
2 k|1Â◦◦

x ,
n−1∑
k=0

1

s̈n|
kE

◦◦
x

)

and the associated fair (pure) risk contract is

(C(far)◦◦, P (far)◦◦) =

(
n−1∑
k=0

(
1− s̈k+1|

s̈n|
v

1
2

)
k|1Â◦◦

x ,
n−1∑
k=0

P
(far)
k kE

◦◦
x

)

=

(
n−1∑
k=0

(
1− •k+1|V (as) v

1
2

)
k|1Â◦◦

x ,

n−1∑
k=0

P
(far)
k kE

◦◦
x

)

with

P
(far)
k = P

(r)
k =

(
1− s̈k+1|

s̈n|
v

1
2

)
1Âx+k, (k = 0, 1, ..., n − 1).

Since the associated risk contract is in this case a pure risk contract we have

•k|V
(ar)
x = 0 for k = 0, 1, ..., n. The net premium Pk is in this case

Pk =
1

s̈n|
+ P

(far)
k , (k = 0, 1, ..., n − 1).

It is left to the reader to check that

n−1∑
k=0

Pk kEx = nEx + nÂx.

Note that we also have

P
(fas)
k = P

(fads)
k = P

(s)
k =

1

s̈n|
, (k = 0, 1, ..., n − 1).

One can, of course, combine Theorems 24 and 28 to obtain other decom-
positions of the fair life insurance contract (C◦◦, P ◦◦). We hereby denote the
separation according to Theorem 24 by (Γ(fas)◦◦,Π(fas)◦◦) and (Γ(far)◦◦,Π(far)◦◦)

37



and corresponding reserves by •k|Υ
(fas)
x and •k|Υ

(far)
x . First we consider a sim-

ple linear combination; this leads to a decomposition with premiums

P
(fas)
k = α P

(s)
k + (1− α)Π

(fas)
k , (k = 0, 1, ..., n − 1), (93)

P
(far)
k = Pk − P

(fas)
k , (k = 0, 1, ..., n − 1) (94)

with, according to (87) and (88)

Π
(fas)
k = Pk

(
n∑

j=1

Lj vj/

n−1∑
j=0

Pj vj

)
, (k = 0, 1, ..., n − 1). (95)

The reserve •k|V
(fas)
x of the fair associated savings contract can for each

k be calculated using (64):

•k|V (fas)
x

=
k−1∑
j=0

(
P

(fads)
j − Lj

)
uk−j

= α
k−1∑
j=0

(
P

(s)
j − Lj

)
uk−j + (1− α)

k−1∑
j=0

(
Π

(fas)
j − Lj

)
uk−j

= α •k|V (s)
x + (1− α) •k|Υ(fas)

x , (k = 0, 1, ..., n), (96)

which leads to

C(fas)◦◦ =
n∑

k=1

Lk +
n−1∑
k=0

•k+1|V (fads) v1/2
k|1Â◦◦

x ,

and

C(far)◦◦ =
n−1∑
k=0

(
Dk − •k+1|V (fads) v1/2

)
k|1Â◦◦

x .

Then we have by the additional property (96):

C(fas)◦◦ = αC(s)◦◦ + (1− α)Γ(fas)◦◦

and
C(far)◦◦ = αC(r)◦◦ + (1− α)Γ(far)◦◦.

The same can be done for the premiums. This leads to:
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Theorem 13 (Payments-at-death due in the middle of the year of death)
Any fair life insurance contract (C◦◦, P ◦◦) defined by (46) and (47) with P0 �=
0 can be written as a combination of a fair associated savings contract and
a fair associated risk contract that are linear combinations of the associated
contracts considered in Theorem 24 and Theorem 28.

It is tempting to consider a generalisation of (93):

P
(fas)
k = αk P

(s)
k + (1− αk)Π

(fas)
k , (k = 0, 1, ..., n − 1), (97)

of which, for instance, relevant values are αk = 0, (k = 0, 1, ...,m − 1) and
αk = 1, (k = m,m+1, ..., n−1). In this case (94) and (95) remain unchanged.
Formula (96) then becomes:

•k|V (fas)
x

= βk

k−1∑
j=0

(
P

(s)
j − Lj

)
uk−j + (1− βk)

k−1∑
j=0

(
Π

(fas)
j − Lj

)
uk−j

= βk •k|V (s)
x + (1− βk) •k|Υ(fas)

x , (k = 0, 1, ..., n). (98)

We define β0 = α0. The βk (k = 1, 2, ..., n − 1) have to satisfy the next two

recursion equations

βk+1 •k+1|V (s)
x =

(
βk •k|V (s)

x + αk(P
(s)
k − Lk)

)
u (99)

and

(1− βk+1) •k+1|Υ(fas)
x =

(
(1− βk) •k|Υ(fas)

x + (1− αk)(Π
(fas)
k − Lk)

)
u.

(100)

This leads to

βk+1 =
(
βk •k|V (s)

x + αk(P
(s)
k − Lk)

)
u/ •k+1|V (s)

x (101)

and

βk+1 = 1−
(
(1− βk) •k|Υ(fas)

x + (1− αk)(Π
(fas)
k − Lk)

)
u /•k+1|Υ(fas)

x .

(102)
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In the special case k = 0 this reduces to

β1 = α0

(
(P

(s)
0 − L0)

)
u/ •1|V (s)

x (103)

β1 = 1− (1− α0)
(
(Π

(fas)
0 − L0)

)
u /•1|Υ(fas)

x (104)

leading in both cases to

β1 = α0. (105)

For k = 1 we have from (101) and (102)

β2 =
(
α0 •1|V (s)

x + α1(P
(s)
1 − L1)

)
u/ •2|V (s)

x

= (α0 − α1)u •1|V (s)
x / •2|V (s)

x + α1 (106)

and

β2 = 1−
(
(1− α0) •1|Υ(fas)

x + (1− α1)(Π
(fas)
1 − L1)

)
u /•2|Υ(fas)

x

= 1− (α1 − α0)u •1|Υ(fas)
x /•2|Υ(fas)

x − (1− α1), (107)

which leads to

(α0 − α1) u •1|V (s)
x / •2|V (s)

x + α1

= 1− (α1 − α0)u •1|Υ(fas)
x /•2|Υ(fas)

x − (1− α1), (108)

hence
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(α0 − α1) u
(
•1|V (s)

x / •2|V (s)
x − •1|Υ(fas)

x /•2|Υ(fas)
x

)
= 0. (109)

If

•1|V (s)
x / •2|V (s)

x �= •1|Υ(fas)
x /•2|Υ(fas)

x (110)

then we get

α1 = α0. (111)

This leads to

β2 = α0. (112)

If

•1|V (s)
x / •2|V (s)

x = •1|Υ(fas)
x /•2|Υ(fas)

x (113)

then it is not required that α1 = α0 and β2 can be calculated using either
(106) or (107), leading to the same value in both cases.

Following the above approach we will have

βk = αk = α0, (k = 0, 1, ..., n − 1) (114)

if

•k|V (s)
x / •k+1|V (s)

x �= •k|Υ(fas)
x /•k+1|Υ(fas)

x , (k = 1, 2, ..., n − 1). (115)

In case the equality sign holds in (114) for each k then it is, of course,
required that

P
(s)
k = Π

(fas)
k , (k = 0, 1, ..., n − 1), (116)

which is the case considered in Theorem 28.
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