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Abstract

In the recent actuarial literature, several proofs have been given for the
fact that if a random vector (X1,X2, . . . ,Xn) with given marginals has a
comonotonic joint distribution, the sum X1 + X2 + · · · + Xn is the largest
possible in convex order. In this note we give a lucid proof of this fact, based
on a geometric interpretation of the support of the comonotonic distribution.

1 Introduction

Up to a few years ago, when dealing with stochastic orderings, actuarial risk theory
has focused on single risks or sums of independent risks. Here risks denote non-
negative random variables such as they occur in the individual and the collective
model, see, e.g., Kaas et al. (1994, 2001). Lately, with an eye on financial actuarial
applications, the attention has shifted to sums X1 + X2 + · · · + Xn of random
variables that may also have negative values. Moreover, their independence is no
longer required. Only the marginal distributions are assumed to be fixed. A central
result is that in this situation, the sum of the components X1 + X2 + · · · + Xn

is the riskiest if the joint distribution of the random variables Xi is comonotonic.
This means that the support of (X1, X2, . . . , Xn) has the property that each two
points in this support have ordered components.

Perhaps due to the fact that so far no standard actuarial textbook has dealt
with this topic, independent proofs of this result have appeared in several papers
lately. Since Schmeidler (1986), Yaari (1987) and Roëll (1987), the concept of
comonotonicity has played an important role in the economic theories of decision
under risk and uncertainty. Hoeffding (1940) and Fréchet (1951) studied the
comonotonic distribution without actually proving the sum of the components to
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be riskier. As far as we know, this result was first mentioned in the actuarial
literature in Heilmann (1986), who attributes it to Meilijson and Nadas (1979).
Proofs of it involving the more general concept of supermodularity are contained
in Müller (1997) (see also Bäuerle and Müller, 1998), Goovaerts and Dhaene
(1999) and Goovaerts and Redant (1999). In Goovaerts and Kaas (2001) a proof is
given involving limits for random variables with finitely many values. Proofs for
the special case n = 2 and for the individual life model (two-point distributions)
are to be found in Dhaene & Goovaerts (1996) and Dhaene & Goovaerts (1997)
respectively. Goovaerts et al. (2000) considers only continuous random variables.
In Kaas et al. (2000), see also De Vylder and Dhaene (2001), a general proof is
given using an extension of the notion inverse distribution function. Dhaene et al.
(2000) prove a slightly more general result. See also Dhaene and Denuit (1999),
Wang and Dhaene (1998) and Wang and Young (1998).

A drawback of all these proofs is that none of them contributes a lot to the
intuitive understanding of the concepts involved. In this short note, we give a
transparent proof which is based on the geometric properties of the comonotonic
support, and which we think is more suitable for classroom use. Also, it might
inspire others to work on applications of comonotonic risks.

In Section 2, we define the order concepts used, convex order and stop-loss
order. In Section 3, we describe the support and the joint cdf of the comonotonic
distribution. Section 4 provides simple continuous and discrete examples. Section
5 finally gives the proof that comonotonicity implies a convex-largest sum of the
components of a random vector.

2 Convex order and stop-loss order

The natural ordering concept in actuarial science is the stop-loss order. A random
variable X is less than Y in stop-loss order, written X ≤SL Y , if their net stop-loss
premiums satisfy

E[(X − d)+] ≤ E[(Y − d)+] for all real d.

This order has many useful invariance properties. For instance, stop-loss order
survives the operations of convolution and compounding on non-negative random
variables (risks), and stop-loss larger claims lead to increased ruin probability and
higher zero-utility premiums for risk averse decision makers. Risk X is preferred
over Y either because it represents a smaller loss, or because it is less spread. See
for instance Kaas et al. (1994, 2001) in the framework of actuarial sciences.

The quantity E[(X − d)+] represents the expected loss over d. With stability
in mind, not only excessively large positive values of a random variable are
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unattractive, but also negative ones. Hence E[(−X − t)+] should be small too.
So in that case, random variable X is preferred over Y if for all real d = −t, both

E[(X − d)+] ≤ E[(Y − d)+], and

E[(d − X)+] ≤ E[(d − Y )+].

If this holds, we say that X is less than Y in convex order, written as X ≤cx Y .
Note that adding d to the first set of inequalities and letting d → −∞ leads to
E[X] ≤ E[Y ]. Subtracting d in the second set of inequalities and letting d → +∞
produces E[X] ≥ E[Y ], hence E[X] = E[Y ] must hold for two random variables
to be comparable in convex order. On the other hand, the first set of inequalities
together with equal means can be shown to imply the second set.

Stop-loss order can be shown to be the same as having ordered expected values
E[f(X)] for all non-decreasing convex functions f(·), see e.g. Goovaerts et al.
(1990). Hence it represents the common preferences of all risk-averse decision
makers. On the other hand, convex order is the same as ordered expectations for
all convex functions, see e.g. the standard work on stochastic orders in a more
general framework, Shaked and Shanthikumar (1994). This is of course where
the name convex order comes from. In a utility context, it represents the common
preferences of all risk-averse decision makers between random variables with
equal mean. The proof that convex order implies ordered expectations of convex
functions generally relies on the classical argument that any convex function can
be obtained as the uniform limit of a sequence of piecewise linear functions,
each of them being expressible as a linear combination of functions (x − t)+ and
(t−x)+. A somewhat simpler proof, relying on partial integration, is given below,
not because it is new, but just to keep the paper self-contained.

Lemma 1 If X ≤cx Y and f(·) is convex, then E[f(X)] ≤ E[f(Y )].

Proof. Consider the function g(x) = f(x) − f(a) − (x − a)f ′(a), with a some
point where f(·) is differentiable. Since E[X] = E[Y ], the inequality E[f(X)] ≤
E[f(Y )] is equivalent to E[g(X)] ≤ E[g(Y )]. Write F (x) = Pr[X ≤ x] and
F (x) = 1 − F (x). Since g(a) = g′(a) = 0, the integrated terms below vanish, so
by four partial integrations we get

E[g(X)] =
∫ a

−∞
g(x)dF (x) −

∫ +∞

a
g(x)dF (x)

=
∫ a

−∞
g′(x)F (x)dx +

∫ +∞

a
g′(x)F (x)dx

=
∫ a

−∞
E[(x − X)+]dg′(x) +

∫ +∞

a
E[(X − x)+]dg′(x)
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from which the result immediately follows, because by the convexity of f(·) and
also g(·), we have dg′(x) ≥ 0 for all x.

3 The support of the comonotonic distribution

We start by defining comonotonicity of a set of real n-vectors in Rn. When the
support of a random vector is a comonotonic set, also the random vector itself as
well as its distribution are called comonotonic.

Definition 1 The set S in Rn is said to be comonotonic, if, for all (y1, y2, . . . , yn)
and (z1, z2, . . . , zn) in this set, yi < zi for some i implies yj ≤ zj for all j.

Notice that a comonotonic set is a ‘thin’ set. Since the upper left and lower
right corners of a rectangle may not both be in it, it must be (a subset of) a curve
that is monotonically non-decreasing in each component. It cannot contain any
subset of dimension larger than 1.

Proposition 2 The connected closure S of the comonotonic set S is a continuous
curve which is comonotonic.

Proof. The set S consists of a series of connected closed curves, possibly contai-
ning just one point. Now, connect the endpoints of consecutive curves by straight
lines. Note that this has to be done only countably many times. We are left with
S, which is a continuously increasing curve in Rn.

The set S, having no more missing pieces, can be parametrized by non-
decreasing continuous functions such that

S = {(f1(z), . . . , fn(z)) | −∞ < z < ∞} .

Hence, it may be traversed in an upward direction (with increasing z).

Proposition 3 Let the support of random vector (Y1, Y2, . . . , Yn) be contained in
the connected closed curve S. Then the joint cdf of (Y1, Y2, . . . , Yn) must have the
following form:

Pr[Y1 ≤ y1, . . . , Yn ≤ yn] = min
j=1,...,n

Pr[Yj ≤ yj].
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Proof. We are looking for the total probability of the region R = R1∩R2∩· · ·∩Rn,
where Rj, j = 1, 2, . . . , n is defined as the region {t ∈ Rn|tj ≤ yj}. Excluding the
trivial cases S ⊂ R and S∩R = ∅, as vector s traverses S in the upward direction,
it must reach one of the boundary planes {t ∈ Rn|tj = yj}, j = 1, 2, . . . , n of
this region first. Let k be the index corresponding to this boundary plane. Then,
Pr[Yk ≤ yk] = minj Pr[Yj ≤ yj] and S ∩ R = S ∩ Rk are obvious from the
geometric properties of S. Hence the event Y1 ≤ y1, . . . , Yn ≤ yn has the same
probability as Yk ≤ yk, and the proof is completed.

For instance in Figure 2 below, S is the dotted line. To compute the joint cdf at
(1

2
, 3

2
), observe that going along S upwards, border x = 1

2
is crossed at (1

2
, 1), while

the other border y = 3
2

is crossed only at (3
2
, 3

2
). The set of points with positive

probability to the left of and below (1
2
, 3

2
) coincides with the corresponding set to

the left of x = 1
2
.

Consider some cumulative univariate distribution function F . It is well-known
that if U ∼ Uniform(0,1), the random variable F−1(U) is distributed according
to F (probability integral transform). Note that it is irrelevant how we define
y = F−1(u) for arguments u where there is an ambiguity, i.e., where F (y) = u
holds for an interval of y-values. For the same reason that the cdf of a random
variable can have only countably many jumps, it can be shown that there can only
be countably many such horizontal segments. [To see this, observe that, in the
interval [−2n, 2n], there are only finitely many intervals with a length over 2−n

where F (y) is constant, and let n → ∞.] Hence, if g(·) and h(·) are two different
choices for the inverse cdf, g(U) and h(U) will be equal with probability one. The
customary choice is taking F−1(u) to be the left-hand endpoint of the interval of
y-values (generally containing one point only) with F (y) = u. Then, F−1(·) is
non-decreasing and continuous from the left.

Now consider any random vector (X1, X2, . . . , Xn). We have:

Proposition 4 The following random vector has a comonotonic support, and
moreover, it has the same marginal distributions as (X1, X2, . . . , Xn):

(Y1, Y2, . . . , Yn) = (F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)).

Proof. If (y1, y2, . . . , yn) and (z1, z2, . . . , zn) are in the support of (Y1, Y2, . . . , Yn)
with F−1

Xi
(u) = yi < zi = F−1

Xi
(v), then u < v must hold, and hence yj ≤ zj for

all j = 1, 2, . . . , n.
For the marginals, we have Pr[F−1

Xi
(U) ≤ x] = Pr[U ≤ FXi(x)] = FXi(x) for

all x.

The support of (Y1, Y2, . . . , Yn) as in Proposition 4 is the closure of the set{(
F−1

X1
(u), F−1

X2
(u), . . . , F−1

Xn
(u)

)
|0 < u < 1

}
.
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Note that, by Proposition 3, any other comonotonic random vector with the same
marginals as (Y1, Y2, . . . , Yn) has the same cdf. In this sense, (F−1

X1
(U), F−1

X2
(U),

. . . , F−1
Xn

(U)) is the unique comonotonic random vector with the same marginals
as (X1, X2, . . . , Xn).

The following result can be found in Hoeffding (1940) and Fréchet (1951).
See also Bäuerle and Müller (1998). In our setup, it can be deduced directly from
Propositions 3 and 4.

Corollary 5 The joint cdf of the comonotonic random vector (Y1, Y2, . . . , Yn) with
the same marginal distributions as (X1, X2, . . . , Xn) satisfies:

Pr[Y1 ≤ y1, . . . , Yn ≤ yn] = min
j=1,...,n

Pr[Xj ≤ yj].

Note that this proposition implies that the comonotonic cdf is as large as it can
possibly be while still having the required marginal distributions. It is equal to
an upper bound for all joint cdfs with these marginal distributions. By the same
token, the joint probability of all Yj having large values is also maximized. The
probability of having some Yj large, some small, is minimized, thus eliminating
hedging possibilities. In this light, it is easy to see why the sum Y1 +Y2 + · · ·+Yn

is as variable as possible when the Yj are comonotonic, see Section 5.

4 Two simple examples

First, we give a continuous example with n = 3. Let X ∼ Uniform on the
set (0, 1

2
) ∪ (1, 3

2
), Y ∼ Beta(2, 2) and Z ∼ Normal(0, 1). The support of the

comonotonic distribution is the set

{(F−1
X (u), F−1

Y (u), F−1
Z (u))|0 < u < 1}.

See Figure 1. Actually, not all of the support is depicted. The part left out
corresponds to u /∈ (Φ(−2), Φ(2)) and extends along the asymptotes, the vertical
lines (0, 0, z) and (3

2
, 1, z). The thick continuous line is S, while the dotted line is

the straight line needed to make S into the connected curve S. Note that FX has a
horizontal segment between 1

2
and 1. The projection of S along the z-axis can also

be seen to constitute an increasing curve, as do projections along the other axes.
For a discrete example, take X ∼Uniform{0, 1, 2, 3} and Y ∼Binomial(3, 1

2
).

It is easy to verify that

(F−1
X (u), F−1

Y (u)) = (0, 0) for 0 < u <
1

8
,
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Figure 1: A continuous example with n = 3.

= (0, 1) for
1

8
< u <

2

8
,

= (1, 1) for
2

8
< u <

4

8
,

= (2, 2) for
4

8
< u <

6

8
,

= (3, 2) for
6

8
< u <

7

8
,

= (3, 3) for
7

8
< u < 1.

The support S of the comonotonic distribution is just these six points, and the
curve S arises by simply connecting them consecutively with straight lines, the
dotted lines in Figure 2. At the boundaries of the intervals for u, one may take
the limit from either the left or the right. The straight line connecting (1, 1) and
(2, 2) is not along one of the axes. This happens because at level u = 1

2
, both

FX(y) and FY (y) have horizontal segments. Note that any non-decreasing curve
connecting (1, 1) and (2, 2) would have led to a feasible S. These last two points
have probability 1

4
, the other points 1

8
.
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Figure 2: A discrete example

5 Comonotonicity and convex ordered sums

After all this work, harvesting our main result is quite easy.

Theorem 6 If the random vector (Y1, Y2, . . . , Yn) is comonotonic and has the
same marginals as (X1, X2, . . . , Xn), then

X1 + X2 + · · · + Xn ≤cx Y1 + Y2 + · · · + Yn.

Proof. It suffices to prove ≤SL, since it is obvious that the means of these two
random variables are equal. The following holds for all (x1, x2, . . . , xn) when
d1 + d2 + · · ·+ dn = d:

(x1 + x2 + · · · + xn − d)+

= {(x1 − d1) + (x2 − d2) + · · ·+ (xn − dn)}+

≤ {(x1 − d1)+ + (x2 − d2)+ + · · ·+ (xn − dn)+}+

= (x1 − d1)+ + (x2 − d2)+ + · · ·+ (xn − dn)+.

Assume that d is such that 0 < P [Y1 + Y2 + · · · + Yn ≤ d] < 1 holds; if not,
the stop-loss premiums of Y1 + Y2 + · · · + Yn and X1 + X2 + · · · + Xn can
be seen to be equal. The connected curve S containing the support S of the
comonotonic random vector (Y1, Y2, . . . , Yn) points upwards in all coordinates,
so it is obvious that S has exactly one point of intersection with the hyperplane
{(x1, . . . , xn)|x1 + · · ·+xn = d}. Let’s assume from now on that (d1, d2, . . . , dn)
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is this point of intersection. But then for all points (y1, y2, . . . , yn) in the support
S of (Y1, Y2, . . . , Yn), we have the following equality:

(y1 + y2 + · · ·+ yn − d)+ ≡ (y1 − d1)+ + (y2 − d2)+ + · · ·+ (yn − dn)+.

This is because for this particular choice of (d1, d2, . . . , dn), by the comonotonicity
we have that whenever yj > dj for any j, we also have yk ≥ dk for all k; when all
yj ≤ dj, obviously the left hand side is 0 as well.

Now replacing constants by the corresponding random variables in the two
relations above and taking expectations, we get, since Xj and Yj have the same
marginal distribution for all j,

E[(Y1 + Y2 + · · · + Yn − d)+]

= E[(Y1 − d1)+] + E[(Y2 − d2)+] + · · · + E[(Yn − dn)+]

= E[(X1 − d1)+] + E[(X2 − d2)+] + · · · + E[(Xn − dn)+]

≥ E[(X1 + X2 + · · · + Xn − d)+].

Note that having fixed S in a particular instance, in principle we can determine
d1, d2, . . . , dn as in the proof of Theorem 4 for every d, and using these we can
express the stop-loss premiums of the comonotonic sum in the marginal stop-loss
premiums E[(Xi − di)+], see the last equality in the proof just above. Also, we
have proven the following theorem:

Theorem 7 If the random vector (Y1, Y2, . . . , Yn) is comonotonic, then the u-
quantiles of the sum of its components are equal to the sum of the u-quantiles of
its components:

F−1
Y1+···+Yn

(u) = F−1
Y1

(u) + · · · + F−1
Yn

(u).

Proof. For any d, choose (d1, d2, . . . , dn) as above. If the event Y1+Y2+· · ·+Yn ≤
d has probability u, the same holds for Yi ≤ di for all i. From this, the result
immediately follows.

Hence, comonotonic random variables are quantile-additive. Since quantiles
are Values-at-Risk, quantile functions may be added to get the VaR for the total
portfolio when the subportfolios are comonotonic. If they are not, this procedure
merely provides the VaR with a sum that constitutes a convex-order upper bound
for the total on all portfolios. Note that this upper bound has the same mean,
which means that the corresponding cdf’s, as well as their inverses, must cross.
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Therefore there exist u-values for which the actual VaR is larger, but also for which
it is lower, so there is no guarantee that the sum of the VaRs is always larger than
the VaR for the sum. But since the upper bound has a larger variance, it will tend
to have thicker tails, and hence for u close to 1, its VaR will generally be larger.
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données”, Ann. Univ. Lyon Sect. A, Series 3, 14, 53-77.

[8] Goovaerts, M.J.; Dhaene, J.(1999). ”Supermodular ordering and stochastic
annuities”, Insurance: Mathematics & Economics, 24(3), 281-290.

10



[9] Goovaerts, M.J.; Dhaene, J;. De Schepper, A. (2000). ”Stochastic Upper
Bounds for Present Value Functions”, Journal of Risk and Insurance Theory,
67.1, 1-14.

[10] Goovaerts, M.J.; Kaas, R. (2001). ”Some problems in actuarial finance in-
volving sums of dependent risks”, Statistica Neerlandica, to appear.

[11] Goovaerts, M.J.; Kaas, R.; Van Heerwaarden, A.E.; Bauwelinckx, T. (1990).
”Effective Actuarial Methods”. North-Holland, Amsterdam.

[12] Goovaerts, M.J.; Redant, R. (1999). ”On the distribution of IBNR reserves”,
Insurance: Mathematics & Economics 25, 1-9.

[13] Hoeffding, W. (1940). ”Masstabinvariante Korrelationstheorie”, Schriften
des mathematischen Instituts und des Instituts für angewandte Mathematik
der Universität Berlin 5, 179-233.

[14] Kaas, R., Van Heerwaarden, A.E., Goovaerts, M.J. (1994). ”Ordering of
actuarial risks”, Institute for Actuarial Science and Econometrics, University
of Amsterdam, Amsterdam.

[15] Kaas, R.; Dhaene, J.; Goovaerts, M.J. (2000). ”Upper and lower bounds
for sums of random variables”, Insurance: Mathematics & Economics 23,
151-168.

[16] Kaas, R.; Goovaerts, M.J.; Dhaene, J.; Denuit, M. (2001). ”Modern Actuarial
Risk Theory”, Kluwer, to appear.

[17] Meilijson, I.; Nadas, A. (1979). ”Convex majorization with an application to
the length of critical paths”, Journal of Applied Probability, 16, 671-677.

[18] Müller, A. (1997). ”Stop-loss order for portfolios of dependent risks”, Insu-
rance: Mathematics & Economics 21, 219-223.
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