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Abstract

Concave distortion risk measures were introduced in the actuarial literature by
Wang (1996). Loosely speaking, such a risk measure assigns a ”distorted expec-
tation” to any distribution function. The expectation is distorted by a so-called
”distortion function”. Concavity of the distortion function ensures that the risk
measure preserves stop-loss order.

Consider two random couples with identical marginal distributions but of which
the dependency structure differs. Assume that the covariance of the second couple
exceeds the covariance of the first one. Let us now consider a risk measure for
the sum of the components of each couple. One would expect that any reasonable
risk measure will lead to a smaller real number for the sum of the components of
the first couple. However, we will demonstrate that this property does not hold in
general for concave distortion risk measures. Moreover, for any such risk measure,
it is possible to construct an example where the correlation order is not preserved.

Despite this theoretical result, some simulation-based testing indicates that most
well-known concave distortion risk measures for sums of random couples with given
marginals frequently do preserve the order of the correlations.
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1 Introduction

Distortion risk measures were introduced in the actuarial literature by Wang (1996). For
a given nondecreasing function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1, the
distorted expectation Hg(X) of any nonnegative random variable X is defined as follows:

Hg(X) =
∫ ∞

0
g(1− FX(t))dt =

∫ 1

0
F−1

X (1− q)dg(q), (1)

where FX(t) denotes the cumulative distribution function of X. The function g is called
a distortion function. Distortion risk measures have several properties, such as posi-
tive homogeneity (PH), translation invariance (TI), monotonicity (M) and additivity for
comonotonic risks (CA). In insurance applications one often assumes the distortion func-
tions g to be concave, which implies that the risk measure Hg(·) is subadditive (SA).
The above mentioned properties of concave distortion risk measures mean that they are
”coherent” in the sense of Artzner et al. (1999).

Definition 1 Let (X1, Y1) and (X2, Y2) be elements of R(FX , FY ) (i.e. both random cou-
ples have marginal distributions equal to FX and FY respectively). Then we say that
(X1, Y1) precedes (X2, Y2) in the correlation order sense, notation (X1, Y1) ≤corr (X2, Y2),
if either of the following equivalent conditions holds:
(a) For all non-decreasing functions f and g, we have that

Cov(f(X1), g(Y1)) ≤ Cov(f(X2), g(Y2)),

provided the covariance functions exist.
(b) For any non-negative real numbers x and y, we have that

F(X1,Y1)(x, y) ≤ F(X2,Y2)(x, y).

Consider two bivariate random variables (X1, Y1) and (X2, Y2) being elements ofR(FX , FY )
and such that (X1, Y1) precedes (X2, Y2) in the correlation order sense. Obviously in this
case, we consider the sum S1 = X1 + Y1 as ”less risky” than S2 = X2 + Y2 (see [22])).
The following theorem states that distortion risk measures order the riskiness of the two
sums properly.

Theorem 1 Let g be a nondecreasing concave function, such that g(0) = 0 and g(1) = 1.
Let (X1, Y1) and (X2, Y2) be elements of R(FX , FY ), such that

(X1, Y1) ≤corr (X2, Y2).

Then we have that for S1 = X1 + Y1 and S2 = X2 + Y2 the following inequality holds:

Hg(S1) ≤ Hg(S2).
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The proof for this result can be found in Wang & Dhaene (1998). In fact, they prove that
S1 precedes S2 in the stop-loss order sense, which immediately implies the stated result.
All these properties make that the class of distortion risk measures is often seen as a
very powerful class of premium principles or, more generally, of risk measures. However,
we must realize that correlation order is only a partial order. In order to compare the
riskiness of the sums Si of bivariate random variables (Xi, Yi) ∈ R(FX , FY ) also in the
case these couples are not ordered in the correlation sense, we will look at the ordering
of the variances Var(Si), or, equivalently, of the correlation coefficients corr(Xi, Yi) of the
summands. We will investigate if (concave) distortion risk measures preserve this ordering.

Example 1 The concave distortion risk measure with distortion function given by gp(x) =

min
(

x
p
, 1

)
for a value of p in (0, 1) is called Tail Value-at-Risk at level p, which is denoted

by TVaRp(X). In this example we will illustrate that corr(X1, Y1) ≤ corr(X2, Y2) does not
always imply that TVaRp (S1) ≤ TVaRp (S2).
Let X and Y be two random variables with probabilities Pr(X = i) = pi and Pr(Y =
i) = qi given by:

p0 = p1 =
1−√

p

2
, p2 =

√
p (2)

and

q0 = 1−√
p, q1 =

√
p. (3)

Now let (X1, Y1) and (X2, Y2) be two elements of R(FX , FY ). Concerning the dependency
structure of the couples, we assume that X1 and Y1 are mutually independent, while the
distribution of (X2, Y2) is given in the Table 1

X2

Y2 0 1 2

0 p0q0 + 2ε p1q0 − 3ε p2q0 + ε
1 p0q1 − 2ε p1q1 + 3ε p2q1 − ε
Table 1: The distribution of (X2, Y2).

In this definition ε denotes an arbitrary positive number satisfying the condition

ε ≤ min
(
p0q1
2
,
p1q0
3
, p2q1

)
. (4)

One immediately can verify that (X2, Y2) ∈ R(FX , FY ) . Furthermore, Cov(X2, Y2) = ε,
and hence

0 = corr(X1, Y1) < corr(X2, Y2) = ε.
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For the decumulative distribution functions of the sums Si = Xi + Yi we find:

F S1(t) =




1 for t < 0,
p+ υ + ϑ for 0 ≤ t < 1,
p+ υ for 1 ≤ t < 2,
p for 2 ≤ t < 3,
0 for t ≥ 3.

and

F S2(t) =




1 for t < 0,
p+ υ + ϑ− 2ε for 0 ≤ t < 1,
p+ υ + 3ε for 1 ≤ t < 2,
p− ε for 2 ≤ t < 3,
0 for t < 0.

(for simplicity of notation we denote Pr(S1 = 2) by υ and Pr(S1 = 1) by ϑ).
From (1) we find that TVaRp (S1) and TVaRp (S2) are given by:

TVaRp (S1) = gp(p+ υ + ϑ) + gp(p+ υ) + gp(p) = 3, (5)

and

TVaRp (S2) = gp(p+ υ + ϑ− 2ε) + gp(p+ υ + 3ε) + gp(p− ε) = 3− ε

p
. (6)

Hence, we can conclude that TVaR does not always preserve the order induced by the
correlation between the components of random couples.

In Section 2 we present the general result of this paper which states that there does not
exist any concave distortion function g such that the corresponding concave distortion
risk measure Hg preserves the correlation coefficient of summands in all cases. In Section
3 we investigate for some well-known distortion risk measures how likely it is that they
preserve the desired order. Section 4 concludes the paper. The proof for our main result
can be found in the Appendix.

2 Construction of a general counterexample

In the following theorem, we will state our main result. We will prove the result for
distortion functions g : [0, 1]→ [0, 1], which satisfy following conditions:
(i) g(0) = 0 and g(1) = 1,
(ii) g is nondecreasing and piecewise continuous,
(iii) g is piecewise continuously differentiable and g′(p) is nonincreasing,
(iv) ∃p0 g(p0) �= p0.
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Theorem 2 Let g be an arbitrary function satisfying conditions (i)-(iv). Then there

exist univariate distributions FX(g), FY (g) and random couples
(
X

(g)
1 , Y

(g)
1

)
,

(
X

(g)
2 , Y

(g)
2

)
belonging to R(FX(g) , FY (g)) such that

(i) corr
(
X

(g)
1 , Y

(g)
1

)
< corr

(
X

(g)
2 , Y

(g)
2

)
,

(ii) Hg

(
X

(g)
1 + Y

(g)
1

)
> Hg

(
X

(g)
2 + Y

(g)
2

)
.

Proof. In the Appendix.

Obviously if g satisfies conditions (i)-(iii), then g is a concave distortion function. The
theorem can be generalized to general concave distortion functions by using appropriate
limit theorems. We skip this rather technical proof, because all distortion functions
encountered in practical applications do normally satisfy conditions (i)-(iii).
The condition (iv) excludes the case where g(p) = p for all p ∈ (0, 1). The distortion risk
measure related to this distortion function is the expectation, for which the result of the
theorem obviously cannot hold.
Intuitively, it is clear that the assumption of concavity of g is somehow critical. If it
was released, it should be easier to find counterexamples. However in the proof we use
this assumption explicitly. In fact, when one releases the assumption of concavity, the
situation is much easier in view of the following representation theorem, originally proved
by Schmeidler (1986).

Theorem 3 Let BV be a set of bounded random variables. If the functional H : BV →
[0,∞)
(i) is additive for comonotonic risks,
(ii) preserves first stochastic dominance (i.e. ∀t FX(t) ≤ FY (t)⇒ H(X) ≤ H(Y )),
(iii) satisfies H(1)=1,
then there exists a distortion function h such that H(X) = Hh(X) for all X ∈ BV .
Moreover, H(X + Y ) ≤ H(X) + H(Y ) holds for all X, Y ∈ BV if and only if h is
concave.

Proof. See Dennenberg (1994).

Consider a distortion risk measure Hg generated by the distortion function g which is not
concave. Clearly, Hg obeys (i), (ii) and (iii) in the theorem above, so that we find the
following corrolary.

Corollary 1 Let Hg denote a distortion risk measure generated by the distortion function
g which is not concave. Then there exists a bivariate random variable (X, Y ) with bounded
marginals such that Hg(X + Y ) > Hg(X) +Hg(Y ).

Now it is straightforward to prove the general theorem.
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Theorem 4 Let g be an arbitrary distortion function, piecewise continuously differen-
tiable. Then there exist univariate distributions FX(g) , FY (g) and bivariate distributions(
X

(g)
1 , Y

(g)
1

)
,

(
X

(g)
2 , Y

(g)
2

)
belonging to R(FX(g) , FY (g)) such that

(i) corr
(
X

(g)
1 , Y

(g)
1

)
< corr

(
X

(g)
2 , Y

(g)
2

)
,

(ii) Hg

(
X

(g)
1 + Y

(g)
1

)
> Hg

(
X

(g)
2 + Y

(g)
2

)
.

Proof. If g is concave the conclusion follows immediately from Theorem 2.
If g is not concave, we find from Corollary 1 that there exists a random couple (X, Y )
such that

Hg(X + Y ) > Hg(X) +Hg(Y ). (7)

On the other hand, for the couple (Xc, Y c) with the same marginals as the couple (X, Y ),
but with the comonotonic dependency structure, we have that

Hg(X
c + Y c) = Hg(X) +Hg(Y ). (8)

Combining (7) with (8), one gets

Hg(X + Y ) > Hg(X
c + Y c). (9)

On the other hand we have that Var(X + Y ) < Var(Xc + Y c) and thus corr(X, Y ) <
corr(Xc, Y c) (see Dhaene et al. (2002)).

Hence, taking
(
X

(g)
1 , Y

(g)
1

)
= (X, Y ) and

(
X

(g)
2 , Y

(g)
2

)
= (Xc, Y c), we find the desired

result.

Remark 1 The assumption of piecewise continuous differentiability of g is used only for
consistency with assumptions of Theorem 2. In fact it is not used for functions not being
concave. As mentioned before, for concave functions this assumption can also be released
easily.

3 Distortion risk measures and correlation coefficient

- an experimental test of consistency

In this section we describe a simple methodology to test the consistency of distortion risk
measures of sums of random variables with the order induced by the correlation coefficient
between the marginals. We want to emphasize that the test presented here is just a first
attempt to test this form of consistency.
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3.1 Description of the experiment

First, we will select 50,000 couples (X1k, Y1k) in the class of bivariate random variables
with support {(i, j) | i, j = 0, . . . , 9}. For each of the selected couples, we will also consider
a random couple (X2k, Y2k) with the same marginals as (X1k, Y1k), but of which X2k and
Y2k are mutually independent. Finally, we will check how many of these couples (X1k, Y1k)
and (X2k, Y2k) satisfy the following relation:

sign
(
corr(X1k, Y1k)− corr(X2k, Y2k)

)
= sign

(
Hg(X1k + Y1k)−Hg(X2k + Y2k)

)
.
(10)

In order to select (the distribution function of) the couple (X1k, Y1k), we start by genera-
ting 99 random numbers Uik in the interval (0, 1). Let

V0 = 0,

Vi = U
′
i for i = 1, . . . , 99,

V100 = 1, (11)

where U ′
i denotes i-th order statistic of the sequence {Ui}. Next, we consider the diffe-

rences aik = Vi − Vi−1 for i = 1, . . . , 100. In this way, we get 100 identically distributed
random numbers such that

a1 + . . .+ a100 = 1. (12)

Now we define the probability distribution of (X1k, Y1k) as follows:

Pr(X1k = i, Y1k = j) = ai+1+10j . (13)

The marginal distributions of X1k and Y1k are given by P (X1k = i) =
∑9

j=0 ai+1+10j and

P (Y1k = j) =
∑9

i=0 ai+1+10j .
The related random couple (X2k, Y2k) is defined as the independent counterpart of (X1k, Y1k),
hence

P (X2k = i, Y2k = j) = P (X1k = i) P (Y1k = j). (14)

Finally, we compute
(
corr(X1k, Y1k), corr(X2k, Y2k)

)
and

(
Hg(X1k+Y1k) , Hg(X2k+Y2k)

)
and then verify whether the equation (10) is satisfied.
This procedure is repeated for every k = 1, . . . , 50000.
Then, for any particular choice of the distortion risk measure g we determine the frequency

rg =
Ng

50, 000
, (15)
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with Ng defined by

Ng = #
{(
(X1k, Y1k), (X2k, Y2k)

)
| (10) holds

)
, (16)

We will call rg the correlation consistency coefficient of the risk measure Hg, for the
particular set of constructed bivariate distributions.

3.2 Results of the test and conclusions

3.2.1 Description of tested one-parameter families of distortion functions

We have performed the procedure described above for the following one-parameter families
of distortion functions. Note that although Value-at-Risk is a nonconcave distortion
risk measure, we have included it because of its importance in practice. Most of these
distortion risk measures were introduced in Wang (1996). For each family the parameter
p satisfies p ∈ (0, 1).

• Value at Risk: gp(x) = 1(p,1](x)

• Tail Value at Risk: gp(x) = min
(

x
p
, 1

)

• Proportional hazard transform: gp(x) = xp

• Dual-power transform: gp(x) = 1− (1− x)
1
p

• Dennensberg’s absolute deviation principle:

gp(x) =

{
(1 + p)x for 0 ≤ x ≤ 1

2

p+ (1− p)x for 1
2
≤ x ≤ 1

• Gini’s principle: gp(x) = (1 + p)x− px2

• Square-root transform: gp(x) =
√

1−ln(p)x−1√
1−ln(p)−1

• Exponential transform: gp(x) = 1−px

1−p

• Logarithmic transform: gp(x) = ln(1−ln(p)x)
ln(1−ln(p))
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Parameter p
Risk measure 0.01 0.1 0.25 0.5 0.75 0.9 0.99

Value at Risk 84.18% 92.87% 94.28% 88.95% 75.07% 69.08% 74.51%
Tail Value at Risk 66.83% 71.25% 82.38% 89.68% 82.19% 70.93% 58.65%
PH transform 70.11% 71.72% 74.78% 80.55% 85.65% 88.09% 89.49%
Dual-power 60.01% 77.98% 89.37% 96.90% 93.55% 90.96% 89.66%
Dennenberg 89.68% 89.68% 89.68% 89.68% 89.68% 89.68% 89.68%
Gini 96.90% 96.90% 96.90% 96.90% 96.90% 96.90% 96.90%

Square-root 92.11% 94.14% 95.28% 96.22% 96.78% 96.88% 96.89%
Exponential 87.11% 92.57% 94.91% 96.32% 96.82% 96.88% 96.90%
Logarithmical 89.63% 92.33% 94.17% 95.76% 96.64% 96.89% 96.89%

Table 2: The results of the correlation consistency tests for different families of distortion
risk measures.

3.2.2 Results

In the Table 2 we show the correlation consistency coefficient rg for different distortion
functions g.
From this table we can draw the overall conclusion, that the correlation coefficient is pre-
served in the majority of cases, for many tested distortion risk measures more frequently
than nine times out of ten, for some of them even more than than nineteen times out
of twenty. Favorite risk measures, such as Value-at-Risk, Tail Value-at-Risk and Pro-
portional Hazard do not perform very well. We also observe that correlation consistency
differs not only between different families of distortion risk measures, but also between dif-
ferent parameters within the same family. In this respect, the dispersion of the correlation
consistency seems to be the worst for the Dual-power transform.
Risk measures such as the square root transform, the exponential transform and loga-
rithmical transform perform very well. For these distortion risk measures, the correlation
consistency coefficient does not seem to be very dispersed and tends to increase monoton-
ically together with the parameter p.
From the table, it seems that the Dennenberg principle and the Gini principle have a very
stable correlation consistency coefficient. In our test this coefficient is even identical for
all parameters p. This is not accidental, because both risk measures can be expressed
as the sum of the expectation and a summand proportional to some dispersion measures
independent from the parameter p. Interested readers are referred to [2].
The table leads to the conclusion that Gini’s principle performs the best in terms of
correlation consistency.
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4 Summary

The most well-know measure of riskiness of a random variable is without doubt its vari-
ance. Obviously the variance cannot be viewed as the universal risk measure, because
it cannot detect sources of uncertainty such as skewness and heavy tails in an adequate
way. However, when we consider random couples (X1, Y1) and (X2, Y2), both elements of
R(FX , FY ), relative riskiness of the sums Si = Xi + Yi results from dependency structure
between the summands, and then the variance seems to be reasonable for the purpose of
risk ordering.
In this paper we investigated if the risk ordering generated by comparing the variances of
the sums Si (or equivalently the correlation coefficient between the summands) is preserved
by (concave) distortion risk measures. We found that for each distortion risk measure one
can find random couples for which the order is not preserved. In the last section we tested
the consistency between both orderings. We found that for some distortion transforms
the consistency seems to be very high (especially for Gini’s risk measure), but that the
consistency varies significantly between different risk measures.
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Appendix

In this Appendix we give a proof for Theorem 2. We start with proving a result which
will turn out to be helpful for the proof of the theorem.

Lemma 1 Let g be an arbitrary function satisfying conditions (i)-(iv). Then there exist
real numbers p1 < p2 in (0, 1) such that g′(p1) > g

′(p2) and g
′(p1) + 2g

′
−(1) > 3g

′(p2).

Proof. Note that g′ cannot be constant in view of condition (iv), and thus, from the
concavity and nondecreasingness of g, one can find that there exist a p1 ∈ (0, 1) satisfying

g′(p1) > g
′
−(1) > 0. (17)

This leads to

3g′−(1) < g
′(p1) + 2g

′
−(1). (18)

Define ε =
g′(p1)−g′−(1)

3
> 0. The left continuity of g′ in 1 implies that we can choose a

point p2 such that

g′(p2)− g′−(1) < ε. (19)

Now we easily find that

3g′(p2) < g
′(p1) + 2g

′
−(1). (20)

Moreover, also the following inequality holds:

g′(p2)− g′−(1) < ε =
g′(p1)− g′−(1)

3
< g′(p1)− g′−(1), (21)

and hence,

g′(p1) > g
′(p2), (22)

which completes the proof of Lemma 1.

Now we are able to prove Theorem 2.

Proof of Theorem 2. Consider two points 0 < p1 < p2 < 1 satisfying the conditions
of Lemma 1. Consider the random variables X(g)and Y (g) with respective distribution
functions:

Pr
(
X(g) = 0

)
= Pr

(
X(g) = 1

)
=
1−√

p2

2
, P

(
X(g) = 2

)
=

√
p2 (23)
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and

Pr
(
Y (g) = 0

)
= 1− p1√

p2
, Pr

(
Y (g) = 1

)
=
p1√
p2
. (24)

Furthermore, let
(
X

(g)
1 , Y

(g)
1

)
be the independent pair with marginals as defined in (23)

and (24), i.e.:

Pr
(
X

(g)
1 = i, Y

(g)
1 = j

)
= pij = Pr

(
X(g) = i

)
Pr

(
Y (g) = j

)
. (25)

The joint distribution of
(
X

(g)
2 , Y

(g)
2

)
is defined in the Table 3

X
(g)
2

Y
(g)
2 0 1 2

0 p00 + 2ε p10 − 3ε p20 + ε
1 p01 − 2ε p11 + 3ε p21 − ε

Table 3: The distribution of
(
X

(g)
2 , Y

(g)
2

)
.

In this definition ε denotes an arbitrary positive number satisfying the condition

ε ≤ min
(
p01

2
,
p10

3
, p21

)
. (26)

Note that (X
(g)
2 , Y

(g)
2 ) ∈ R(FX(g) , FY (g)).

The computation of the covariance is then straightforward. One gets that

Cov
(
X

(g)
2 , Y

(g)
2

)
= ε > 0 = Cov

(
X

(g)
1 , Y

(g)
1

)
. (27)

Let us define S
(g)
1 = X

(g)
1 +X

(g)
1 and S

(g)
2 = X

(g)
2 +Y

(g)
2 . To complete the proof of Theorem

2, it suffices to prove that

Hg

(
S

(g)
1

)
> Hg

(
S

(g)
2

)
. (28)

We compute the distribution of S
(g)
1 as follows:

f1(2) = Pr
(
S

(g)
1 > 2

)
= p21 =

√
p2
p1√
p2
= p1, (29)

f1(1) = Pr
(
S

(g)
1 > 1

)
= p21 + p11 + p20 = p1 +

1−√
p2

2

p1√
p2
+
√
p2

(
1− p1√

p2

)

>
√
p2 > p2, (30)
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f1(0) = Pr
(
S

(g)
1 > 0

)
= 1− p00 < 1. (31)

One finds the following expression for the decumulative distribution function:

F
S

(g)
1
(t) =



1 for t < 0
f1(k) for k ≤ t < k + 1 and k = 0, 1, 2
0 for t ≥ 3

Now using formula (1), we find

Hg

(
S

(g)
1

)
= g

(
f1(0)

)
+ g

(
f1(2)

)
+ g

(
f1(2)

)
. (32)

Analogously, we define values f2(k) = Pr
(
S

(g)
2 > k

)
for k = 0, 1, 2. We get the following

identities:

f2(2) = f1(2)− ε, (33)

f2(1) = f1(1) + 3ε, (34)

f2(0) = f1(0)− 2ε. (35)

Thus

Hg

(
S

(g)
2

)
= g

(
f1(0)− 2ε

)
+ g

(
f1(1) + 3ε

)
+ g

(
f1(2)− ε

)
. (36)

Combining (32) with (36), we see that in order to complete the proof of inequality (28),
it suffices to prove that

g
(
f1(2)

)
− g

(
f1(2)− ε

)
+ g

(
f1(0)

)
− g

(
f1(0)− 2ε

)
> g

(
f1(1) + 3ε

)
− g

(
f1(1)

)
.
(37)

Now let us take a closer insight in differences occurring in inequality (37). From the
Lagrange Theorem it follows that there exist 0 < ε0, ε1, ε2 < ε such that the following
identities hold:

g
(
f1(0)

)
− g

(
f1(0)− 2ε

)
= 2ε · g′

(
f1(0)− 2ε0

)
> 2ε · g′−(1), (38)

g
(
f1(1) + 3ε

)
− g

(
f1(0)

)
= 3ε · g′

(
f1(1) + 3ε1

)
< 3ε · g′(p2), (39)

g
(
f1(2)

)
− g

(
f1(2)− ε

)
= ε · g′

(
f1(2)− ε2

)
> ε · g′(p1). (40)
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However, from Lemma 1, we find that

g′(p1) + 2g
′
−(1) > 3g

′(p2). (41)

Multiplying both sides of (41) by ε and combining with the inequalities (38), (39) and
(40), we get the sequence of inequalities:

g
(
f1(2)

)
− g

(
f1(2)− ε

)
+ g

(
f1(0)

)
− g

(
f1(0)− 2ε

)
> ε g′(p1) + 2ε g

′
−(1) >

> 3ε g′(p2) > g
(
f1(1) + 3ε

)
− g

(
f1(1)

)
. (42)

This proves inequality (37), and thus also Theorem 2.
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