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Abstract

In this pedagogical note, it is shown how extremal values of classical measures of associa-
tion like Pearson’s correlation coefficient, Kendall’s τ , Spearman’s ρ and Gini’s γ, character-
ize comonotonicity and countermonotonicity. The link between zero-correlation and mutual
independence is also examined.
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1 Introduction

There are a variety of ways to discuss and to measure dependence. First and foremost
is Pearson’s product moment correlation coefficient which captures the linear dependence
between couples of rv’s, but which is not invariant under monotone tranformations of the
coordinate axes. As we shall see, other measures are scale-invariant, that is, they remain
unchanged under strictly increasing transformations of the rv’s; in this category, we find
the population versions of Kendall’s τ and Spearman’s ρ, both of which measure a form of
dependence known as “concordance”.

Kendall’s τ and Spearman’s ρ are bivariate measures of dependence for continuous ran-
dom variables that are invariant with respect to strictly monotone transformations and equal
to 1 (resp. -1) for the Fréchet upper (resp. lower) bound, i.e. when one variable is a non-
decreasing (resp. non-increasing) transform of the other. In the first case, these variables
are said to be comonotonic, while in the second case, they are said to be countermonotonic.

What seems to be less known, however, is that a value of 1 or -1 for these measures
of association characterizes the Fréchet bounds. Since Spearman’s correlation coefficient r
does not enjoy these convenient invariance properties, Kendall’s τ and Spearman’s ρ are more
desirable measures of association for multivariate non-normal distributions. However, if we
restrict ourselves to random couples valued in the positive quadrant, an extreme value for
r also characterizes the Fréchet bounds. In general, for measures of “concordance” as those
defined by Scarsini (1984), such results do not always hold. In passing, we show that for
positively or negatively quadrant dependent random couples, joint uncorrelatedness implies
mutual independence.

Let F1 and F2 be univariate distribution functions. In this paper, we consider the Fréchet
space R(F1, F2) consisting of all the (distribution functions F(X1,X2) of) random couples
(X1, X2) with marginals F1 and F2, i.e. Fi(xi) = P [Xi ≤ xi], xi ∈ IR. A celebrated result
attributed to Höffding and Fréchet indicates that for any (X1, X2) in R(F1, F2) the following
inequalities hold:

M(x1, x2) ≤ F(X1,X2)(x1, x2) ≤ W (x1, x2) for all (x1, x2) ∈ IR2, (1.1)

where W is usually referred to as the Fréchet upper bound of R(F1, F2) and is defined by

W (x1, x2) = min {F1(x1), F2(x2)} , (x1, x2) ∈ IR2,

while M is usually referred to as the Fréchet lower bound of R(F1, F2) and is defined by

M(x1, x2) = max {F1(x1) + F2(x2)− 1, 0} , (x1, x2) ∈ IR2.

Remark that M and W are reachable in R(F1, F2). Indeed, given a random variable U
uniformly distributed on [0, 1], it can be shown that W is the distribution function of the
random couple

(F−1
1 (U), F−1

2 (U)) ∈ R(F1, F2),

where the generalized inverses of the Fi’s are defined as

F−1
i (u) = inf {x ∈ IR such that Fi(x) ≥ u} , u ∈ [0, 1], i = 1, 2.
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On the other hand, M is the distribution function of the random couple

(F−1
1 (U), F−1

2 (1− U)) ∈ R(F1, F2).

The elements of the Fréchet space R(F1, F2) which have W as distribution function are said
to be comonotonic in Economics, Finance and Actuarial Sciences; see e.g. Yaari (1987) or
Wang & Dhaene (1997), as well as the recent review papers by Dhaene, Denuit, Goovaerts,
Kaas & Vyncke (2002a,b). Those corresponding to M are said to be mutually exclusive in
Actuarial Sciences; see Dhaene & Denuit (1999).

Tchen (1980) proved that for any (X1, X2) and (Y1, Y2) in R(F1, F2) such that

F(X1 ,X2)(x1, x2) ≤ F(Y1,Y2)(x1, x2) for all x1, x2 ∈ IR,

the inequality
Eφ(X1, X2) ≤ Eφ(Y1, Y2) (1.2)

is satisfied for all the measurable functions φ satisfying

φ(x1, x2) + φ(y1, y2)− φ(x1, y2)− φ(y1, x2) ≥ 0 for all x1 ≤ y1 and x2 ≤ y2,

provided the expectations in (1.2) exist. Such functions φ are usually called quasi-monotone,
superadditive or supermodular in the literature (note that any joint distribution function is
supermodular). Combining (1.2) and (1.1), we get the inequalities

Eφ(F−1
1 (U), F−1

2 (1− U)) ≤ Eφ(X1, X2) ≤ Eφ(F−1
1 (U), F−1

2 (U)) (1.3)

for any (X1, X2) ∈ R(F1, F2) and supermodular function φ, provided the expectations exist.

2 Pearson’s correlation coefficient

In this section, we restrict ourselves to random vectors valued in the positive quadrant, i.e.

P [X1 < 0] = P [X2 < 0] = 0,

with a finite variance-covariance matrix. Traditionally, the relationship of two random vari-
ables, X1 and X2, is usually measured by Pearson’s correlation coefficient r(X1, X2) given
by

r(X1, X2) =
Cov[X1, X2]√
Var[X1]Var[X2]

,

where Cov[X1, X2] = E[X1X2]−E[X1]E[X2] is the covariance of X1 and X2. It is well-known
that r(X1, X2) = ±1 if, and only if, X1 and X2 are linearly dependent.

In the practice of data analysis the problem of the estimation of correlations occurs
rather often, and it is common to compare the values of correlation coefficients between
some variables with the values -1 and 1 as minimal and maximal possible values. But as in
the case of empirical data usually the minimal and maximal values ±1 can never be reached,
in the estimation of dependencies between the variables it would be useful to compare the
empirical correlations with the minimal and maximal correlation coefficients for the given
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marginal empirical distributions. We deduce from (1.3) that, for any (X1, X2) in R(F1, F2),
r(X1, X2) is constrained by

Cov[F−1
1 (U), F−1

2 (1− U)]√
Var[X1]Var[X2]

≤ r(X1, X2) ≤ Cov[F−1
1 (U), F−1

2 (U)]√
Var[X1]Var[X2]

, (2.1)

so that a value ±1 for r is in general not obtainable in R(F1, F2). Shih and Huang (1992)
and Schlechtman and Yitzaki (1992) have noticed that (unless the marginal distributions of
two random variables differ only in location and/or scale parameters, see below) the range
of Pearson’s r is narrower than (−1, 1) and depends on the marginal distributions. The
following example illustrates this situation.

Example 2.1. Consider the random couple (X1, X2) where lnX1 conforms to a Normal
distribution with mean 0 and uit standard deviation and lnX2 conforms to a Normal distri-
bution with mean 0 and standard deviation σ The extremal correlation occurs when X1 and
X2 are functionally dependent:

(i) if X2 = Xσ
1 then the maximal correlation coefficient for these marginals is attained and

equal

rmax(σ) =
exp(σ)− 1√

exp(σ2)− 1
√
e− 1

.

(i) if X2 = X−σ1 then the maximal correlation coefficient for these marginals is attained and
equal

rmin(σ) =
exp(−σ)− 1√

exp(σ2)− 1
√
e− 1

.

These extremal correlations are shown graphically in Figure 2.1. We observe that

lim
σ→+∞

rmax(σ) = lim
σ→+∞

rmin(σ) = 0.

As a consequence, it is possible to have a random couple where the corellation is almost
zero even though the components are comonotonic or countermonotonic (and thus exhibit
the strongest kind of dependence possible for this pair of marginals). This contradicts the
intuition that small correlation implies weak dependence.

Let us now prove that when the bounds in (2.1) are attained, then X2 is functionnally
dependent of X1. Therefore, we need the following technical lemma, which can be seen as
a particular case of Lemma 3.3 in Denuit, Lefèvre & Mesfioui (1999). We provide here an
elementary proof of it for the sake of completeness.

Lemma 2.2. Let (X1, X2) ∈ R(F1, F2). Then,

E[X1X2] =

∫ +∞

x1=0

∫ +∞

x2=0

P [X1 > x1, X2 > x2]dx1dx2.
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Figure 2.1: Values for rmax(σ) and rmin(σ) as functions of σ.
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Proof. First, write
∫ +∞

x1=0

∫ +∞

x2=0

P [X1 > x1, X2 > x2]dx1dx2 =

∫ +∞

x1=0

∫ +∞

x2=0

∫ +∞

y1=x1

∫ +∞

y2=x2

dF(X1,X2)(y1, y2)dx1dx2.

Then, invoke Fubini’s theorem to get
∫ +∞

x1=0

∫ +∞

x2=0

P [X1 > x1, X2 > x2]dx1dx2 =

∫ +∞

y1=0

∫ +∞

y2=0

∫ y1

x1=0

∫ y2

x2=0

dx1dx2dF(X1,X2)(y1, y2)

=

∫ +∞

y1=0

∫ +∞

y2=0

y1y2dF(X1,X2)(y1, y2)

= E[X1X2],

and this completes the proof. �
Proposition 2.3. Let (X1, X2) ∈ R(F1, F2) and U be a random variable uniformly dis-
tributed over [0, 1]. Then, the following equivalences hold:

Cov[X1, X2] = Cov[F−1
1 (U), F−1

2 (U)]⇔ (X1, X2) =d (F−1
1 (U), F−1

2 (U)), (2.2)

and

Cov[X1, X2] = Cov[F−1
1 (U), F−1

2 (1− U)]⇔ (X1, X2) =d (F−1
1 (U), F−1

2 (1− U)), (2.3)

where “=d” stands for the equality in distribution.

Proof. Let us begin with (2.2). The “⇐”-part is well-known, so that we only consider
the “⇒”-implication. It is easily seen that the equality of the covariances yields

E[X1X2] = E[F−1
1 (U)F−1

2 (U)].

Lemma 2.2 then gives

0 =

∫ +∞

x1=0

∫ +∞

x2=0

{
P [X1 > x1, X2 > x2]− P [F−1

1 (U) > x1, F
−1
2 (U) > x2]

}
dx1dx2

=

∫ +∞

x1=0

∫ +∞

x2=0

{
F(X1,X2)(x1, x2)−W (x1, x2)

}
dx1dx2. (2.4)

By (1.1), the integrand {. . .} in (2.4) is non-positive for all x1 and x2; we then conclude that
the equality F(X1,X2)(x1, x2) = W (x1, x2) holds almost everywhere, and this concludes the
proof of (2.2). The reasoning to get (2.3) is similar and is therefore omitted. �

Note that (2.2) and (2.3) possess another interesting interpretation: (X1, X2) ∈ R(F1, F2)
has joint distribution function W if, and only if, Var[X1 +X2] is maximal, i.e.

Var[X1 +X2] = Var[X1] + Var[X2] + Cov[F−1
1 (U), F−1

2 (U)];

(X1, X2) ∈ R(F1, F2) has joint distribution function M if, and only if, Var[X1 + X2] is
minimal, i.e.

Var[X1 +X2] = Var[X1] + Var[X2] + Cov[F−1
1 (U), F−1

2 (1− U)].
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Example 2.4. Spreading a portfolio premium to the individual policyholders is often a non-
trivial process. For instance, one could spread in proportion to expected losses. However,
this method does not differentiate contracts by hazard and is thus probably most appropriate
when the riskiness is fairly homogeneous. An elegant suggestion has been presented by Karl
Borch who recommended calculating the premium for the risk X by the formula

(1 + θ)EX + ηCov[X,S],

where S is the portfolio aggregate claims. This formula gives premiums that add up to the
portfolio premium even when the risks are not independent. Indeed, if the safety loadings θ
and η are chosen so that

Portfolio premium = (1 + θ)ES + ηVar[S],

we get for the portoflio
n∑

i=1

{
(1 + θ)EXi + ηCov[Xi, S]

}
= (1 + θ)ES + ηVar[S].

In case the risk X is regarded as being strongly positively dependent with S, it may be
reasonable to charge an amount of premium equal to

(1 + θ)EX + ηCov[F−1
X (U), F−1

S (U)],

where U is uniformly distributed over [0, 1].

In some circumstances, the non-negativity assumption can be dropped. For example, if
the marginals F1 and F2 belong to the same location scale family of distributions, i.e. if
there exist a distribution function G, real constants µ1, µ2 and positive real constants σ1, σ2

such that the relation

Fi(x) = G

(
x− µi
σi

)
holds for i = 1, 2,

then
r(X1, X2) = 1⇔ (X1, X2) =d (σ1G

−1(U) + µ1, σ2G
−1(U) + µ2).

For instance, if G is the distribution function of the standard normal distribution, the Fréchet
upper bound is attained for perfectly correlated random couples.

Independence of two random variables implies they are uncorrelated (i.e. r = 0) but zero
correlation does not in general imply independence. The noticeable exception is the case of
the multivariate normal where uncorrelatedness and independence are equivalent. However,
the independence structure is sometimes determined by the covariance structure for families
of random variables which exhibit certain types of positive or negative dependence. Let us
recall Lehmann’s definition of positive and negative quadrant dependent (PQD and NQD,
in short) random variables: the random couple (X1, X2) ∈ R(F1, F2) is said to be PQD if

F1(x1)F2(x2) ≤ F(X1,X2)(x1, x2) for all x1, x2 ∈ IR; (2.5)

it is said to be NQD if the reverse inequality holds in (2.5). Henceforth, given (X1, X2) ∈
R(F1, F2), we denote as (X⊥1 , X

⊥
2 ) its independent version, i.e. the random couple in

R(F1, F2) whose joint distribution function factors in F1F2. The following result is due
to Lehmann (1966); we give a short proof of it for the sake of completeness.
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Proposition 2.5. Let (X1, X2) ∈ R(F1, F2) be either PQD or NQD. Then, the following
equivalence holds:

Cov[X1, X2] = 0⇔ (X1, X2) =d (X⊥1 , X
⊥
2 ).

Proof. The proof follows from

0 =

∫ +∞

x1=0

∫ +∞

x2=0

{
F(X1,X2)(x1, x2)− F1(x1)F2(x2)

}
dx1dx2,

which is the analog of (2.4). The pointwise non-negativity (resp. non-positivity) of the
integrand {. . .} for PQD (resp. NQD) random couples (X1, X2) ends the proof. �

3 Kendall’s τ

Kendall’s τ measures a certain form of dependence known as “concordance”: roughly speak-
ing, “large” values of one component tend to be associated with “large” values of the other,
and “small” values of one with “small” values of the other. To be specific, Kendall’s τ
is defined as the probability of “concordance” minus the probability of “discordance”, i.e.
given two independent and identically distributed random couples (X1, X2) and (Y1, Y2) in
R(F1, F2),

τ(X1, X2) = P [(X1 − Y1)(X2 − Y2) > 0]− P [(X1 − Y1)(X2 − Y2) < 0].

Let us now prove the following result which states that τ(X1, X2) = ±1 if, and only if,
the distribution of the random couple (X1, X2) coincides with one of the Fréchet bounds. A
similar result has been derived by Genest & McKay (1986). Henceforth (in Sections 3, 4 and
5), we assume that F1 and F2 are continuous and strictly increasing.

Proposition 3.1. Let (X1, X2) ∈ R(F1, F2) and U be a random variable uniformly dis-
tributed over [0, 1]. Then, the following equivalences hold:

τ(X1, X2) = 1⇔ (X1, X2) =d (F−1
1 (U), F−1

2 (U)), (3.1)

and
τ(X1, X2) = −1⇔ (X1, X2) =d (F−1

1 (U), F−1
2 (1− U)). (3.2)

Proof. The “⇐”-parts of (3.1) and (3.2) are well-known. Since Kendall’s τ is invariant
under strictly monotone transformations (see Theorem 5.1.9 in Nelsen (1998)), the equality
τ(X1, X2) = τ(F1(X1), F2(X2)) holds and we may thus consider without loss of generality
that the margins F1 and F2 are Uniform[0, 1]. We have then to show that for any random
couple (U1, U2) with Uniform[0, 1] marginals

τ(U1, U2) = 1⇒ (U1, U2) =d (U, U).

Let C (resp. CU) denote the joint distribution function of the pair (U1, U2) (resp. (U, U));
(1.1) of course ensures that C ≤ CU . From Theorem 5.1.3 in Nelsen (1998), Kendall’s τ can
be casted into the form

τ(U1, U2) = 4EC(U1, U2)− 1.
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From C ≤ CU and from (1.2) with φ = CU , we get

EC(U1, U2) ≤ ECU(U1, U2) ≤ ECU(U, U),

Now
τ(U1, U2) = τ(U, U)⇔ EC(U1, U2) = ECU(U, U)

implies

ECU(U1, U2)− EC(U1, U2) =

∫ 1

u1=0

∫ 1

u2=0

{CU(u1, u2)− C(u1, u2)}︸ ︷︷ ︸
≥0 ∀ u1,u2∈[0,1]

dC(u1, u2) = 0,

and this implies that C ≡ CU and ends the proof of (3.1). Let CL denotes the joint distri-
bution function of the couple (U, 1− U); (1.1) ensures that CL ≤ C. To get (3.2), it suffices
to note that from (1.2) with φ = CL, we get

ECL(U, 1− U) ≤ ECL(U1, U2) ≤ EC(U1, U2),

which yields EC(U1, U2) = ECL(U1, U2). The proof then follows the same lines. �

Let us now prove the analog of Proposition 2.3 for Kendall’s τ .

Proposition 3.2. Let (X1, X2) ∈ R(F1, F2) be either PQD or NQD. Then, the following
equivalence holds:

τ(X1, X2) = 0⇔ (X1, X2) =d (X⊥1 , X
⊥
2 ).

Proof. (i) PQD case. Without loss of generality, let us consider the case of uniform
margins. Let CI(u1, u2) = u1u2, 0 ≤ u1, u2 ≤ 1. Saying that (U1, U2) is PQD means that its
joint distribution function C satisfies C ≥ CI . Invoking (1.2) with φ = CI then yields

EC(U1, U2) ≥ ECI(U1, U2) ≥ ECI(U
⊥
1 , U

⊥
2 ),

whence it follows that EC(U1, U2) = ECI(U1, U2) since EC(U1, U2) = ECI(U
⊥
1 , U

⊥
2 ) by

hypothesis. Therefore,

EC(U1, U2)− ECI(U1, U2) =

∫ 1

u1=0

∫ 1

u2=0

{C(u1, u2)− CI(u1, u2)}︸ ︷︷ ︸
≥0 ∀ u1,u2∈[0,1]

dC(u1, u2) = 0,

yields C ≡ CI .
(ii) NQD case. The proof is similar: starting from

EC(U1, U2) ≤ ECI(U1, U2) ≤ ECI(U
⊥
1 , U

⊥
2 ),

we get EC(U1, U2) = ECI(U1, U2), which concludes the proof since C ≤ CI . �
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4 Spearman’s ρ

As Kendall’s τ , Spearman’s ρ is based on concordance and discordance. Let us consider
(X1, X2) ∈ R(F1, F2) and its independent version (X⊥1 , X

⊥
2 ). Assume further that (X1, X2)

and (X⊥1 , X
⊥
2 ) are mutually independent. Then,

ρ(X1, X2) = 3
{
P [(X1 −X⊥1 )(X2 −X⊥2 ) > 0]− P [(X1 −X⊥1 )(X2 −X⊥2 ) < 0]

}
.

Let us now prove the next result, which is the analog for Spearman’s ρ of Proposition
3.1.

Proposition 4.1. Let (X1, X2) ∈ R(F1, F2) and U be a random variable uniformly dis-
tributed over [0, 1]. Then, the following equivalences hold:

ρ(X1, X2) = 1⇔ (X1, X2) =d (F−1
1 (U), F−1

2 (U)), (4.1)

and
ρ(X1, X2) = −1⇔ (X1, X2) =d (F−1

1 (U), F−1
2 (1− U)), (4.2)

Proof. The “⇐”-parts of (4.1) and (4.2) are well-known. Since Spearman’s ρ in invariant
under strictly monotone transformations (see Theorem 5.1.9 in Nelsen (1998)), it is sufficient
to work with uniform random variables and to show that

ρ(U1, U2) = 1⇒ (U1, U2) =d (U, U).

Since Spearman’s ρ can be casted into

ρ(U1, U2) = 12

∫ 1

u1=0

∫ 1

u2=0

C(u1, u2)du1du2 − 3

(see Theorem 5.1.6 in Nelsen (1998)), ρ(U1, U2) = 1 implies

∫ 1

u1=0

∫ 1

u2=0

{CU(u1, u2)− C(u1, u2)}︸ ︷︷ ︸
≥0 ∀ u1,u2∈[0,1]

du1du2 = 0,

and this implies that C ≡ CU and ends the proof of (4.1). The proof of (4.2) then follows
the same lines. �

The following result is the analog for Spearman’s ρ of Proposition 2.1 concerning Pear-
son’s r and of Proposition 3.1 concerning Kendall’s τ . We omit its proof since it is straightly
deduced from the reasoning followed to get Proposition 4.1.

Proposition 4.2. Let (X1, X2) ∈ R(F1, F2) be either PQD or NQD. Then, the following
equivalence holds:

ρ(X1, X2) = 0⇔ (X1, X2) =d (X⊥1 , X
⊥
2 ).
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5 Other concordance measures

Scarsini (1984) defined certain desirable properties for a measure of association between two
random variables (see also Definition 5.1.7 and Theorem 5.1.8 in Nelsen (1998)) and intro-
duced the name “concordance measures” for those satisfying these conditions. Kendall’s tau
and Spearman’s ρ are both concordance measures in the sense of Scarsini (1984). Therefore,
a natural question is whether the results given in Sections 3-4 are valid for all the concor-
dance measures. The answer is however negative. We give below a concordance measure,
Gini’s γ, for which analogs of Propositions 3.1 and 4.1 hold, and another one, Blomqvist’s
β, for which they fail.

Gini’s γ is used in Economics to measure the income differences between two populations.
Technically, it is a kind of “distance” between the dependence structure of the vector (X1, X2)
and monotone dependence as represented by M and W . To be specific, given (X1, X2) ∈
R(F1, F2), Gini’s γ is defined as

γ(X1, X2) = γ(F1(X1), F2(X2)) = 2

∫ 1

u1=0

∫ 1

u2=0

(|u1 + u2 − 1| − |u1 − u2|) dC(u1, u2),

where C is the joint distribution function of the couple (F1(X1), F2(X2)). The following
results hold for Gini’s γ.

Proposition 5.1. Let (X1, X2) ∈ R(F1, F2) and U be a random variable uniformly dis-
tributed over [0, 1]. Then, the following equivalences hold:

γ(X1, X2) = 1⇔ (X1, X2) =d (F−1
1 (U), F−1

2 (U)), (5.1)

and
γ(X1, X2) = −1⇔ (X1, X2) =d (F−1

1 (U), F−1
2 (1− U)), (5.2)

Proof. The “⇐”-parts of (5.1) and (5.2) are well-known. Since Gini’s γ is invariant under
strictly monotone transformations (see Theorem 5.1.14 in Nelsen (1998)), it is sufficient to
work with uniform random variables and to show that

γ(U1, U2) = 1⇒ (U1, U2) =d (U, U).

Since

γ(U1, U2) = 4

∫ 1

u1=0

∫ 1

u2=0

C(u1, u2)dCU(u1, u2) + 4

∫ 1

u1=0

∫ 1

u2=0

C(u1, u2)dCL(u1, u2)− 2,

γ(U1, U2) = γ(U, U) implies
∫ 1

u1=0

∫ 1

u2=0

{CU(u1, u2)− C(u1, u2)}︸ ︷︷ ︸
≥0 ∀ u1,u2∈[0,1]

dCU(u1, u2)

+

∫ 1

u1=0

∫ 1

u2=0

{CU(u1, u2)− C(u1, u2)}︸ ︷︷ ︸
≥0 ∀ u1,u2∈[0,1]

dCL(u1, u2) = 0,

and this implies that C ≡ CU and ends the proof of (5.1). The proof of (5.2) then follows
the same lines. �
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Proposition 5.2. Let (X1, X2) ∈ R(F1, F2) be either PQD or NQD. Then, the following
equivalence holds:

γ(X1, X2) = 0⇔ (X1, X2) =d (X⊥1 , X
⊥
2 ).

Another measure of concordance is Blomqvist’s β, also known as the medial correlation
coefficient. It is defined as

β(X1, X2) = P [(X1 − x(1)
1/2)(X2 − x(2)

1/2) > 0]− P [(X1 − x(1)
1/2)(X2 − x(2)

1/2) < 0]

= 4F(X1,X2)(x
(1)
1/2, x

(2)
1/2)− 1,

where x
(i)
1/2 is the median of Xi, i = 1, 2.

Proposition 5.3. Let (X1, X2) ∈ R(F1, F2) and U be a random variable uniformly dis-
tributed over [0, 1]. Then, the following implications hold:

(X1, X2) =d (F−1
1 (U), F−1

2 (U))⇒ β(X1, X2) = 1, (5.3)

(X1, X2) =d (F−1
1 (U), F−1

2 (1− U))⇒ β(X1, X2) = −1 (5.4)

and
(X1, X2) =d (X⊥1 , X

⊥
2 )⇒ β(X1, X2) = 0, (5.5)

but the converses of (5.3), (5.4) and (5.5) are in general not true.

Proof. The implications (5.3), (5.4) and (5.5) are well-known. Since Blomqvist’s β is
invariant under strictly monotone transformations (see Theorem 5.1.14 in Nelsen (1998)), it
is sufficient to work with uniform random variables. Then, given a random couple (U1, U2)
with Uniform[0, 1] marginals and with joint distribution function C, Blomqvist’s β can be
written as

β(U1, U2) = 4C(1/2, 1/2)− 1.

Let us consider the parametric family given in Formula (3.2.2) in Nelson (1998). For

C(u1, u2) =





max(0, u1 + u2 − 1
2
) for 0 ≤ u1, u2 ≤ 1

2
,

max(1
2
, u1 + u2 − 1) for 1

2
< u1, u2 ≤ 1,

CU(u1, u2) otherwise.

It is then easily seen that β(U1, U2) = 1 whereas C does not coincide with CU , contradicting
(5.3). On the other hand, for

C(u1, u2) =





max(0, u1 + u2 − 1
4
) for 0 ≤ u1, u2 ≤ 1

4
,

max(1
4
, u1 + u2 − 1) for 1

4
< u1, u2 ≤ 1,

CU(u1, u2) otherwise,

we have β(U1, U2) = 0 but C 6= CI, contradicting (5.5). Finally, let us consider the member
of the family in Exercise 3.9 of Nelsen (1998)

C(u1, u2) =





min(u1, u2 − θ) for (u1, u2) ∈ [0, 1− θ]× [θ, 1],
min(u1 + θ − 1, u2) for (u1, u2) ∈ [1− θ, 1]× [0, θ],
CL(u1, u2) otherwise,

coresponding to θ = 1/2. We then have β(U1, U2) = −1 but C 6= CL, contradicting (5.4). �
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