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Abstract

A subject often recurring in financial and actuarial papers is the pricing of
stocks and securities when the rate of return is stochastic. In most cases, the
stocks considered are assumed not to pay out any dividend. In the present
contribution we show how it is possible to obtain upper and lower bounds for
the (distribution of the) accumulated value of a cash-flow in the presence of
dividend barriers at a future time t, when the logarithm of the stock price is
modelled by means of a Wiener process.

1 Description of the problem

For t ≥ 0, let S(t) denote the price of a non-dividend paying stock or security
at time t. We then have

S(t) = S0e
X(t), (1)

assuming that there exists a stochastic process X(t) with stationary and inde-
pendent increments, representing the stochastic continuous compounded rate
of return over the period [0, t]. In the classical model, stock prices are assumed
to be log-normally distributed, and the process X(t) is a Wiener process.
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If we look at the total period [0, t] as a number of subperiods, say years,
months, weeks etc., it is useful to write the value of X(t) at time t by means
of the increments per period until time t. In that case the price of the security
can be rewritten as

S(t) = S0 exp

[
n∑

i=1

[X(ti)−X(ti−1)]

]
, (2)

with 0 = t0 < t1 < . . . < tn = t and X(0) = 0.

In the present contribution, we will assume that a dividend is paid out
whenever the increment of the rate of return in one of the periods exceeds
a certain value β. We will generalize the basic variable S(t) of (2) to the
accumulated value of a stochastic cash-flow

V =
n∑

j=1

αje
Yj , (3)

with

Yj =
n∑

i=j+1

min [X(ti)−X(ti−1), β] , (4)

and we will look for as much information as possible about the distribution.
The positive value αj (j = 1, . . . , n) in (3) represents the deterministic cash-
flow at time tj, and eYj (j = 1, . . . , n) is the stochastic accumulation factor
for a payment made at time tj.

In order to solve this problem, we will use some rather new results con-
cerning the distribution of sums of variables. Looking at the variable V above,
we see that this variable can be written as

V =
n∑

j=1

φj(Yj). (5)

The variable Yj is used to denote the real (compounded) rate of return over
the period [tj , t], and the real functions φj are convex increasing functions, for
the present problem mainly exponential.

The main body of this contribution is divided into two parts. In section 2,
we will explain the methodology that is used in getting the desired answers.
In order to make this paper self-contained, we repeat all the main results.
Afterwards, we will apply these techniques to the problem at hand in section 3.
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2 Methodology

In case the distributions of the random variables Yj in (5) are known, the
problem of finding a distribution function for random variables of the form of
(5) looks rather trivial. This, however, is not true.

The most important difficulty arises from the fact that the random vari-
ables Yj are not mutually independent. So, a “simple” convolution of the
different individual distribution functions is not correct, since also the de-
pendency structure of the random vector (Y1, . . . , Yn) has to be taken into
account. And this, unfortunately, is almost impossible to obtain in most
cases.

Therefore, instead of calculating the exact distribution of the variable V ,
we will look for bounds, in the sense of “more favourable/less dangerous” and
“less favourable/more dangerous”, with a simpler structure. This technique
is rather common in the actuarial literature. When lower and upper bounds
are close to each other, together they can provide reliable information about
the original and more complex variable V .

We will briefly repeat the meaning and most important results of this
technique, presenting it in a form that is useful when handling the problem
of the distribution of the variable V of (3). For proofs and more details, we
refer to the recent literature.

2.1 Convex ordering

The notion “less favourable” or “more dangerous” variable will be defined by
means of the convex ordering, see e.g. [4]:

Definition 2.1 If two variables V and W are such that for each real convex
function u(·) the expected values (provided they exist) are ordered as

E [u(V )] ≤ E [u(W )] , (6)

the variable V is said to be smaller in convex ordering than the variable W ,
which is denoted as

V ≤cx W. (7)

Since convex functions are functions that take on their largest values in
the tail(s), this means that the variable W is more likely to take on extreme
values than the variable V , and thus it is more dangerous.
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Condition (6) on the expectations can be rewritten as

E [u(−V )] ≥ E [u(−W )] (8)

for arbitrary concave utility functions u(·). Thus, for any risk averse decision
maker, the expected utility of the loss W is smaller than the expected utility
of the loss V . This means that replacing the unknown distribution function
of the variable V by the distribution function of the variable W is a prudent
stategy.

Since the functions u(x) = x, u(x) = −x and u(x) = x2 are all convex
functions, it follows immediately that V ≤cx W implies E[V ] = E[W ] and
V ar[V ] ≤ V ar[W ].

The following lemma provides an interesting and useful characterization
of convex order, a proof of which can be found in [4]:

Lemma 2.2 If two variables V and W are such that E[V ] = E[W ], then

V ≤cx W ⇔ E[(V − k)+] ≤ E[(W − k)+] for all k, (9)

with (x)+ = max(0, x).

The expectation E[(V − k)+] is called the stop-loss premium for the vari-
able V . Since more dangerous risks will correspond to higher stop-loss premi-
ums, again it can be seen that the notion of convex order is very adequate to
describe an ordering in dangerousness. If all stop-loss premiums of a variable
V are smaller than (or equal to) those of W , then V is said to be smaller in
stop-loss ordering, denoted by V ≤s� W .

2.2 Application to sums of variables

In some former contributions, see e.g. [1, 2, 3], the notion of convex ordering of
two single variables was expanded to two sums of variables. We will summarize
the main results in the following propositions, a proof of which can be found
in [1, 2, 3].

We will make use of the notation

FX(x) = Prob(X ≤ x) (10)
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for the distribution of a random variable X, where x ∈ R, and of

F−1
X (p) = inf{x ∈ R : FX(x) ≥ p} (11)

for the inverse distribution of X, where p ∈ [0, 1].

Proposition 2.3 Consider an arbitrary sum of random variables

V = X1 +X2 + . . .+Xn, (12)

and define the related stochastic quantities

Vu = F−1
X1

(U) + F−1
X2

(U) + . . .+ F−1
Xn

(U) (13)

Vu∗ = F−1
X1|Z(U) + F−1

X2|Z(U) + . . .+ F−1
Xn|Z(U) (14)

Vl = E[X1|Z] +E[X2|Z] + . . . +E[Xn|Z] , (15)

with U an arbitrary random variable that is uniformly distributed on [0, 1],
and with Z an arbitrary random variable that is independent of U . The no-
tation F−1

Xi|Z(U) is used for the random variable fi(U,Z), where the function
is defined by fi(u, z) = F−1

Xi|Z=z(u).
The following relation then holds:

Vl ≤cx V ≤cx Vu∗ ≤cx Vu. (16)

For each j = 1, . . . , n, the terms in the original variable V and the corre-
sponding terms in the upper bounds Vu and Vu∗ are all identically distributed,
i.e.

Xj
d
= F−1

Xj
(U) d

= F−1
Xj |Z(U) , (17)

see [2, 3].
The upper bound Vu in fact is constructed as the most dangerous combi-

nation of variables with the same marginal distributions as the original terms
Xj . Indeed, the sum now consists of a sum of comonotonous variables all
depending on the same random variable U , and thus they are not usable as
hedges against each other. The upper bound Vu∗ is an improved bound, which
is closer to V due to the extra information through conditioning. The lower

5



bound becomes ‘better’ in the sense of closer to the original variable V when
the conditioning variable Z is more related to the sum of the variables Xj.

For more complicated problems, the extension of the previous results for
‘ordinary’ sums of random variables to sums of functions of variables turns
out to be very useful. A proof of this second proposition can be found in [2, 3].

Proposition 2.4 Consider a sum of functions of random variables

V = φ1(X1) + φ2(X2) + . . .+ φn(Xn), (18)

where each function φj(·) is increasing. Define the related stochastic quantities

Vu = φ1(F−1
X1

(U)) + φ2(F−1
X2

(U)) + . . .+ φn(F−1
Xn

(U)) (19)

Vu∗ = φ1(F−1
X1|Z(U)) + φ2(F−1

X2|Z(U)) + . . .+ φn(F−1
Xn|Z(U)) (20)

Vl = E[φ1(X1)|Z] +E[φ2(X2)|Z] + . . .+E[φn(Xn)|Z] , (21)

with U an arbitrary random variable that is uniformly distributed on [0, 1],
and with Z an arbitrary random variable that is independent of U .

The following relation then holds :

Vl ≤cx V ≤cx Vu∗ ≤cx Vu. (22)

This result is mainly based on the property that for any increasing function
φ and for any p ∈ [0, 1] we have that

F−1
φ(X)(p) = φ(F−1

X (p)). (23)

In the following section, which constitutes the “core” of this contribution,
we will rely on this last proposition. The advantage of using this proposi-
tion has to be found in the fact that the knowledge of the (inverse of the)
distribution functions of the variables Xj and of the conditional distribution
functions of the variables Xj given Z provides us with all the necessary in-
gredients that are needed in order to calculate upper and lower bounds for
the original variable V . Furthermore, the presence of a uniform distributed
variable U simplifies the computations.
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We will use the classical notations

ϕ(x) =
1√
2π
e−x

2/2 (24)

for the density of the standard normal distribution, and

Φ(x) =
∫ x

−∞
ϕ(y)dy (25)

for the probability integral or cumulative values of the standard normal dis-
tribution.

3 Calculation of upper and lower bounds

We now return to the main problem of this contribution, the accumulated
value of a stochastic cash-flow

V =
n∑

j=1

αj exp




n∑
i=j+1

min [X(ti)−X(ti−1), β]


 , (26)

where all cash-flows αj (j = 1, . . . , n) are non-negative. For the points in
time we assume that 0 = t0 < t1 < t2 < . . . < tn = t with tj − tj−1 = ∆ = t/n
(j = 1, . . . , n), which corresponds to dividing the interval [0, t] into n years,
months, weeks etc.

In order to model the stochastic interest rates, we will use processes with
stationary and independent increments – as was mentioned in the introduction
– and more specifically a Wiener process.

To start with, we will give expressions for the distributions of the vari-
ables ‘Xj ’ (unconditional and conditional given ‘Z’) of the previous section,
followed by results for bounds for V based on Proposition 2.4. Afterwards we
will combine both results in order to get explicit formulas for the stop-loss
premiums and distributions of these bounds.

3.1 Intermediate distributions

The first lemma recapitulates some well-known results for the Wiener process.
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Lemma 3.1 Consider the process {X(θ)}, assumed to be a Wiener process
with mean µ and variance σ2 per unit time. Then the distribution of X(θ) is
normal with mean µθ and variance σ2θ, or

F (x, θ) = Prob[X(θ) ≤ x] = Φ
(
x− µθ

σ
√
θ

)
(27)

and

f(x, θ) =
d

dx
F (x, θ) =

1
σ
√
θ
ϕ

(
x− µθ

σ
√
θ

)
. (28)

Since Wiener processes have stationary and independent increments, we
can rewrite these results for the distribution of the increments:

Lemma 3.2 Consider the process {X(θ)}, assumed to be a Wiener process
with mean µ and variance σ2 per unit time. With the point of time assump-
tions as made earlier, the distribution of X(tj)−X(tj−1) is normal with mean
µ∆ and variance σ2∆, i.e.

F̃ (x) = Prob[X(tj)−X(tj−1) ≤ x] = F (x,∆) = Φ
(
x− µ∆
σ
√
∆

)
(29)

and

f̃(x) =
d

dx
F̃ (x) = f(x,∆) =

1
σ
√
∆
ϕ

(
x− µ∆
σ
√
∆

)
. (30)

For the conditional distributions – which is less trivial – we first have to
choose the variable Z. Since the results become better as this variable Z is
closer to the sum of the original variables (especially for the lower bound),
we choose Z to be equal to X(t). This Z indeed seems to be a good choice,
because it can be written as

Z = X(t) = X(tn) =
n∑

j=1

[X(tj)−X(tj−1)] . (31)
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Lemma 3.3 Consider the process {X(θ)}, assumed to be a Wiener process
with mean µ and variance σ2 per unit time. We denote the conditional dis-
tribution of X(tj)−X(tj−1) as

F̃CO(x|X(t)) = Prob[X(tj)−X(tj−1) ≤ x|X(t)]. (32)

For any realization X(t) = c, this conditional distribution is normal with mean
c/n and variance σ2 n−1

n ∆. We have

F̃c(x) = Prob[X(tj)−X(tj−1) ≤ x|X(t) = c]

= Φ


 1

σ
√

n−1
n ∆

(
x− c

n

) (33)

and

f̃c(x) =
d

dx
F̃c(x)

=
f(x,∆).f(c− x, (n− 1)∆)

f(c, n∆)

=
1

σ
√

n−1
n ∆

ϕ


 1

σ
√

n−1
n ∆

(
x− c

n

) . (34)

Proof. By Bayes’ rule, we have

fX|Y (x|y) =
fY |X(y|x) · fX(x)

fY (y)
, (35)

which we apply to the variables X = X(tj)−X(tj−1) and Y = X(tn). Due to
the assumptions about the points of time and the stationary and independent
increments, this results in

f̃c(x) =
d

dx
Prob[X(tj)−X(tj−1) ≤ x|X(tn) = c]

=
f(x,∆) · f(c− x, (n− 1)∆)

f(c, n∆)
, (36)

where we used the notations of Lemma 3.1.
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The difficulty with this first and ‘intermediate’ result of the lemma con-
sists in the fact that the argument x appears twice in the right-hand side.
Fortunately, we can work out this right-hand side into a form that explicitly
contains the x only once. Indeed, using the results mentioned in Lemma 3.1
and combining the exponential functions in the normal densities, we have

f̃c(x) =

√
2πσ2n∆√

2πσ2∆
√
2πσ2(n− 1)∆

(37)

· exp
{
−(x− µ∆)2

2σ2∆
− (c− x− µ(n− 1)∆)2

2σ2(n− 1)∆
+
(c− µn∆)2

2σ2n∆

}
;

after some rearrangements we get

f̃c(x) =
1√

2πσ2 n−1
n ∆

· exp
{
−
(x− c

n)
2

2σ2 n−1
n ∆

}
, (38)

which completes the proof. Q.E.D.

The same techniques lead us to the conditional distribution of X(tj).

Lemma 3.4 Consider the process {X(θ)}, assumed to be a Wiener process
with mean µ and variance σ2 per unit time. We denote the conditional dis-
tribution of X(tj) as

FCO(x, tj |X(t)) = Prob[X(tj) ≤ x|X(t)]. (39)

For any realization X(t) = c, this conditional distribution is normal with mean
jc/n and variance σ2 j(n−j)

n ∆. We have

Fc(x, tj) = Prob[X(tj) ≤ x|X(t) = c]

= Φ


 1

σ
√

j(n−j)
n ∆

(
x− jc

n

)
 (40)

and

fc(x, tj) =
d

dx
Fc(x, tj)

=
1

σ
√

j(n−j)
n ∆

ϕ


 1

σ
√

j(n−j)
n ∆

(
x− jc

n

)
 . (41)
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Proof. We can repeat the proof of the previous lemma, where in (35) we now
choose X = X(tj) and Y = X(tn). This results in

fc(x, tj) =
d

dx
Prob[X(tj) ≤ x|X(tn) = c]

=
f(x, j∆) · f(c− x, (n− j)∆)

f(c, n∆)
. (42)

Combining the exponential functions in the normal densities and rearrang-
ing terms, yields the desired result. Q.E.D.

3.2 Bounds

With all the necessary distribution functions at hand, different convex upper
and lower bounds for the accumulated value

V =
n∑

j=1

αj · exp




n∑
i=j+1

min [X(ti)−X(ti−1), β]


 (43)

can be found in a straightforward way, taking into account

Prob


 n∑

j=1

min [Xj, β] ≤ min


 n∑

j=1

Xj , nβ




 = 1. (44)

Proposition 3.5 Define the following four stochastic quantities

Vu1 =
n∑

j=1

αj · emin [X(t)−X(tj), (n− j)β] (45)

Vu2 =
n∑

j=1

αj · emin
[
F−1(U, (n− j)∆), (n− j)β

]
(46)

Vu3 =
n∑

j=1

αj · emin
[
F−1

CO(U, (n− j)∆|X(t)), (n − j)β
]

(47)

Vl = αn +
n−1∑
j=1

αjM
n−j−1(β,∆) · emin

[
F−1(U,∆), β

]
, (48)
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with U an arbitrary random variable that is uniformly distributed on [0, 1],
and with

M(β,∆) = E
[
emin [X(t1), β]

]
=

∫ +∞

−∞
dy f(y,∆) emin [y, β]. (49)

= e(µ+σ2

2
)∆ Φ

(
β − (µ+ σ2)∆

σ
√
∆

)
+ eβ

[
1− Φ

(
β − µ∆
σ
√
∆

)]
The following relation then holds :

Vl ≤cx V ≤s� Vu1 ≤cx Vu3 ≤cx Vu2. (50)

Proof. (a). The first upper bound immediately follows from stochastic dom-
inance criteria, when (44) is applied to (43).

(b). For the upper bounds Vu2 and Vu3, use has been made of Proposition 2.4
with Z = X(t), starting from the result for Vu1.

(c). In order to find the lower bound Vl, we start by applying Proposition 2.4
with Z = Z(tn), where Z(ti) = X(ti)−X(ti−1). We get

Vl =
n∑

j=1

αj ·E


exp




n∑
i=j+1

min [Z(ti), β]




∣∣∣∣Z(tn)

 (51)

= αn +
n−1∑
j=1

αj · emin [Z(tn), β] (52)

Each of the remaining variables is normally distributed (see Lemma 3.2).
Therefore, and because of the independency, the expected values in the prod-
uct all equal M(β,∆).

Taking U = Φ
(
Z(tn)− µ∆

σ
√
∆

)
= F (Z(tn),∆), so U has a uniform distri-

bution on [0, 1], the exponent in the first factor can be written as

min [Z(tn), β] = min
[
F−1(U,∆), β

]
, (53)

which gives the desired result.
Q.E.D.

In the next two subsections, explicit calculations for Vu1 will be omitted,
since this variable does not have the required “simple” structure.
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3.3 Stop-loss premiums

We now construct formulas for the stop-loss premiums of the different vari-
ables of Proposition 3.5. As mentioned earlier, the stop-loss premium for Va

with retention k is defined as the expectation

E
[
(Va − k)+

]
. (54)

The following proposition summarizes the different results for the stop-loss
premiums of the boundary variables:

Proposition 3.6 Consider the stochastic quantities Vu2, Vu3 and Vl as men-
tioned in Proposition 3.5. The stop-loss premiums for these variables can be
calculated as

E
[
(Vu2 − k)+

]
(55)

=
∫ 1

uk

du


 n∑

j=1

αje
min

h
(n−j)µ∆+σ

√
(n−j)∆ Φ−1(u),(n−j)β

i
− k


 ,

E
[
(Vu3 − k)+

]
(56)

=
∫ +∞

−∞
dc f(c, t)

∫ 1

uk(c)
du

 n∑
j=1

αje
min

�
(n−j)c

n
+σ

q
j(n−j)

n
∆ Φ−1(u),(n−j)β

�
− k


 ,

E
[
(Vl − k)+

]
(57)

=
∫ 1

vk

du


αn +

n−1∑
j=1

αjM
n−j−1(β,∆) · emin[µ∆+σ

√
∆ Φ−1(u),β] − k


 .

(58)

For each value of k, the numbers uk, vk and the function uk(c) in the stop-loss
premiums (55)-(57) are defined implicitly through the equations

n∑
j=1

αj exp
{
min

[
(n− j)µ∆+ σ

√
(n− j)∆ Φ−1(uk), (n− j)β

]}
= k , (59)
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n∑
j=1

αj exp

{
min

[
(n− j)c

n
+ σ

√
j(n− j)

n
∆Φ−1(uk(c)), (n − j)β

]}
= k ,

(60)

and

αn +
n−1∑
j=1

αjM
n−j−1(β,∆) exp

{
min

[
µ∆+ σ

√
∆Φ−1(vk), β

]}
= k . (61)

Proof.
(a). Making use of the second upper bound in Proposition 3.5, we can write

E
[
(Vu2 − k)+

]

= EU




 n∑

j=1

αj exp
{
min

[
F−1(U, (n− j)∆), (n− j)β

]}
− k




+


(62)

The inverse of F (x, θ) as given in Lemma 3.1 equals

F−1(p, θ) = µθ + σ
√
θ Φ−1(p) (p ∈ [0, 1]) (63)

and thus

E
[
(Vu2 − k)+

]

=
∫ 1

0
du


 n∑

j=1

αje
min

h
(n−j)µ∆+σ

√
(n−j)∆ Φ−1(u),(n−j)β

i
− k




+

. (64)

Defining uk as in (59), we get the result of (55).

(b). The improved upper bound in Proposition 3.5 leads to

E
[
(Vu3 − k)+

]

= EX(t) EU




 n∑

j=1

αje
min[F−1

CO(U,(n−j)∆|X(t)),(n−j)β] − k




+


 . (65)

We now need the inverse of the function Fc(x, tj) from Lemma 3.4. This
inverse function equals

F−1
c (p, tj) =

jc

n
+ σ

√
j(n− j)

n
∆Φ−1(p) (p ∈ [0, 1]) (66)

14



and thus

E
[
(Vu3 − k)+

]
=

∫ +∞

−∞
dc f(c, t)

∫ 1

0
du (67)

 n∑
j=1

αje
min

�
(n−j)c

n
+σ

q
j(n−j)

n
∆ Φ−1(u),(n−j)β

�
− k




+

.

Defining the function uk(c) as in (60), we get the result of (56).

(c). For the lower bound, the same arguments as for the first upper bound
can be used, resulting in the stop-loss premium above.

Q.E.D.

For these stop-loss premiums, the obvious ordering holds, as is summarized
in the following proposition.

Proposition 3.7 Consider the stop-loss premiums for the boundary values
as mentioned in Proposition 3.6, and the stop-loss premium for the original
risk E

[
(V − k)+

]
. The following relation then holds for each value of k:

E
[
(Vl − k)+

]
≤ E

[
(V − k)+

]
≤ E

[
(Vu3 − k)+

]
≤ E

[
(Vu2 − k)+

]
. (68)

Proof. This immediately follows from Proposition 3.5 and Lemma 2.2.

Q.E.D.

3.4 Distributions of the bounds

The importance of the stop-loss premiums of Proposition 3.6 is not only the
result of the fact that they give upper and lower bounds for the stop-loss
premium of the original variable V . As it happens, they are also very useful
when looking for expressions for the distribution functions for the upper and
lower bounds, due to the following lemma:
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Lemma 3.8 Consider an arbitrary variable Va with distribution function

Fa(k) = Prob[Va ≤ k] . (69)

Provided the expectations exist, the relation between the stop-loss premiums
and the distribution function is given by

d

dk
E

[
(Va − k)+

]
= Fa(k)− 1 . (70)

Due to this most useful property, we now arrive at results for the distribu-
tion functions of the upper and lower bounds for V . It turns out that these
distributions, which can be considered as the main result of this contribution,
are rather easy to compute. We will denote the distribution functions of the
upper and lower bounds in the same way as mentioned in (69).

Proposition 3.9 Consider the stochastic quantities Vu2, Vu3 and Vl as men-
tioned in Proposition 3.5. The cumulative distribution functions for these
variables can be found to be

Fu2(k) = Prob[Vu2 ≤ k] = uk (71)

Fu3(k) = Prob[Vu3 ≤ k] =
∫ +∞

−∞
dc f(c, t) uk(c) (72)

Fl(k) = Prob[Vl ≤ k] = vk , (73)

with uk, vk and uk(c) as defined in (59)-(61).

Proof. This immediately follows when applying Lemma 3.8 to the results of
Proposition 3.6.

Q.E.D.
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4 Numerical illustration

In this section we assess the accuracy of the bounds by considering three quite
different cash-flows. The first cash-flow consists of n = 10 equal payments
αj = 1 at points in time tj = j. For the stochastic accumulation factor, we
choose µ = 0.07 and σ = 0.1, while the dividend paying treshold β equals 0.2.
The distribution functions of the bounds are depicted in Figure 1, together
with an empirical distribution function of V obtained by Monte-Carlo simu-
lation. The lower bound Vl appears to perform not so well, which may be ex-
plained by the conditioning on Z(tn) instead of

∑n
i=1 min[X(ti)−X(ti−1), β].

However, the conditional distribution in the latter case is hard to obtain, due
to the dependency structure of the terms. The graph also indicates that Vu2

is indeed a “more dangerous” variable and that Vu3 slightly improves this
bound.

Next, in order to compare the upper bounds with some previous results,
see e.g. [5], we should increase β to a relatively large value, say β = 10. The
upper bounds in Figure 2 are rather sharp, especially in the right tail, which
is in accordance with [5].

In Figures 3 and 4, we changed the cash-flow to αj = j and αj = 11 − j
(j = 1, . . . , 10) respectively. In case the cash-flow is decreasing (see Figure 4),
both upper bounds show a slightly higher accuracy than in case the cash-flow is
increasing (see Figure 3). This could have been expected, taking into account
the approximate comonotonicity of the accumulation factors in the beginning
of the period.

5 Conclusion

In the present contribution, we considered stochastic cash-flows, in the situ-
ation where a dividend is paid out for large increments in the rate of return.
We arrived at upper and lower bounds for the cash-flow, the stop-loss pre-
mium and the distribution, when the logarithm of the stock price is modelled
by means of a Wiener process. In some forth-coming papers, we will extend
these calculations to other classes of stochastic processes, and we will try to
numerically and graphically compare the different results.
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Figure 1: Distribution functions of Vl (− · −), Vu2 (– –) and Vu3 (—) for αj = 1
(j = 1, . . . , 10) and β = 0.2, compared to a simulated version of V (· · · ).
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Figure 2: Distribution functions of Vl (− · −), Vu2 (– –) and Vu3 (—) for αj = 1
(j = 1, . . . , 10) and β = 10, compared to a simulated version of V (· · · ).
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Figure 3: Distribution functions of Vl (− · −), Vu2 (– –) and Vu3 (—) for αj = j
(j = 1, . . . , 10) and β = 0.2, compared to a simulated version of V (· · · ).
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Figure 4: Distribution functions of Vl (−·−), Vu2 (– –) and Vu3 (—) for αj = 11− j
(j = 1, . . . , 10) and β = 0.2, compared to a simulated version of V (· · · ).
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