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Abstract

One of the key parameters in the computation of Credit Economic
Capital is the so called capital multiplier. In the light of a variance-
covariance approach we propose a methodology for computing this
parameter rather than using a benchmark number for it. The paper
provides an algorithm in doing so.

1 Introduction and motivation

Credit Risk is the risk that a borrower will be unable to pay back his loan.
For any individual contract, the future loss (in a one year period) is random,
i.e. unknown in advance. The sum of all these losses is called the Portfolio
Credit Loss. Fortis quantifies its credit risk through the measurement of the
variability of this portfolio credit loss and capital is held to protect against
this risk. The amount of this capital has been calibrated to achieve the Fortis
target of a S&P rating of ’AA’, meaning that the required capital corresponds
to a 3 bp. or less default probability over a one-year time horizon.
In order to calculate this capital, the current credit risk framework within

Fortis focuses on 2 measures: Expected Loss and Unexpected Loss.
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Expected Loss (EL) is the expected annual level of credit losses. Actual
losses for any given year will vary from the EL, but EL is the amount that
Fortis should expect to lose on average. Expected Loss should be viewed as
a cost of doing business rather than as a risk itself.
The real risk arises from the volatility in loss levels. This volatility is

called Unexpected Loss (UL). UL is defined statistically as the standard
deviation of the credit loss distribution.
Once these two measures are calculated, Fortis determines the Economic

Capital as a multiple of the Unexpected Loss. This multiple is called the
Capital Multiplier:

EconomicCapital = Capital Multiplier x Unexpected Loss.

Fortis has models that enable the calculation of the portfolio Unexpected
Loss, specifically for its portfolio. For the Capital Multiplier however a bench-
mark number is being used. Historical data analysis seems to indicate that
the loss rate for a large portfolio follows a Beta distribution and based on this
observation, the capital multiplier for a ”typical and large” bank portfolio,
such as Fortis, has been determined. This raises the following questions:
1. What is a ’typical’ bank portfolio, i.e. what are the Expected and

Unexpected Loss that are implicitly assumed in order to obtain this capital
multiplier ?
2. Is the assumption of a Beta distribution correct in all situations, e.g.

what if the portfolio is not ’large’ enough?
3. What methodology should be used if one deals with small and/or

a-typically diversified portfolios?
In close collaboration with the Actuarial Research Group of K.U.Leuven,

Fortis developed a model that takes into account for each loan the individual
risk parameters: exposure, rating, loss given default and default correlations.
This new methodology uses the same parameters as Fortis is using now for
computing the ”portfolio unexpected loss”. Hence it provides a full bottom-
up approach as compared to the current approach where a bottom-up model
is combined with an external benchmark number.
Given the exact distribution function of the Aggregate Loss S (expressed

as a percentage of the ”Aggregate-Exposure-At-Default”), it is straightfor-
ward to determine its (1− ²) percentile and hence the multiplier ”K²” which
is defined as

F−1S (1− ²) = E(S) +K² σS.
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Here S denotes the Loss random variable, E(S) its expection, σS its standard
deviation and F−1S its quantile function.
The random variable S is the sum of the losses on the individual policies.

Hence, S is a sum of ”positive” dependent random variables. In the model
that we will present, we assume that we know the distribution functions of the
individual losses, as well as the correlations between these individual losses.
It is important to note that this information is not enough to determine the
distribution of S exactly. In fact, knowledge of the whole multivariate distri-
bution is needed in order to be able to determine the distribution function of
the sum. Only in the case of a multivariate normal distribution, the marginal
distributions together with the correlation matrix completely determines the
distribution function of the sum.
In this document, we propose an appropriate approximation for the dis-

tribution function of S, taking into account all the available information
(marginal distribution functions and correlation matrix). We will describe
an algorithm that can be used to calculate (an approximation for) the dis-
tribution function of the Loss. Let S0 be a random variable having this
approximate distribution function, then, we propose to determine the multi-
plier ”K²” by

F−1S0 (1− ²) = E(S
0
) +K² σS0 .

2 Preliminary theoretical results

2.1 The Gamma distribution

If Y
d
= Gamma(α, β), with α > 0 and β > 0, then the probability density

function (pdf) of Y is given by

fY (y) =
βα

Γ (α)
yα−1e−βy, (y > 0).

3



We also have that

E [Y ] =
α

β
,

V ar [Y ] =
α

β2
,

E
£
Y k
¤
=

Γ(α+ k)

Γ(α)
=

α (α+ 1) · · · (α+ k − 1)
βk

??

mY (t) = E
£
etY
¤
=

µ
β

β − t
¶α

, (t < β),

where mY (t) denotes the ”moment generating function” of Y evaluated at t.

2.2 The Poisson distribution

If N
d
= Poisson(λ), with λ > 0, then the probability function of N is given

by

Pr [N = x] = e−λ
λx

x!
, (x = 0, 1, 2, . . . ).

We have that

E [N ] = V ar [N ] = λ,

mN(t) = E
£
etN
¤
= exp

£
λ
¡
et − 1¢¤ .

2.3 The Negative Binomial distribution

If N
d
= NB(r, p), with r > 0 and 0 < p ≤ 1, then the probability function of

N is given by

Pr [N = x] =

µ
r + x− 1

x

¶
pr (1− p)x, (x = 0, 1, 2, . . . ).

The first two moments and the moment generating function are given by

E [N ] =
r(1− p)
p

V ar [N ] =
r(1− p)
p2

,

mN(t) = E
£
etN
¤
=

µ
p

1− (1− p) et
¶r
.
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2.4 The Beta distribution

If Y
d
= Beta(a, b), with a > 0 and b > 0, then the probability density function

of Y is given by

fY (y) =
Γ(a+ b)

Γ(a) Γ(b)
ya−1(1− y)b−1, (0 < y < 1).

The first two moments and the moment generating function are given by

E [Y ] =
a

a+ b
,

V ar [Y ] =
ab

(a+ b+ 1) (a+ b)2
,

E
£
Y k
¤
=

a (a+ 1) · · · (a+ k − 1)
(a+ b) (a+ b+ 1) · · · (a+ b+ k − 1) .

2.5 The Negative Binomial distribution as a Poisson-
Gamma mixture

We assume that the random variable N | Λ = λ has a Poisson distribution
with parameter λ:

(N | Λ = λ)
d
= Poisson ( λ) .

Further, we assume that the mixing random variable Λ has a Gamma distri-
bution with parameters α and β:

Λ
d
= Gamma (α, β) .

The random variable Λ is also called the structure variable.
We find

mN(t) = E
£
etN
¤

= EΛ[E
£
etN | Λ¤

= EΛ[e
Λ(et−1)]

= mΛ(e
t − 1)

=

µ
β

β − (et − 1)
¶α

=

µ
p

1− (1− p)et
¶α
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with p = β
β+1
. We can conclude that

N
d
= NB

µ
α,

β

β + 1

¶
.

2.6 The moment generating function of a compound
distribution

Consider a collective model

S =
NX
i=1

Xi

where the severities Xi are i.i.d. and independent of the frequency N . Let

Xi
d
= X, (i = 1, 2, . . . , n).

Then we find

mS(t) = E
£
etS
¤

= EN E
h
et
PN
i=1Xi | N

i
= EN

h
(mX(t))

N | N
i

= E
£
eN lnmX(t)

¤
.

Hence,

mS(t) = mN (lnmX(t)) .

It is easy to show that

E(S) = E(N) E(X)

and

V ar(S) = E(N) V ar(X) + [E(X)]2 V ar(N).
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2.7 The sum of independent Compound Poisson dis-
tributions

Consider the sum of n independent Compound Poisson distributions:

S =
N1X
j=1

X1j + · · ·+
NnX
j=1

Xnj.

Hence, we assume that the n random variables
PNi

j=1Xij are mutually inde-
pendent. For each i, we assume that the Xij are mutually independent and
independent of Ni. We also assume that

Xij
d
= Xi

and

Ni
d
= Poisson (λi) .

Then we find

mS(t) = E
£
etS
¤

= E

"
exp

Ã
t

nX
i=1

NiX
j=1

Xij

!#

= Πni=1 E

(
exp

Ã
t

NiX
j=1

Xij

!)
= Πni=1 mNi (lnmXi(t))

= Πni=1 exp [λi (mXi(t)− 1)]

= exp

"
nX
i=1

λi (mXi(t)− 1)
#

= exp [λ (mX(t)− 1)]

with

λ =
nX
i=1

λi
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and

mX(t) =
nX
i=1

λi
λ
mXi(t).

We can conclude that the sum of the n mutually independent Compound
Poisson distributed random variables is again Compound Poisson distributed
with Poisson parameter λ and severity distribution FX given by

FX(x) =
nX
i=1

λi
λ
FXi(x).

2.8 The sum of dependent Compound Negative Bino-
mial distributions

Consider the compound distributed random variables
PNi

j=1Xij, (i = 1, 2, . . . , n).
We assume that the random variables Ni | Λ = λ have a Poisson distri-

bution with parameter qi λ:

(Ni | Λ = λ)
d
= Poisson (qi λ) .

We also assume that the mixing random variable Λ has a Gamma distribution
with parameters α and β:

Λ
d
= Gamma (α, β) .

This implies that the random variables Ni are negative binomial distributed,
but not independent.
Further, we assume that for each i, the severities Xij, (j = 1, 2, . . . ), are

mutually independent:

Xij
d
= Xi, (j = 1, 2, . . . ),

and also that the Xij are independent of the mixing random variable Λ, and
of Ni | Λ = λ.

Finally, we assume that the compound sums
PNi|Λ=λ

j=1 Xij, (i = 1, 2, . . . , n)
are mutually independent
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Under these assumptions, the sum S defined by

S =
N1X
j=1

X1j + · · ·+
NnX
j=1

Xnj,

is a sum of Compound Negative Binomial distributed random variables. At
first sight, determining the distribution function of the sum S is not a trivial
task, as the random variables

PNi
j=1Xij, (i = 1, . . . , n) are not mutually

independent, the dependency caused by the common mixing random variable
Λ. For a general approach of approximating sums of dependent random
variables, we refer to Dhaene, Denuit, Kaas, Goovaerts & Vyncke (2002 a,
b).
In this particular case however, one can prove that the distribution func-

tion of the combined portfolio is Compound Negative Binomial distributed.
Indeed, we have that the moment generating function of S is given by

mS(t) = E
£
etS
¤

= E

"
exp

Ã
t

nX
i=1

NiX
j=1

Xij

!#

= E

(
Πni=1 exp

Ã
t

NiX
j=1

Xij

!)

= EΛ

(
E

(
Πni=1 exp

Ã
t

NiX
j=1

Xij

!
| Λ
))

= EΛ

(
Πni=1 E

(
exp

Ã
t

NiX
j=1

Xij

!
| Λ
))

= EΛ

©
Πni=1 mNi|Λ (lnmXi(t))

ª
= EΛ {Πni=1 exp [qi Λ (mXi(t)− 1)]}

= mΛ

(
nX
i=1

qi (mXi(t)− 1)
)

=

·
β

β −Pn
i=1 qi (mXi(t)− 1)

.

¸α
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Now, let

q =
nX
i=1

qi

and let X be a random variable with moment generating function given by

mX(t) =

Pn
i=1 qi mXi(t)Pn

i=1 qi
.

Then we find

mS(t) =

·
β

β − (mX(t)− 1) .
¸α

=

·
p

1− (1− p) eln[mX(t)]

¸α
= mN (lnmX(t))

with p given by

p =
β

β + q
.

We can conclude that S is Compound Negative Binomial distributed:

S
d
=

NX
i=1

Yi

with

N
d
= NB(α,

β

β + q
)

and where the Yi
d
= Y are i.i.d. and independent of N , with the moment

generation function of the Yi given by

mY (t) =

Pn
i=1 qi mXi(t)Pn

i=1 qi
,

or equivalently,

FY (x) =
nX
i=1

qi
q
FXi(x).

Note that the distribution function of S can also be determined from the
results of the previous section on sums of independent compound Poisson
distribtions.
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3 Description of the model

Consider a portfolio of n credit risks. Let Ii be defined as the indicator
variable which equals 1 if risk i leads to failure in the next period, and 0
otherwise. The probability that risk i leads to a failure is denoted by qi:

qi = Pr [Ii = 1] .

Further, let (EAD)i denote the ”Exposure-At-Default” and (LGD)i the
”Loss-Given-Default” of risk i. The ”Exposure-At-Default” is the maximal
amount of loss on risk i, given default occurs. The ”Loss-Given-Default” is
the percentage of the loss on policy i, given default occurs. The ”Aggregate
Portfolio Loss” (the Loss for short) during the reference period is then given
by

Loss =
nX
i=1

Ii (EAD)i (LGD)i .

We will assume that the (EAD)i and the (LGD)i are deterministic.
We are interested in the random variable describing the Loss as a percent-

age of the ”Aggregate-Exposure-at-Default”, where the ”Aggregate-Exposure-
at-Default” is given by

Aggregate-Exposure-at-Default =
nX
i=1

(EAD)i

which is deterministic because of the assumptions made above. Hence, we
are interested in determining the distribution function of

S =

Pn
i=1 Ii (EAD)i (LGD)iPn

j=1 (EAD)j
.

So that the random variable of interest can be written as

S =
nX
i=1

Ii ci

with

ci =
(EAD)iPn
j=1 (EAD)j

(LGD)i .
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Note that we can write S as a sum of n compound Bernouilli random vari-
ables:

S =
nX
i=1

IiX
j=1

ci,

where, by convention,
P0

i=1 = 0.
The Aggregate Loss S is the sum of the (relative) losses on the individ-

ual credit risks. In order to compute the distribution function S exactly,
knowledge of the multivariate distribution function is required.
We will assume however that our information about the distribution func-

tion of S is not ”complete”. To be more precise, we assume that we know
the marginal distribution functions involved, i.e. we assume that the default
probabilities qi are given. Furthermore, we assume that the pairwise default
correlations corr [Ii, Ij], or equivalently, the pairwise correlations between
the marginal risks in the sum, are given. In this paper, we will not discuss
how to choose or build a model of default correlations.
Note that additional assumptions need to be made concerning the de-

pendency structure between the terms in the sum S in order to be able to
determine (approximations) for its percentiles e.g.

4 Approximation for the distribution func-

tion of S

The random variable S as defined above can be interpreted as the aggregate
claims in an individual risk model, see e.g. Kaas, Dhaene, Goovaerts &
Denuit (2001). We will approximate this individual risk model by a collective
risk model. One major problem in this respect is the fact that S is the sum
of mutually dependent random variables. Indeed, in any realistic model, we
will have that the indicator variables Ii all will be positive dependent in some
sense, where the positive dependence is caused by a common factor which
describes the ”global state of the economy”.
We propose to approximate each Ii by a random variable Ni. In order to

introduce the dependency, we will consider a ”Baysian approach”. Therefore,
let us assume that there exists a random variable Λ such that, conditionally
given Λ = λ, the random variables Ni are mutually independent:

(Ni | Λ = λ) are mutually independent.
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We further assume that, conditionaly given Λ = λ, the random variables Ni
are Poisson distributed with parameters qi λ:

(Ni | Λ = λ)
d
= Poisson (qi λ) .

Furthermore, we assume that the random variable Λ has a Gamma distribu-
tion with parameters α and β. We will denote this as

Λ
d
= Gamma (α, β) .

In order to determine the distribution function of Ni, we will determine
its moment generation function. We find

E
£
etNi

¤
= E

£
E
£
etNi | Λ¤¤

= E
£
exp

¡
qi Λ

¡
et − 1¢¢¤

= mΛ

¡
qi
¡
et − 1¢¢

=

µ
β

β − qi (et − 1)
¶α

=

 β
β+qi

1−
³
1− β

β+qi

´
et

α

,

which implies that

Ni
d
= NB

µ
α,

β

β + qi

¶
.

To summarize, we propose to approximate the distribution function of S :

S =
nX
i=1

IiX
j=1

ci,

by the distribution function of S
0
:

S0 =
nX
i=1

NiX
j=1

ci.
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5 Choice of the parameters α and β

In this section, we will explain how to choose the parameters α and β such
that the distribution functions of S and S0 are ”as alike as possible”, given
the limited information on the random vector (I1, I2, . . . , In).

5.1 Determination of α

A first requirement for our approximation to perform well is that the distri-
bution functions of Ii and Ni are ”as alike as possible”.
In order to have that E [Ni] = E [Ii] = qi, we have to choose α equal to β:

α = β

- Remark 1:
This choice implies that V ar [Ii] = qi (1− qi) ≤ V ar [Ni] = qi

³
1 + qi

β

´
. It

can be proven that

Ii ≤cx Ni,
where ≤cx stands for ”smaller in the convex-order sense”. This means that
it is a safe strategy to replace Ii by Ni, in the sense that any risk-averse
decision-maker would prefer claim-numbers Ii to Ni, for more details see
Kaas, Goovaerts, Dhaene & Denuit (2001).
- Remark 2:

Under the choice α = β, the distributions of Ii and Ni will be close to
each other (provided qi

β
is small enough such that higher order terms can be

neglected). Indeed, we have that

Pr [Ni = 0] =

µ
β

β + qi

¶β

≈ 1− qi = Pr [Ii = 0] ,

while

Pr [Ni = 1] = β

µ
β

β + qi

¶β

(1− β

β + qi
) ≈ qi = Pr [Ii = 1] .

- Remark 3:

It is straightforward to verify that the choice α = β implies

E [S] = E [S0] .
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5.2 Determination of β

It remains to determine an explicite value for the parameter β.
First note that for i 6= j we have that

Covar [Ni , Nj] = E [E [Ni Nj | Λ]]−E [Ni] E [Nj]
= E [E [Ni | Λ] E [Nj | Λ]]− qi qj
= qi qj

©
E
£
Λ2
¤− 1ª

= qi qj V ar [Λ]

=
qi qj
β
,

while

V ar [Ni] = qi

µ
1 +

qi
β

¶
.

Hence, for i 6= j, the pairwise correlations in the approximated model are
given by

corr [Ni , Nj] =

√
qi qj

β

1q
1 + qi

β

q
1 +

qj
β

≈
√
qi qj

β
.

In order to fix the parameter β we require that the second moments of S and
S0 cöıncide. We have that

V ar [S] =
nX
i=1

nX
j=1

cicj covar [Ii , Ij] ,

which is assumed to be known. On the other hand, we have that

V ar [S0] =
nX
i=1

nX
j=1

cicj covar [Ni , Nj]

=
(
Pn

i=1 ci qi)
2

β
+

Ã
nX
i=1

c2i qi

!
.
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Hence, the condition V ar (S) = V ar (S0) will be fulfilled if β is chosen as
follows:

β =
(
Pn

i=1 ci qi)
2

V ar(S)− (Pn
i=1 c

2
i qi)

.

Note that in the model that we propose, in fact we replace the known
correlations corr [Ii , Ij] by corr [Ni, Nj] ≈

√
qi qj
β

for i 6= j. Hence, our

approximation will perform the best if the ”exact” correlations corr [Ii , Ij]

are approximately equal to
√
qi qj
β
. This correlation structure seems to be

consistent with many realistic correlation models.

6 How to compute the d.f. of S’?

From the Section ” Preliminary Theoretical Results”, we find that S0 has a
Compound Negative Binomial distribution:

S0 d=
NX
j=1

Yi,

where

N
d
= NB

µ
β,

β

β +
Pn

i=1 qi

¶
and where the Yi are i.i.d. and independent ofN , with the moment generation
function of the Yi given by

mYi(t) =

Pn
i=1 qi mci(t)Pn

i=1 qi
.

Without loss of generality we can assume all the ci to be different. In this
case , we find that the random variables Yi have the following probability
function:

Pr [Yi = ci] =
qiPn
i=1 qi

, (i = 1, 2, . . . , n) .

It remains to present an algorithm with enables to compute the distribu-
tion function of a Compound Negative Binomial distribution. This can be
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performed by a well-known recursion in actuarial sciences, called ”Panjer’s
recursion”, see e.g. Kaas, Goovaerts, Dhaene & Denuit (2001). We have that

Pr [S0 = 0] = Pr [N = 0]

and also

Pr [S0 = x] =
xX
k=1

µ
a+

bk

x

¶
Pr [N = k] Pr [S0 = x− k] , (x = 1, 2, . . . ),

where

a =

Pn
i=1 qi

β +
Pn

i=1 qi

and

b = a (β − 1) .

7 Assymptotic behaviour of the proposed ap-

proximation

In this section we will show that, under certain assumptions, the distribution
function of the aggregate loss S0 tends to a Beta distribution when the size
of the portfolio becomes sufficiently large.
Assume that all EADi and LGDi are equal to 1, and that all default prob-

abilities qi are equal to q. These assumptions imply that all ci are equal to
1
n
.

In this case S0 has the following Compound Negative Binomial distribution:

S0 d=
N

n

where

N
d
= NB

µ
β,

β

β + n q

¶

17



The moment generation function of S0 is then given by

mS0 (t) = mN

µ
t

n

¶
,

=

 β
β+n q

1−
³
1− β

β+n q

´
et/n

β

=

µ
β

β + n q − n q et/n
¶β

.

If the number of contracts n reaches infinity, we find

lim
n−>∞

mS0 (t) =

µ
β/q

β/q − t
¶β

.

This means that if the number of contracts becomes very large, the pro-
posed approximation S0 for the aggregate loss will be approximately Gamma
distributed:

S0
d≈ Gamma (β,β/q) for n sufficiently large.

Note that the ”true” outcomes of S are in the region [0, 1] , while the above
mentioned Gamma approximation leads to outcomes in the range [0,∞). In
practice however the probability of exceeding 1, computed with the Gamma(β,β/q)
distribution is almost equal to 0. For β = 1 and q = 0.01 e.g., this probability
equals e−100 ≈ 0.
It is interesting to compare this Gamma distribution with a Beta(a, b)

distribution. In order to match the first 2 moments of the Beta distribution
with the Gamma distribution, we must have that

a

a+ b
= q

and

ab

(a+ b+ 1) (a+ b)2
=
q2

β
.
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Hence,

a = β(1− q)− q,
b =

β(1− q)
q

− 1− a.

Let us now compare the moments of X
d
= Gamma(β,β/q) and Y

d
=

Beta(a, b) where the parameters are connected as above. We find

E(Xk) = (
q

β
)k β (β + 1) ... (β + k − 1)

and

E(Y k) =

Ã
β(1− q)− q
β(1−q)
q
− 1

!Ã
β(1− q)− q + 1

β(1−q)
q

!
...

Ã
β(1− q)− q + k − 1

β(1−q)
q

+ k − 2

!
.

After some straightforward computations we find

E(Y k) = (
q

β
)k

Ã
β(1− q)− q
1− q − q

β

!µ
β(1− q)− q + 1

1− q
¶
...

Ã
β(1− q)− q + k − 1
1− q + (k−2)q

β

!

= (
q

β
)k β

Ã
1− q β+1

β

1− q β+1
β

!
(β + 1)

Ã
1− q β+1

β+1

1− q β
β

!
... (β + k − 1)

Ã
1− q β+1

β+k−1
1− q β−k+2

β

!

For q small, also q β+1
β+k−1 is small. On the other hand, the factor

|β−k+2|
β

is increasing in k. Hence, for k = 3, 4, ...

E(Xk)

E(Y k)
≈ 1

provided that

|β − k + 2|
β

q

is ”small” enough.
We can conclude that for a large portfolio where all risks have the same

small default probabilities, the distribution function of the approximation S0

tends to be close to a Beta distribution.
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8 Conclusion

The Aggregate Loss, (expressed as a percentage of the Aggregate-Exposure-
at Default) can be written as

S =
nX
i=1

IiX
j=1

ci.

Here the random variables Ii are Bernouilli distributions with given default
probabilities Pr (Ii = 1) = qi. We assume that the covariances Covar (Ii, Ij)
are given. The ci are assumed to be deterministic amounts defined by

ci =
(EAD)iPn
j=1 (EAD)j

(LGD)i .

We propose to approximate the distribution function of S by the distri-
bution function of S0, where

S0 =
nX
i=1

NiX
j=1

ci,

with

Ni
d
= NB

µ
β,

β

β + qi

¶
and

β =
(
Pn

i=1 ci qi)
2

V ar(S)− (Pn
i=1 c

2
i qi)

.

For this approximation, we have that the distribution functions of the Ni
and the Ii are very close to each other. Moreover, the first and the second
moments of S are equal to the corresponding moments of S0. The distribution
function of S0 can easily be computed by Panjer’s recursion.
If we in addition have that the ”real” correlations are such that

corr [Ii , Ij] ≈
√
qi qj

β
,
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then also the correlation structure of S
0
approximately cöıncides with the

correlation structure of S.
Given the distribution function of S0 , the capital multiplier K², corre-

sponding to the (1 − ²)-percentile can then be determined (approximately)
by

K² =
F−1
S
0 (1− ²)−E(S)

σS
.

For a large portfolio where all risks have the same small default proba-
bilities, the distribution function of the approximation S0 tends to be close
to a Beta distribution.
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