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Abstract

In the current contribution, we consider the present value of a series of fixed
cash flows under stochastic interest rates. In order to model these interest
rates, we don’t use the common lognormal model, but stable laws, which bet-
ter fit in with reality. For this present value, we want to derive a result about
the distribution function. However, due to the dependencies between succes-
sive discounted payments, the calculation of an exact analytical distribution
for the present value is impossible. Therefore, use is made of the methodol-
ogy of comonotonic variables and the convex ordering of risks, introduced by
the same authors in some previous papers. The present paper starts with a
brief overview of properties and qualities of stable laws, and of the possible
application of the concept of convex ordering to sums of risks - which is also
the situation for a present value of future payments. Afterwards, it is shown
how for the present value under investigation an approximation in the form
of a convex upper bound can be derived. This upper bound has an easier
structure than the original present value, and we derive elegant calculation
formulas for the distribution of this bound. Finally, we provide some nu-
merical examples, which illustrate the precision of the approximation. Due
to the design of the present value and due to the construction of the upper
bound, these illustrations show great promise concerning the accuracy of the
approximation.

JEL Classification : C10, C63, E43.

Keywords : cash flow, stochastic interest rates, stable laws, distribution,
convex order.



1 Introduction

When analyzing future cash flows, one frequently starts with a series of fixed
payments together with stochastic interest rates, such that the total value of
the cash flow stream on its turn is also stochastic. In many situations where
the behaviour and impact of future payments or revenues are examined, it
is sufficient to know the expectation of the present value of such a cash flow
stream. Nevertheless, for a more complete analysis, the distribution function
of the (stochastic) present value can be very useful. Indeed, with the knowl-
edge of the distribution, one can get more information about the variance, the
skewness, higher moments, probabilities of reaching certain ranges (e.g. tail
probabilities), stop loss expectations and so on. However, due to the inter-
dependence between successive discount factors —the precise correlations are
not even known in most cases— this problem cannot be solved by means of
the classical convolution theory. An accurate approximation will then be the
only solution.

For the investigation of cash flows with stochastic interest rates, a common
assumption is that these interest rate changes can be modelled by means of
Wiener processes (see e.g. [2, 8, 15]). In order to adopt this model in the
context of cash flow analysis, as in some earlier contributions (see [7, 9, 20])
we consider the present value A of a series of n payments at times ¢t} < ... <t,

A= ancje—Y(tﬁ, (1)
j=1

where Y (t;) represents the stochastic continuous compounded rate of return
over the period [0, ¢;].

This compounded rate of return can be written as the sum of increments over
the previous periods,

Y(tj) =3 (Y (k) = Y (ti)) )

where 0 = tp < t; < ... < t, = t. The increments Y (t;) — Y (¢;-1), denot-
ing the rate of return for the period [t;_1,%;], are independent and normally
distributed. If we use the notation < for equality in distribution, this can be
written as

X3

Y (t) =Y (tii1) = pu(ts — ti1) + (t — ti1) Y20 Z; (3)
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with Z; ~ N(0, 1) independent standard normal variables. As a consequence

of the properties of Wiener processes, for the compounded rates of return we
have 4 /
1/2

Y(tj) = /Lt]’ + tj O'Xj (4)

with X; ~ N(0,1) a standard normal variable. Note that Y (¢;) = Y (t;—1) +
(Y(tj) — Y (tj—1)), so the variables Y (t;) and Y'(t;—1) are not independent.

In several publications, authors give arguments and evidence that such a nor-
mal model is far from perfect. We refer among others to [1, 5, 14, 17, 19]. The
most important criticism is related to the fact that interest rates often exhibit
tails that are too large to come from normal distributions. In other words,
a normal model ignores the high positive kurtosis, such that the probability
of extreme situations is underestimated. Especially for long term cash flows,
this can cause serious problems. When looking for a more accurate model
that allows for a presence of larger tails, we do have to take into account some
other considerations. Interest rates change due to many small changes. If it
is presumed that these small changes are independent (we will return to this
hypothesis at the end of this paragraph), the central limit theorem leads to
normal distributions — at least if it is assumed that the variance should be
finite. Yet, if this last condition is omitted, the class of normal distributions
can be extended to general stable distributions. As such general stable dis-
tributions allow for larger tails, they provide an interesting improvement of
the model. Several authors (see [11, 12, 14]) performed statistical tests with
respect to this generalization, and their investigations give strong indications
that general stable models indeed provide a good fit for financial data — al-
though also these models still show up some imperfections. Becker (see[1])
also argues that the stable distribution meets a few other shortcomings of the
normal distribution: it explains the high positive kurtosis, and it gives an
answer to the non-constant variance and to the lack of independence — both
due to the fact that now the hypothesis of a finite variance is dropped.

On the base of these considerations, in the present contribution we will model
the increments by means of a stable distribution and at the same time, we will
introduce a risk parameter ©. For a particular choice of the distribution of ©
the geometric stable distribution arises. The aim of this paper is the calcu-
lation of an accurate approximation for the exact distribution of the random
present value of (1) when rates of return are modelled by this generalized
stable model.



The paper is organized as follows. First we will give a summary of the con-
cepts, properties and methods that are needed to reach our goal. In section 2
we briefly describe the stable laws and we use them to construct the gener-
alized model for the increments. Section 3 provides the methodology of how
an approximation in the form of an upper bound in convexity order can be
drawn up. In section 4, we will be able to present the results about the present
value in (1). Finally section 5 gives numerical illustrations of the results of
section 4.

2 The generalized model

As mentioned in the introduction, the normal distribution is commonly used
in financial data modelling. Perhaps the most famous application is the Black-
Scholes model for asset logreturns. A nice feature of the normal distribution
is its stability property.

Definition 2.1. A random variable X is stable (in the broad sense) if for X1
and Xo independent copies of X and any positive constants a and b,

aX; +bXs L cX +d, (5)

for some positive ¢ and some d € R. The random wvariable is strictly stable
(or stable in the narrow sense) if (5) holds with d = 0 for all choices for a
and b.

From the Generalized Central Limit Theorem, see [13], we know that the
stable distributions are the only possible non-trivial limit of normalized sums
of independent and identically distributed terms.

Theorem 2.2 (Generalized Central Limit Theorem). Let X, Xo,... be
a series of independent and identically distributed random variables. There
exist constants ay, > 0, b € R and a non-degenerate random variable Z with

an(X1 + ...+ Xp) —bp 5 Z (6)

if and only if Z is a-stable for some 0 < o < 2.

The idea of using stable laws in financial modelling issues is not completely
new (see e.g. [11]). A reason why such distributions are not used in practice
very often, can be found in the fact that for all but a few stable distributions



(Gaussian, Cauchy, Lévy) there is no closed form available for the density or
for the distribution function. Yet, the stable distributions can be characterized
by their characteristic function, and fortunately there also exist numerical
algorithms, see e.g. [11, 16].

For the definition of the general stable distribution, we first discuss a standard
stable distribution.

Definition 2.3. A variable X is a standard stable variable, or
X ~ S,(1,3,0) (7)
if its characteristic function equals
o(t) = B[] = exp {—[t]* was(t)} (8)
where

1 —if sign(t) tan(mwa/2) if a#1
Wa,(t) = {

1+iB2 sign(t)In || if a=1.

Definition 2.4. A variable Y is a (general) stable variable, or
Y ~ S4(v, 3,0) (10)
if we have the equality in distribution

d d+vX if a#1

Y = (11)
§+7X +7B821n|y| if a=1

with X a standard stable variable.

A general stable distribution requires four parameters to describe: an index
of stability or characterisitic exponent « € (0, 2], a skewness parameter [ €
[—1,1], a scale parameter v > 0 and a location parameter § € R.

Note that for o = 2 the variable X is N(0,2) distributed, and the variable
Y is normally distributed with mean ¢ and standard deviation yv/2. For «
decreasing from 2 to 0, the distribution becomes more and more heavy-tailed,
and the variance does not exist. For o > 1, the mean is always equal to d; for
o < 1 the mean is infinite.

Note also that the situation § = 0 corresponds to a perfectly symmetric
distribution.



In order not to complicate the formulas, from now on we will assume that
a # 1. The case where a = 1 (Cauchy distribution) can be described in an
analogous way. To simplify the notation with respect to the time scale, we
will write S, (v, 3, 6;7) for S’a('yTl/o‘, B,0T).

Returning to the cash-flow under investigation, given in equation (1), we
assume that the increments follow a stable law S, (v, 3,0;t; — t;—1). This
implies that (3) is changed into
d
Y(t) = Y(tic1) = 8(t; — tio1) + (ti — tim1) /92 (12)
with Z; ~ S,(1,3,0;1) independent standard stable variables.
Since we work with stable processes, for the total rate of return we have

1/

Y(tj) i 5tj + tj ’}/Xj (13)

with X; ~ S,(1,53,0;1) again a standard stable variable. Just as in the
Wiener case, the variables Y (¢1),...,Y (t,) are dependent. For a choice of
a = 2, the normal model emerges.

Next, we introduce a risk parameter ©. Conditioning on this risk parameter,
the distribution of the increments is the one of a stable law. More concrete,
we consider the compounded rate of return

Y (tj)l o=0 ~ Sa(v, 8, 0;1;0) - (14)

In case O has all its mass at one, i.e. Prob[® = 1] =1, Y (¢;)| e=¢ reduces to
the regular stable law.

The next lemma illustrates the stability property of random variables with
stable distribution as defined in (14), and at the same time proves the result
in (13).

Lemma 2.5. Let the variables Y1 and Yy be defined as
570 + (10)V/ v X, (15)
St —1)0+ ((t— T)H)l/a’ng (16)

Yilo=o

[ENIEN

Yalo—o

with 0 < 7 < t and with X1 and ){2 independent standard stable variables.
Then, conditionally on ©, the sum Y = Y1 + Ys in distribution equals

Viecs < 6t0+ ()X (17)

with X a new standard stable variable.



Proof. Although this result is well known, we give a proof for the sake of
completeness. Conditionally on ©, the characteristic function can be written
as

E [exp {zkY} o= 9}
—E [exp {zkz {579 + (O Xy + 6t — )0 + (¢ — T)e)l/ayxg}}}
= exp {ikdth} - E [exp {ik(TG)l/a’yXl}} -E [exp {zk((t - T)G)UO‘P)/XQH .
Making use of (8) and (9) for both X; and Xy, we find .
E [exp {zkff} O = 9}
= exp {1kdth} - E [exp {—k‘%‘@va <1 —if3 sign(k(76)"/*~) tan(woz/Z)) H
B [exp {—ka(t — 7)oy (1 — i sign(k((t — 7)0)/%) tan(m/z)) }]

= exp {ikdt0} - E [exp {—k%@ya (1 — i3 sign(k(t0)Y/*~) tan(ﬂa/Q)) H :
(19)
From this intermediate result, it is immediately clear that

E [exp {zkf/} o= 9} —E [exp {zkz {5t9 + (te)l/aryX}H (20)

with X a standard stable variable. O

3 Convex upper bounds

In many financial and actuarial applications where a sum of stochastic terms
is involved, the distribution of the quantity under investigation is too difficult
to obtain. In the present case for example, the stochastic variables Y (¢;) in (2)
are dependent, since they are constructed as successive partial sums of several
independent variables.

In such cases, the method of convex upper bounds is extremely helpful. We
will recall the most important results here; for more details, see [3, 4, 10].

The idea consists of replacing the incalculable exact distribution by a simpler
approximate distribution of a random variable which is “more dangerous”
than the original one. The notion “more dangerous” or “less favourable”
variable can be formalized by means of the convex ordering, see [18], with the
following definition :



Definition 3.1. If two random wvariables V. and W are such that for each
convex function u : R — R : x +— u(x) the expected values (provided they

exist) are ordered as
Elu(V)] < Efu(W)], (21)

the variable V' is said to be smaller in convex ordering than a variable W,
which is denoted as

V <o W. (22)

Since convex functions are functions that take on their largest values in the
tails, this means that the variable W is more likely to take on extreme values
than the variable V', and thus it can be considered to be more dangerous.

Condition (21) on the expectations can be rewritten as
Elu(=V)] = Efu(-=W)] (23)

for arbitrary concave utility functions v : R — R : z — w(z). Thus, for any
risk averse decision maker, the expected utility of the loss W is smaller than
the expected utility of the loss V. This means that replacing the unknown
distribution function of the variable V by the distribution function of the
variable W is a prudent stategy.

The functions u(x) = z, u(r) = —z and u(z) = 22 are all convex functions,

and thus it follows immediately that V' <., W implies E[V] = E[W] as well
as Var[V] < Var[W].

An equivalent characterisation of convex order is formulated in the following
lemma, a proof of which can be found in [18] :

Lemma 3.2. If two variables V and W are such that E[V] = E[W], then
V<aWEE[(V—-k)4] <E(W—Ek)4] forall k, (24)

with (x)4+ = max(0,z).

Since more dangerous risks will correspond to higher stop-loss premiums

E[(V — k)4], again it can be seen that the notion of convex order is very

adequate to describe an ordering in dangerousness. Indeed, E[(V — k)] de-
notes the expected loss (in financial terms) of realizations exceeding k.
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The notion of convex ordering can be extended from two single variables to
two sums of variables. The most important result in this context is summa-
rized in the following theorem, a proof of which can be found in [7]. In this
theorem, it is shown how for an arbitrary sum of functions of variables, a con-
vex upper bound can always be constructed, assuming only that the marginal
distributions of the underlying variables are known.

Proposition 3.3. Consider a sum of functions of random variables

V= ¢1(X1) + d2(X2) + ... + ¢n(Xn), (25)

where the functions ¢; are real functions.
The variable

_ 1 -1 -1
W =Fy (x)(U) + Foix) U) 4+ Fy x5y (U) (26)

with U a standard uniformly random variable, defines an upper bound in con-
vexity order, or

V <o W. (27)

Remarks

e The notation Fx;, () is used for the distribution function of Xj, i.e.

Fx,(r) = Prob(X; < x); (28)
the inverse function is defined in the classical way as (p € (0,1)):
F)}Jl (p) = inf{x € R: Fx,(z) > p}. (29)
e If the function ¢ is strictly increasing, then F(;(}X) (p) = gb(F)}l(p))
If ¢ is strictly decreasing, then F(;&)(p) = QS(F);l(l —D)).

e The corresponding terms in the original variable V' and in the upper
bound W are all mutually identically distributed, or

¢i(X) L L (U). (30)

#i(X53)
In fact, the convex upper bound is constructed as a sum of variables with the
same marginal distributions as the original ones, and with the same global
expectation, but with the most dangerous interdependence structure. Indeed,
each term in the sum (26) is a non-decreasing function of a common stochastic
U, and thus they can not be used as hedges against each other.

The more the original variables are mutually positively correlated, the better
the upper bound will accord with the real but unknown sum.
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4 Results for cash-flows

We now return to the present value of a series of (positive and/or negative)
payments

A= icje_y(tj). (31)
j=1

Remember that the variables Y'(¢;) (j = 1,...,n), representing the stochastic
continuous compounded rates of return over the periods [0,t;], can be written
as
J
Y(t)=> (Y(t:)=Y(ti1)) (O=to<ti<...<ty=t) (32)
i=1

with, conditionally on © = 6,
Y(tz) — Y(ti_l) i 5(tz — ti_l)g + ((tz — ti_1)9>1/a’)/Zi ; (33)

the random variables Z; are independent standard stable variables with distri-
bution S, (1, 3,0;1), and the risk parameter O is independent of the variables
Z;.

As mentioned before, it follows from the model that, conditionally on © = 6,
Y () L 5650 + (£,6)Y 7 X; (34)
where now the variables X; are dependent standard stable variables.

Due to the design of the present value (31), the terms in the sum are highly
positively dependent when the payments have the same sign. Indeed, the
compounded rates of return Y (¢;) are the sums of increments over the past
periods; two successive returns only differ in one such an increment. As a
consequence, the convex upper bound as defined in proposition 3.3 —which is
the sum of terms with highest possible positive interdependence structure—
will be very accurate as an approximation for the original present value. This
will be confirmed by the illustrations in the last section.

4.1 General results

We commence by applying proposition 3.3 in order to find a stochastic upper
bound for the present value under investigation. The following result holds:
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Proposition 4.1. Let U be a random variable which is uniformly distributed
on [0,1]. For the present value A in (31), the variable

Aupp = Z cjexp { 6t;0 (tj@)l/a’y Sign(cj)F_l(U; a, sign(cj)ﬁ)} (35)

where F(x; a, 3) = Prob(X; < z) denotes the distribution function of a stan-
dard stable variable, defines an upper bound in convezity order, or

A <ex Aupp - (36)

Proof. This follows directly from proposition 3.3 and from the symmetry prop-
erty F71(1 - U;a,8) = —F~Y(U;a, ). O

Starting from this result for the boundary variable, we arrive at an expression
for the stop-loss premiums.

Proposition 4.2. The stop-loss premiums of the present value A in (31) are
bounded from above by

+o0 ug (k)
B[(A— k)] < /0 dFe(6) /0 du (37)

Z ¢ exp{ ot;0 — (t 9)1/0‘7 sign(cj)F_l(u; a, sign(cj)ﬁ)} —k

where for each value of k and 6 the value xg(k) is defined implicitly through
the equation

Zc] exp{ at;0 — (t «9)1/0‘7 sign(cj)F_l(ue(k:);a,sign(cj)ﬁ)} =k. (38)

The function Fo(6) denotes the distribution function of the risk parameter ©.

Proof. Because of proposition 4.1, we know that

E[(A—k)4] <E[(Aupp — k)] (39)
with

+oo 1
Bl ~ B = [ dFo(®) [ du (40)

Z cj exp {—5tj0 - (tjﬁ)l/o"y sign(c;)F 1 (u; o, sign(cj)ﬂ)} —k
- +
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The desired result follows by observing that the sum in (40) is a decreasing
function of u, since each of the terms is. O

Finally, once the stop-loss premiums are found, the distribution function can
be easily determined. Indeed, there is a well-known link between stop-loss
premiums and distribution, stating that the right-hand derivative of a stop-
loss premium E [(A — k), | with respect to k equals Fu (k) — 1.

Proposition 4.3. The cumulative distribution for the quantity A,,, men-
tioned in proposition 4.1 can be calculated as

+oo
Fupp(k) = Prob[Ay, < k| =1 — /0 ug(k)dFe(0) (41)

with ug(k) defined implicitly in (38).

Proof. This follows immediately by taking the right-hand derivative of (37).
O

Note that if all ¢; > 0, then
+00
Foupp(k) = Prob[Ay,, <k]=1-— / F(zg(k);a, B)dFo(6) (42)
0

with z¢(k) defined implicitly through

S ¢jexp {—&je - (tj9)1/a’ya:,9(k:)} k. (43)
j=1

4.2 Special cases & model modifications

After presenting the general results, we also want to specify the results for
three special cases for the distribution of the variable ©. We will use the same
three cases for the numerical illustrations in the next section.

1. The risk parameter © has all its mass in one, or Prob[® = 1] = 1.
The model degenerates to the regular and unconditional stable model.

The distribution function of the upper bound can be written as

FU (k) =1 —u(k) (44)

upp
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with the values u(k) defined implicitly through the equation

n
> cjexp {—ot; — 1}/ “ysign(c;) P! (u(k); o, sign(e;)8) } = k. (45)
j=1
If «v is chosen equal to 2, we recover the results as mentioned in [9].

. The risk parameter © is exponentially distributed with unit mean.

The model is said to follow a geometric stable law. The variable Y ()
can be seen as the sum of a stochastic number of independent standard
stable variables, where the total number of terms follows a geometric
distribution (see [12]).

Now the distribution function of the upper bound can be written as

upp

F@(k)=1- / = e Oug(k) do (46)
0

with the values ug(k) defined in (38).

. The risk parameter © only appears in the volatility term.

In this case the model slightly differs, and the rate of return Y'(¢;) is
(conditionally on © = 0) distributed as

Y(t)) £ 6t + (1;6)/°4X; . (47)

The distribution function of the upper bound then equals

+o00
F)(k) = 1- /0 dFo(0)vy (k) (18)

with vg(k) defined implicitly through

n

Z ¢j exp {*5%’ — (t;0)"/*y sign(c;) F~ (vg (k); v, Sigﬂ(cj)ﬁ)} =k.
~ (49)

5 Numerical illustration

In this last section, we will present a few figures with graphs of the distribution
functions of the upper bounds for the present value (31), as given in (44), (46)
and (48).
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As stated above, the use of stable laws brings about a difficulty, which has to
be found in the fact that we do not have a closed form for their distribution
function and that it is very hard to calculate it numerically. In order to solve
this problem, we will make use of a recent numerical algorithm proposed by
Nolan (see [16]). Note that there are other possible algorithms, see e.g. [6].

For the values of the parameters of the stable law in our numerical illustration,
we choose the estimates based on the monthly changes in 30-year US Treasury
yields from 1977 to 1990 as calculated in a paper of Klein (see [11]):

e o= 1.58

e =0
e v=10.021714
e ) =0.

In Klein’s paper, the values for a and for v were estimated; 8 and d were put
equal to zero since their estimates were not significantly different from zero.
Note that the value of « significantly differs from 2, rejecting the normal
hypothesis. On the other hand, the value of 5 corresponds to the observation
that the hypothesis of symmetry can not be rejected. The zero choice for §
can be justified as the expected value at any time in the future being equal
to the starting value.

In order to check the accuracy of our bounds, we compare them with esti-
mations of the real distribution of A, obtained by means of a Monte Carlo
simulation. It could be argued that —if such a simulation is possible— an an-
alytical upper bound is not necessary or even not useful. Yet, given the fact
that a Monte Carlo simulation is very time consuming, the rather simple for-
mulas for the distribution of the upper bound are very attractive. Moreover,
since the approximations seem to show a high level of precision when com-
pared with the exact distributions (see the illustrations below), we think that
there are enough arguments in favour of our methodology.

In Figure 1 we plot the distribution function of A,;,, in case of a cash-flow
¢t =10, t =1,...,10, and with Prob[®© = 1] = 1. The distribution function
appears to be rather close to the distribution function of A. In order to
compare the accuracy in the tails, we construct a QQ-plot of the corresponding
distributions. Figure 2 confirms the heavy-tailedness of the upper bound and
indicates that the right quantiles are slightly overestimated. For instance, the
relative error of the 99% quantile is approximately 2.6%.
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Replacing the distribution of the risk parameter © by the Exp(1) distribu-
tion yields Figure 3. In Figure 4 we turn to the modified model (47) with
© ~ x?. Again, both upper bounds prove to be good approximations for the
corresponding exact distributions.

In Figures 5 and 6, we use the same model as in Figure 1, but we change
the cash-flow to ¢ = 1,...,10 and ¢, = 10,...,1 respectively. In case of
an increasing cash-flow, the upper bound seems to approximate the exact
distribution slightly better than in case of a decreasing cash-flow.
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Figure 1: Distribution function of A,,, (continuous line) for ¢, =10 (¢t =1,...,10)
and Prob[® = 1] = 1, compared to a simulated distribution function of A (dotted
line).
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Figure 2: QQ-plot of A,,, versus A, for ¢, = 10 (¢ =1,...,10) and Prob[® = 1] = 1.
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Figure 3: Distribution function of A,,, (continuous line) for ¢, =10 (¢t =1,...,10)
and © ~ Exp(1), compared to a simulated distribution function of A (dotted line).
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Figure 4: Distribution function of A,,, (continuous line) for ¢, =10 (¢t =1,...,10)

in special case 3 with © ~ x?, compared to a simulated distribution function of A
(dotted line).
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Figure 5: Distribution function of A,,, (continuous line) for ¢; = 1,...,10 and
Prob[© = 1] = 1, compared to a simulated distribution function of A (dotted line).
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Figure 6: Distribution function of A,,, (continuous line) for ¢, = 10,...,1 and

Prob[© = 1] = 1, compared to a simulated distribution function of A (dotted line).
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