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Abstract

In this paper we give some methods to set up confidence bounds for the discounted
IBNR reserve. We start with a loglinear regression model and estimate the parameters
by maximum likelihood such as given for example in Doray, 1996. The knowledge of the
distribution function of the discounted IBNR reserve (S) will help us to determine the initial
reserve, for example through the 95th percentile F−1

S (0.95). The results are based on convex
order techniques, such that our approximations for the distribution function of S are larger
or smaller, in convex order sense, than the true distribution function of S.
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1 Introduction

An important problem in insurance is to determine the provision for claims already incurred but
not yet reported (hence IBNR), or not fully paid. The past data used to construct estimates for
the future payments consist of a triangle of incremental claims Yij, as depicted in Figure 1. This
is the simplest shape of data that can be obtained and it avoids having to introduce complicated
notation to cope with all possible situations.

The random variables Yij with i, j = 1, 2, . . . , t denote the claim figures for year of origin i and
development year j, meaning that the claims were paid in calendar year i+ j−1. Year of origin,
year of development and calendar year act as explanatory variables for the observation Yij. For
(i, j) combinations with i + j ≤ t + 1, Yij has already been observed, otherwise it is a future
observation. Next to claims actually paid, these figures can also be used to denote quantities
such as loss ratios. To a large extent, it is irrelevant whether incremental or cumulative data
are used when considering claims reserving in a stochastic context.

The purpose is to complete this run-off triangle to a square, and even to a rectangle if estimates
are required pertaining to development years of which no data are recorded in the run-off triangle
at hand. To this end, the actuary can make use of a variety of techniques. The inherent
uncertainty is described by the distribution of possible outcomes, and one needs to arrive at
the best estimate of the reserve. Loss reserving deals with the determination of the uncertain
present value of an unknown amount of future payments. Since this amount is very important
for an insurance company and its policyholders, these inherent uncertainties are no excuse for
providing anything less than a rigorous scientific analysis. In order for the reserve estimate
truly to represent the actuary’s ”best estimate” of the needed reserve, both the determination
of the expected value of unpaid losses and the appropriate discount should reflect the actuary’s
best estimates (i.e. should not be dictated by others or by regulatory requirements). Since
the reserve is a provision for the future payment of unpaid losses, we believe the estimate loss
reserve should reflect the time value of money. In many situations this discounted reserve is
useful, for example dynamic financial analysis, assessing profitability and pricing, identifying
risk based capital needs, loss portfolio transfers, ... . Ideally the discounted loss reserve would
also be acceptable for regulatory reporting. However, many current regulations do not permit
it. Undiscounted loss reserves include in fact a certain risk margin depending on the level of
the interest rate. In this paper we consider the discounted IBNR reserve and impose an explicit
margin based on a risk measure (for example VaR) from the distribution of the total discounted
reserve.

As a first attempt to analyze the discounted IBNR reserve, we consider here a simple loglinear
statistical model to describe the past and future payments. So, the total IBNR reserve will be
a sum of lognormal random variables which implies that its exact distribution function (d.f.)
cannot be determined analytically. Considering the discounted IBNR reserve (S), we have
to incorporate a certain dependence structure. This will be explained in detail in the next
section. In general, it is hard or even impossible to determine the quantiles of S analytically,
because in any realistic model for the return process the random variable S will be a sum
of strongly dependent random variables. The ”true” multivariate distribution function of the
lower triangle cannot be determined in most cases, because the mutual dependencies are not
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Year of Development year
origin 1 2 · · · j · · · t − 1 t

1 Y11 Y12 · · · Y1j · · · Y1,t−1 Y1t

2 Y21 Y22 · · · Y2j · · · Y2,t−1
... · · · · · · · · · · · · · · ·
i Yi1 · · · · · · Yij
... · · · · · · · · ·
t Yt1

Figure 1: Random variables in a run-off triangle

known, or are difficult to cope with. We suggest to solve this problem by calculating upper and
lower bounds for this sum of dependent random variables making efficient use of the available
information. These bounds are based on a general technique for deriving lower and upper
bounds for stop-loss premiums of sums of dependent random variables, as explained in Kaas
et al. (2000). The first approximation we will consider for the d.f. of the discounted IBNR
reserve is derived by approximating the dependence structure between the random variables
involved by a comonotonic dependence structure. The second approximation, which is derived
by considering conditional expectations, takes part of the dependence structure into account.
We will include a numerical comparison of our approximations with a simulation study. The
second approximation turns out to perform quite well. For details of this technique we refer to
Dhaene et al. (2002a,b) and the references therein.

The choice of an appropriate statistical model is an important matter. Furthermore within a
stochastic framework, there is considerable flexibility in the choice of predictor structures. In
England and Verrall (2002) the reader finds an excellent review of possible stochastic models.
An appropriate model will enable the calculation of the distribution of the reserve that reflects
the process variability producing the future payments, and accounts for the estimation error
and statistical uncertainty (in the sense given in Taylor and Ashe, 1983). It is necessary to
be able to estimate the variability of claims reserves, and ideally to be able to estimate a full
distribution of possible outcomes so that percentiles (or other risk measures of this distribution)
can be obtained. Next, recognizing the estimation error involved with the parameter estimates,
confidence intervals for these measures constitute another desirable part of the output. Here,
putting the emphasis on the discounting aspect of the reserve, we consider simple loglinear
models. Doray (1996) studied these models extensively, taking into account the estimation error
on the parameters and the statistical prediction error in the model. This class of models have
some significant disadvantages. We need to impose that each incremental value should be greater
than zero. Moreover predictions from this model can yield unusable results. In the future the
authors intend to deal with other statistical models as well.

This paper is set out as follows. Section 2 gives a summary of results on loglinear models in
claims reserving. In section 3 we state stochastic bounds for the scalar product of two indepen-
dent random vectors, where the marginal distribution functions of each vector are given, but
the dependence structures are unknown. We will describe how these results can be used for dis-
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counted IBNR evaluations. Finally, we will calculate the cdf’s of these bounds. Some numerical
illustrations for a simulated data set are provided in section 4, together with a discussion of
the estimation error using a bootstrap approach. We also graphically illustrate the obtained
bounds. Most of the proofs are deferred to the appendix.

2 Loglinear Models

We consider the following loglinear regression model

�Zi = ln�Yi = Xi
�β + �εi, �Yi > 0 (1)

where

• �Yi is the ith element of the data vector �Y , of dimension t(t+1)
2 ,

• X is the regression matrix of dimension [ t(t+1)
2 ] × p; the ith row is denoted by Xi, and

element (i, j) is denoted Xij ,

• �β is the vector (of dimension p) of unknown parameters,

• �εi are independent normal random errors with mean 0 and variance σ2.

In matrix notation this linear model can be represented as

�Z = ln�Y = X�β + �ε, �ε ∼ N(0, σ2I). (2)

The normal responses Zij are assumed to decompose (additively) into a deterministic non-
random component with mean (X�β)ij and a homoscedastic normally distributed random error
component with zero mean.

For the regression parameters, various choices are possible. A well-known and widely used model
is the stochastic chain-ladder model

Zij = ln Yij = αi + βj + εij, (3)

(αi is the parameter for each year of origin i and βj for each development year j). It should be
noted that this representation implies the same development pattern for all years of origin, where
that pattern is defined by the parameters βj . The relationship between this loglinear model and
the chain-ladder technique was first pointed out by Kremer (1982) and used by Renshaw (1989),
Verrall (1989) and Christofides (1990), among others. Using this model gives not exactly the
same predictions as those obtained by the chain-ladder technique.

For a general model with parameters in the three directions, we refer to De Vylder and Goovaerts
(1979). We give here some frequently used special cases:
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• The probabilistic trend family (PTF) of models as suggested in Barnett and Zehnwirth
(1998)

Zij = ln Yij = αi +
j−1∑
k=1

βk +
i+j−2∑
t=1

γt + εij , (4)

where γ denotes the calendar year effect; it combines the effects of monetary inflation and
changing jurisprudence.

• The Hoerl curve as in Zehnwirth (1985)

Zij = ln Yij = αi + βilog(j) + γij + εij (j > 0). (5)

This model has the advantage that you can predict payments by extrapolation for j > t,
because development year j is considered as a continuous covariate. This is useful in
estimating tail factors.

• A mixture of models (3) and (5) as in England and Verrall (2001)

Zij = ln Yij =
{

αi + βj + εij if j ≤ q;
αi + βilog(j) + γij + εij if j > q

(6)

for some integer q specified by the modeller.

The parameters are estimated by maximum likelihood, which in the case of the normal error
structure is equivalent to minimizing the residual sum of squares. The unknown variance σ2

is estimated by the residual sum of squares divided by the degrees of freedom (the number of
observations minus the numbers of regression parameters estimated):

σ̃2 =
1

n − p
(�Z −X�̂β)′(�Z − X�̂β). (7)

This is an unbiased estimator of σ2. The maximum likelihood estimator of σ2 is given by

σ̂2 =
1
n

(�Z − X�̂β)′(�Z − X�̂β), (8)

while the maximum likelihood estimator of �β is

�̂β = (X′X)−1X′ �Z. (9)

Let B be the regression matrix corresponding to the lower triangle, of dimension [ t(t−1)
2 ] × p,

defined analogously to the regression matrix X.

Now we can forecast the total IBNR reserve with

IBNR reserve =
t∑

i=2

t∑
j=t+2−i

e(B�̂β)ij+εij . (10)
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This definition of the IBNR reserve can, among others, be found in Doray (1996). Here (B�̂β)ij
and εij are independent. Remark that another definition could be

∑t
i=2

∑t
j=t+2−i e

(B�β)ij+εij .
The approach taken in (10) partly uses the information contained in the upper triangle (through
�̂β), and acknowledges the underlying stochastic structure (through εij).

We have that

εij ∼ i.i.d N(0, σ2), (11)

(B�̂β)ij ∼ N
(
(B�β)ij , σ2

(
B(X′X)−1B′)

ij

)
. (12)

Starting from model (1), we summarize now some properties of the IBNR reserve (10), which
can be found in Doray (1996).

1. The mean of the IBNR reserve equals

W =
t∑

i=2

t∑
j=t+2−i

e(B�β)ij+
1
2
σ2(1+(B(X′X)−1B′)ij). (13)

2. The unique UMVUE of the mean of the IBNR reserve is given by

ŴU = 0F1

(n − p

2
;
SSz

4

) t∑
i=2

t∑
j=t+2−i

e(B�̂β)ij , (14)

where 0F1(α; z) denotes the hypergeometric function.

3. The MLE of the mean of the IBNR reserve:

ŴM =
t∑

i=2

t∑
j=t+2−i

e(B�̂β)ij+
1
2
σ̂2(1+(B(X′X)−1B′)ij). (15)

Verrall (1991) has considered an estimator similar to ŴM , but with σ̂2 replaced with σ̃2:

ŴV =
t∑

i=2

t∑
j=t+2−i

e(B�̂β)ij+ 1
2
σ̃2(1+(B(X′X)−1B′)ij). (16)

The simple estimator

ŴD =
t∑

i=2

t∑
j=t+2−i

e(B�̂β)ij+
1
2
σ̃2

, (17)

was considered in Doray (1996).
Now we have the order relation

ŴU < ŴD < ŴV , (18)
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which implies that

W = E[ŴU ] < E[ŴD] < E[ŴV ]. (19)

Hence both the estimators ŴD and ŴV exhibit a positive bias.

In the case that the type of business allows for discounting, or in the case that the value of the
reserve itself is seen as a risk in the framework of financial reinsurance, we add a discounting
process. Of course, the level of the required reserve will strongly depend on how we will invest
this reserve. Let us assume that the reserve will be invested such that it generates a stochastic
return Yj in year j, j = 1, 2, · · · , t− 1, i.e. an amount of 1 at time j − 1 will become eYj at time
j. The discount factor for a payment of 1 at time i is then given by e−(Y1+Y2+···+Yi), because
this stochastic amount will exactly grow to an amount 1 at time i. We will assume that the
return vector (Y1, Y2, · · · , Yt−1) has a multivariate normal distribution, which is independent
of �ε. The present value of the payments is then a linear combination of dependent lognormal
random variables. We introduce the random variable Y (i) defined by

Y (i) = Y1 + Y2 + · · · + Yi (20)

and assume that

Y (i) = (µ − δ2

2
)i + δB(i), (21)

where B(i) is the standard Brownian motion and where µ is a constant force of interest. In
order to obtain a net present value, that is consistent with pricing in the financial environment,
we transform the total estimated IBNR-reserve as follows

S
def
=

t∑
i=2

t∑
j=t+2−i

e(B�̂β)ij−Y (i+j−t−1)+εij (22)

=
t∑

i=2

t∑
j=t+2−i

exp
(
(B�̂β)ij − (µ − δ2/2)(i + j − t − 1) − δB(i + j − t − 1) + εij

)
. (23)

With this adaptation, we have that

E[eY (i)] . e−µi = 1. (24)

In order to study the distribution of the discounted IBNR reserve (22), we will use recent results
concerning bounds for sums of stochastic variables. In the following section, we will explain the
methodology we used for finding the desired answers. We will briefly repeat the most important
results.

3 Methodology

Because the discounted IBNR reserve is a sum of dependent lognormal random variables, its
distribution function cannot be determined analytically. Therefore, instead of calculating the
exact distribution, we will look for bounds, in the sense of ”more favourable/less dangerous” and
”less favourable/more dangerous”, with a simpler structure. This technique is common practice
in the actuarial literature. When lower and upper bounds are close to each other, together they
can provide reliable information about the original and more complex variable. The notion ”less
favourable” or ”more dangerous” variable will be defined by means of the convex order.
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3.1 Convex order and comonotonicity

Definition 1 A random variable V is smaller than a random variable W in convex order if

E[u(V )] ≤ E[u(W )], (25)

for all convex functions u: R → R : x �→ u(x), provided the expectations exist. This is denoted
as

V ≤cx W. (26)

Roughly speaking, convex functions are functions that take on their largest values in the tails.
Therefore, V ≤cx W means that W is more likely to take on extreme values than V . In terms
of utility theory, V ≤cx W means that the loss V is preferred to the loss W by all risk averse
decision makers, i.e. E[u(−V )] ≥ E[u(−W )] for all concave utility functions u. This means that
replacing the (unknown) distribution function of V by the distribution function of W , can be
considered as a prudent strategy with respect to setting reserves.

It follows that V ≤cx W implies E[V ] = E[W ] and Var[V ] ≤ Var[W ], see for example Dhaene
et al. (2002a).

We will now introduce the concepts of a Fréchet space and comonotonic risks, which will enable
us to construct an upper bound for the discounted IBNR reserve S.

Definition 2 The Fréchet space Rn(F1, F2, . . . , Fn) determined by the (univariate) distribution
functions F1, F2, . . . , Fn is the class of all n-variate distribution functions F (or the correspon-
ding random variables) with marginals F1, F2, . . . , Fn.

In the Fréchet space Rn(F1, F2, . . . , Fn) any random variable X is constrained from above by

FX(x) ≤ min{F1(x1), F2(x2), . . . , Fn(xn)} =: Wn(x), ∀ x ∈ R (27)

A comonotone risk is a random variable with cdf Wn, see for example Dhaene et al. (1997).

Definition 3 A random vector X = (X1,X2, . . . ,Xn) is said to be comonotone (the random
variables X1,X2, . . . ,Xn are said to be mutually comonotone) if any of the following conditions
hold:

1. For the n-variate cdf we have

FX(x) = min{F1(x1), F2(x2), . . . , Fn(xn)}, ∀ x ∈ R
n; (28)

2. There exist a random variable Z and non-decreasing functions g1, g2, . . . , gn: R → R such
that

(X1,X2, . . . ,Xn) d= (g1(Z), g2(Z), . . . , gn(Z)); (29)

3. For any random variable U uniformly distributed on (0, 1), we have:

(X1,X2, . . . ,Xn) d= (F−1
1 (U), F−1

2 (U), . . . , F−1
n (U)). (30)
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As usual ” d=” denotes equality in distribution and F−1 represents the inverse of the cdf F defined
as

F−1
X (p) = inf{x ∈ R | FX(x) ≥ p}, p ∈ [0, 1]. (31)

It can be seen from condition 2 that comonotonic random variables possess a very strong positive
dependence: increasing one of the Xi will lead to an increase of all other random variables Xj

involved. These special random variables will provide us with a tool to construct a close upper
bound for S.

3.2 Convex bounds for sums of random variables

If a random variable V consists of a sum of random variables (X1, . . . ,Xn) then replacing the
copula of (X1, . . . ,Xn) by the comonotonic copula yields an upper bound for V in the convex
order. On the other hand, applying Jensen’s inequality to V provides us with a lower bound.
Finally, if we combine both ideas, then we end up with an improved upper bound. This is
formalized in the following theorem, which is taken from Dhaene et al. (2002a) and Kaas et al.
(2000).

Theorem 1 Consider an arbitrary sum of random variables,

V = X1 + X2 + . . . + Xn, (32)

and define the related stochastic quantities

Vl = E[X1|Z] + E[X2|Z] + . . . + E[Xn|Z] (33)
V ′

u = F−1
X1|Z(U) + F−1

X2|Z(U) + . . . + F−1
Xn|Z(U) (34)

Vu = F−1
X1

(U) + F−1
X2

(U) + . . . + F−1
Xn

(U), (35)

with U a uniform(0, 1) random variable, and with Z an arbitrary random variable, independent
of U . The following relations then hold:

Vl ≤cx V ≤cx V ′
u ≤cx Vu. (36)

For each j = 1, . . . , n, the terms in the original variable V and the corresponding terms in the
upper bounds Vu and V ′

u are all identically distributed, i.e.

Xj
d= F−1

Xj
(U) d= F−1

Xj |Z(U). (37)

For the lower bound, the equalities of the distributions of Xj and E[Xj |Z] only hold in case all
Xj , given Z = z, are constant for each z.

These results can be generalized to the case where V consists of a sum of monotonic functions
φj of random variables Xj , simply by substituting Yj for φj(Xj) and applying Theorem 1, see
Kaas et al. (2000).

The next theorem extends the previous results from ordinary sums of variables to sums of scalar
products of independent random variables. The proof is deferred to Appendix A.
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Theorem 2 Assume that the vectors X and Y, given the random variable Z, are mutually
independent and that Z is independent of Y. Consider two mutually independent uniform(0,1)
random variables U and V . If the Xi and Yi are non-negative random variables, then we find
that the following relations hold:

Wl ≤cx W ≤cx W ′
u ≤cx Wu, (38)

with

W = X1Y1 + X2Y2 + . . . + XnYn (39)
Wl = E[X1|Z]E[Y1] + E[X2|Z]E[Y2] + . . . + E[Xn|Z]E[Yn] (40)
W ′

u = F−1
X1|Z(U)F−1

Y1
(V ) + F−1

X2|Z(U)F−1
Y2

(V ) + . . . + F−1
Xn|Z(U)F−1

Yn
(V ) (41)

Wu = F−1
X1

(U)F−1
Y1

(V ) + F−1
X2

(U)F−1
Y2

(V ) + . . . + F−1
Xn

(U)F−1
Yn

(V ), (42)

and where U , V and Z are mutually independent.

3.3 Upper and lower bounds for the discounted IBNR reserve

In this subsection we will derive the upper and lower bounds in convex order, as described in
the previous theorem, for the discounted IBNR reserve

S =
t∑

i=2

t∑
j=t+2−i

e(B�̂β)ij−Y (i+j−t−1)+εij . (43)

We introduce the random variables Vij and Wij defined by

Wij = (B�̂β)ij − Y (i + j − t − 1); Vij = eWij . (44)

Consider now a conditioning normally distributed random variable Z defined as follows:

Z =
t∑

i=2

t∑
j=t+2−i

νijYi+j−t−1. (45)

We will compute the lower and upper bound for the following choice of the parameters

νij =
t∑

k=i+1

t∑
l=t+2−k

exp
(
(B�β)kl − (k + l − t − 1)µ

)
+

t∑
l=j

exp
(
(B�β)il − (i + l − t − 1)µ

)
.
(46)

This particular random variable Z follows from the same strategy as explained in Kaas et al.
(2000). Z is a linear transformation of a first-order approximation of

S̃ =
t∑

i=2

t∑
j=t+2−i

e(B�β)ij−Y (i+j−t−1). (47)

For a multivariate normal distribution, every linear combination of its components has a uni-
variate normal distribution, so Z is normally distributed. Also, (Wij, Z) has a bivariate normal
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distribution. Conditionally given Z = z, Wij has a univariate normal distribution with mean
and variance given by

E[Wij |Z = z] = E[Wij ] + ρij
σWij

σZ
(z − E[Z]) (48)

and

V ar[Wij|Z = z] = σ2
Wij

(
1 − ρ2

ij

)
(49)

where ρij denotes the correlation between Z and Wij.

Proposition 1 Let S, Sl, S
′
u and Su be defined as follows:

S =
t∑

i=2

t∑
j=t+2−i

exp (Wij + εij) , (50)

Sl =
t∑

i=2

t∑
j=t+2−i

exp
(

E[Wij ] + ρijσWijΦ
−1(U) +

1
2
(1 − ρ2

ij)σ
2
Wij

+
1
2
σ2

εij

)
, (51)

S′
u =

t∑
i=2

t∑
j=t+2−i

exp
(
E[Wij ] + ρijσWijΦ

−1(U) +
√

1 − ρ2
ijσWijΦ

−1(V ) + σεijΦ
−1(W )

)
, (52)

Su =
t∑

i=2

t∑
j=t+2−i

exp
(
E[Wij ] + σWijΦ

−1(U) + σεijΦ
−1(V )

)
, (53)

where U , V and W are mutually independent uniform (0, 1) random variables and Φ is the cdf
of the N(0, 1) distribution. Then we have

Sl ≤cx S ≤cx S′
u ≤cx Su. (54)

Proof .

1. If a random variable X is lognormal (µ, σ2) distributed, then E[X] = exp(µ+ 1
2σ2). Hence

for Z =
∑t

i=2

∑t
j=t+2−i νijYi+j−t−1, we find, taking U = Φ

(
Z−E[Z]

σZ

)
∼ uniform (0, 1),

that

E[Vij |Z]E[eεij ] = exp
(

E[Wij ] + ρijσWijΦ
−1(U) +

1
2
(1 − ρ2

ij)σ
2
Wij

+
1
2
σ2

εij

)
.

(55)

From Theorem 2, we find Sl ≤cx S.

2. If a random variable X is lognormal (µ, σ2) distributed, then F−1
X (p) = exp(µ+σΦ−1(p)).

Hence we find that

F−1
Vij |Z(p)F−1

eεij (q) = exp
(
E[Wij ] + ρijσWijΦ

−1(U) +
√

1 − ρ2
ijσWijΦ

−1(p) + σεijΦ
−1(q)

)
.
(56)

From Theorem 2, we find S ≤cx S′
u.

3. The stochastic inequality S′
u ≤cx Su follows from Theorem 2. �

In Appendix B we provide some more details concerning the (calculation of the) distributions
of the different bounds derived in Proposition 1.
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3.4 Bounds constructed on the basis of ŴD

The estimator ŴD (17), for the mean of the IBNR reserve, constitutes a close upper bound
for the UMVUE of the mean of the IBNR reserve if t(t+1)

2 − p is large and the residual sum

of squares is small. It should be noted that e((B�̂β)ij+σ̃2/2) is the estimator of the mean of a
lognormal distribution LN((B�β)ij , σ2) obtained by replacing the parameters �β and σ2 by their
unbiased estimates.

Adding now a discount process to ŴD, like in the previous subsection, gives

ŴDD =
t∑

i=2

t∑
j=t+2−i

e(B�̂β)ij−Y (i+j−t−1)+ 1
2
σ̃2

. (57)

Now, we can apply the same methodology as explained before. Proposition 1 is still applicable.
The only difference is that εij is changed by 1

2 σ̃2, with

1
2
σ̃2 ∼ Gamma

(
n − p

2
,

σ2

n − p

)
. (58)

4 Numerical illustrations

In this section we illustrate the effectiveness of the bounds derived for the discounted IBNR
reserve S. We investigate the accuracy of the proposed bounds, by comparing their cdf to the
empirical cdf obtained with Monte Carlo simulation, which serves as a close approximation to
the exact distribution of S. To analyze the precision of the derived bounds (given the choice of
the stochastic model), we built a non-cumulative run-off triangle ourselves based on the chain-
ladder model (3). So, the run-off triangle in Table 1 has only trends in the two main directions,
namely in the year of origin and in the development year.

1 2 3 4 5 6 7 8 9 10 11
1 363, 346 492, 947 322, 511 236, 555 249, 319 151, 228 138, 373 95, 703 71, 742 53, 788 35, 99
2 397, 798 543, 864 358, 855 263, 325 276, 817 167, 045 153, 095 106, 272 78, 515 58, 790
3 806, 154 1, 096, 841 727, 977 530, 683 557, 870 336, 716 310, 022 213, 706 157, 504
4 727, 102 995, 988 654, 059 476, 665 502, 405 303, 132 278, 280 192, 436
5 659, 846 900, 386 591, 633 433, 425 457, 482 276, 056 253, 301
6 541, 187 736, 205 487, 730 353, 255 373, 921 226, 091
7 979, 636 1, 342, 832 882, 924 651, 920 682, 307
8 890, 641 1, 219, 406 798, 007 582, 415
9 486, 340 666, 405 442, 457
10 445, 174 604, 206
11 1, 084, 253

Table 1: Run-off triangle with non-cumulative claim figures
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In order to illustrate the power of the bounds, namely inspecting the deviation of the cdf of
the convex bounds Sl, Su and S′

u from the true distribution of the total IBNR reserve S, we
simulate a triangle from a particular model specified in Table 2. Fitting the loglinear model
with a chain-ladder type predictor gives the parameter estimates and standard errors shown in
Table 2. A parameter, for example β1, must be set equal to zero, in order to have a non-singular
regression matrix.

Parameter Model parameter Estimate Standard error
α1 12.8 12.7976 0.0018
α2 12.9 12.8968 0.0018
α3 13.6 13.5994 0.0018
α4 13.5 13.4957 0.0019
α5 13.4 13.3996 0.0019
α6 13.2 13.1997 0.0020
α7 13.8 13.7999 0.0021
α8 13.7 13.6983 0.0023
α9 13.1 13.0999 0.0025
α10 13.0 13.0035 0.0029
α11 13.9 13.8964 0.0039
β2 0.31 0.3109 0.0018
β3 −0.11 −0.1060 0.0018
β4 −0.42 −0.4198 0.0019
β5 −0.37 −0.3677 0.0020
β6 −0.87 −0.8717 0.0021
β7 −0.96 −0.9579 0.0022
β8 −1.33 −1.3267 0.0024
β9 −1.63 −1.6249 0.0027
β10 −1.92 −1.9100 0.0032
β11 −2.31 −2.3064 0.0043
σ 0.0004 0.0037

Table 2: Model specification, maximum likelihood estimates and standard errors.

We also specify the multivariate distribution function of the random vector (Y1, Y2, . . . , Yt−1). In
particular, we will assume that the random variables Yi are i.i.d. and N(µ− 1

2δ2, δ2) distributed
with µ = 0.08 and δ = 0.11. This enables now to simulate the cdf’s while there is no way to
compute them analytically. The conditioning random variable Z is defined as in (45)-(46).

Fig. 2 shows the cdf’s of the upper and lower bounds, compared to the empirical distribution
based on 100,000 randomly generated, normally distributed vectors (Y1, Y2, . . . , Yt−1) and �ε.
Since Sl ≤cx S ≤cx S′

u ≤cx Su, the same ordering holds for the tails of their respective distribu-
tion functions which can be observed to cross only once. We see that the cdf of Sl is very close
to the distribution of S. The ”real” standard deviation equals 1,617,912 whereas the standard
deviation of the lower bound equals 1,590,233. A lower bound for the 95th percentile is given by
13,638,620. The comonotonous upper bound Su performs badly in this case. This comes from
the fact that in order to determine Sl, we make use of the (estimated values of the) correlations
between the cells of the lower triangle, whereas in the case of Su, the distribution is an upper

12
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Figure 2: The cdf’s of the lower bound Sl (dotted line) and of the improved upper bound S′
u

(dashed line) vs. the distribution of the discounted IBNR reserve S approximated by extensive
simulation (solid line) for the run-off triangle in Table 1.

FSl FS FS′
u

year 95% mean st. dev. 95% mean st. dev. 95% mean st. dev.

2 41,913 36,694 3,043 43,742 36,690 4,072 43,796 36,694 4,096
3 210,781 178,522 18,580 215,958 178,510 21,334 218,463 178,522 22,805
4 339,371 280,596 33,568 344,231 280,570 36,069 350,678 280,596 39,738
5 487,782 396,861 51,644 492,575 396,817 53,804 503,873 396,861 60,357
6 609,034 491,311 66,663 614,094 491,252 68,525 630,052 491,311 77,971
7 1,515,794 1,206,735 174,414 1,526,990 1,206,571 177,891 1,570,251 1,206,735 203,422
8 1,976,955 1,574,772 226,804 1,986,766 1,574,556 230,635 2,053,898 1,574,772 267,668
9 1,392,268 1,095,585 166,894 1,403,295 1,095,420 169,890 1,449,017 1,095,585 196,744
10 1,641,355 1,287,052 199,051 1,657,107 1,286,851 203,005 1,713,161 1,287,052 236,658
11 5,423,367 4,267,416 649,616 5,473,462 4,266,762 662,975 5,674,518 4,267,416 781,003

total 13,638,620 10,815,543 1,590,233 13,718,215 10,814,002 1,617,912 14,207,619 10,815,543 1,890,298

Table 3: 95th percentiles, means and standard deviations of the distributions of Sl and S′
u vs.

S. (µ = 0.08, δ = 0.11)

bound (in the sense of convex order) for any possible dependence structure between the compo-
nents of the vector X. The improved upper bound performs better, as could be expected. The
standard deviation of the improved upper bound is given by 1,890,298. The 95th percentile of
the improved upper bound now equals 14,207,619, which is of course much higher than the 95th
percentile of Sl.
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Figure 3: QQ-plot of the quantiles of Sl (O) and S′
u (�) versus those of S.

Table 3 summarizes the numerical values of the 95th percentiles of the two bounds Sl and S′
u,

together with their means and standard deviations. This is also provided for the row totals

Si =
t∑

j=t+2−i

e(B�̂β)ij−Y (i+j−t−1)+εij , i = 2, · · · , t. (59)

We can conclude that the lower bound approximates the ”real discounted reserve” very well.

p F−1
Sl

(p) F−1
S (p) F−1

S′
u

(p)
0.95 13,638,620 13,718,215 14,207,619

0.975 14,303,311 14,411,869 15,035,380
0.99 15,122,153 15,166,753 16,066,305

0.995 15,709,687 15,710,588 16,813,432
0.999 17,003,250 17,003,255 18,479,550

Table 4: Quantiles of Sl and S′
u versus those of S.

In order to have a better view on the behavior of the improved upper bound S′
u and of the

lower bound Sl in the tails, we consider a QQ-plot where the quantiles of S′
u and of the lower

bound Sl are plotted against the quantiles of S. The improved upper bound S′
u and the lower

bound Sl will be a good approximation for S if the plotted points (F−1
S (p), F−1

S′
u

(p)), respectively
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Distribution of bootstrapped Simulated distribution
95th percentiles of Sl of F−1

S (0.95)
1 st percentile 13,587,825 13,578,331

2.5 th percentile 13,589,852 13,579,131
5 th percentile 13,597,445 13,585,813

10 th percentile 13,616,522 13,598,723
25 th percentile 13,627,692 13,619,389
50 th percentile 13,637,841 13,634,543
75 th percentile 13,647,654 13,651,195
90 th percentile 13,661,140 13,669,104
95 th percentile 13,671,003 13,678,393

97.5 th percentile 13,678,085 13,685,378
99 th percentile 13,680,785 13,688,379

Table 5: Percentiles of the bootstrapped 95th percentile of the distribution of the lower bound
SB

l(95) vs. the simulation.

(F−1
S (p), F−1

Sl
(p)), for all values of p in (0, 1) do not deviate too much from the line y = x. From

the QQ-plot in Figure 3, we can conclude that the improved upper bound (slightly) overestimates
the tails of S, whereas the accuracy of the lower bond is extremely high for the chosen set of
parameter values. Tabel 4 confirms these observations.

Finally, remark that in a practical case study one can bootstrap a high percentile of the distri-
bution of the lower bound in order to describe the estimation error involved. Taylor and Ashe

(1983) used the terminology estimation error for Var[(B�̂β)ij ] and statistical or random error for
Var[εij ]. The estimation error arises from the estimation of the vector parameters β̂ from the
data, and the statistical error stems from the stochastic nature of model (1). We bootstrap an
upper triangle using the non-parametric bootstrap procedure. This involves resampling, with
replacement, from the original residuals and then creating a new triangle of past claims pay-
ments using the resampled residuals together with the fitted values. For a description of the
bootstrap technique to claims reserving we refer to Lowe (1994), Taylor (2000) and England
and Verrall (2002). These authors used this procedure to obtain prediction errors for different
claims reserving methods and also to obtain a predictive distribution of reserves.

For each bootstrap sample, we calculate the desired percentile of the distribution of Sl. This
two-step procedure is repeated a large number of times. The first column of Table 5 shows the
results, concerning the 95th percentile, for 5000 bootstrap samples applied to the run-off triangle
in Table 1. When compared with the simulated distribution of F−1

S (0.95) (obtained through
5000 simulated triangles), we can conclude that the bootstrap distribution yields appropriate
confidence bounds.

5 Conclusions and possibilities for future research

In this paper, we considered the problem of deriving the distribution function of the present
value of a triangle of claim payments that are discounted using some given stochastic return
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process. Because an explicit expression for the distribution function is hard to obtain, even
when starting from a classical loglinear regression model, we presented three approximations for
this distribution function, in the sense that these approximations are larger or smaller in convex
order sense than the exact distribution.

Extensions could be the generalizations of the underlying regression model for instance to gene-
ralized linear models. Incorporating stable laws when modelling the discount factor is another
way to generalize the results given above.

The sum of lognormal random variables is not lognormally distributed. However in practice it is
often claimed to be approximately lognormally distributed. Perhaps it is useful to quantify the
distance between the distribution of S and the lognormal family of distributions by means of
the so-called Kullback-Leibler information. The Hellinger distance will allow us to measure the
closeness of the derived lower and upper bounds as well as how far these bounds are from S in
the distributional sense. So, we can identify which parameters have influence on this distance.
This could also be a topic for a next paper.
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Appendix A

In this appendix we will prove Theorem 2, using the next proposition.

Proposition 2 Assume that the vectors X and Y are mutually independent and also the vectors
X and Z. If

n∑
i=1

xiYi ≤cx

n∑
i=1

xiZi (60)

for all outcomes x of X, then

n∑
i=1

XiYi ≤cx

n∑
i=1

XiZi. (61)
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Proof . Let φ be a convex function. By conditioning on X and taking the assumptions into
account, we find that

E

[
φ(

n∑
i=1

XiYi)

]
= EX

{
E

[
φ(

n∑
i=1

XiYi)|X
]}

(62)

≤ EX

{
E

[
φ(

n∑
i=1

XiZi)|X
]}

(63)

= E

[
φ(

n∑
i=1

XiZi)

]
(64)

holds for any convex function φ. �

A convex upper bound for
∑n

i=1 XiYi

We will first prove the following relation

n∑
i=1

XiYi ≤cx

n∑
i=1

F−1
Xi

(U)F−1
Yi

(V ). (65)

Proof . From Kaas, Dhaene and Goovaerts (2000)

n∑
i=1

Xiyi ≤cx

n∑
i=1

F−1
Xiyi

(U), (66)

where U is a uniformly distributed random variable. Because F−1
αX(p) = αF−1

X (p) for α positive,
we have that

n∑
i=1

F−1
Xiyi

(U) =
n∑

i=1

yiF
−1
Xi

(U). (67)

From Proposition 2

n∑
i=1

XiYi ≤cx

n∑
i=1

YiF
−1
Xi

(U), (68)

if U is independent of Y (*).

Proceeding the same for
∑n

i=1 YiF
−1
Xi

(U) proves the first inequality of the theorem. Note that
the independence assumption (*) can be omitted by replacing for example U by U ′. �

Let us now assume that we have complete (or partial) information concerning the dependence
structure of the random vector (X1Y1,X2Y2, . . . ,XnYn), but that exact computation of the cdf
of the sum X1Y1 + X2Y2 + . . . + XnYn is very time-consuming or even impossible. In this case
we can derive improved upper bounds for S by using part of the information on the dependence

17



structure, by conditioning on some random variable Z which is assumed to be some function of
the random vector X. We will assume that we know the conditional cdf’s, given Z = z, of the
random variables Xi.

An improved upper bound for
∑n

i=1 XiYi

We prove the following relation

n∑
i=1

XiYi ≤cx

n∑
i=1

F−1
Xi|Z(U)F−1

Yi
(V ) ≤cx

n∑
i=1

F−1
Xi

(U)F−1
Yi

(V ). (69)

Proof . From Kaas, Dhaene and Goovaerts (2000)

n∑
i=1

Xiyi ≤cx

n∑
i=1

F−1
Xiyi|Z(U) =

n∑
i=1

yiF
−1
Xi|Z(U). (70)

Proceeding now the same as in the proof of (65), proves the first inequality.
Now, we have that the random vector

(
F−1

X1|Z(U), . . . , F−1
Xn|Z(U)

)
has marginals FX1 , . . . , FXn ,

because

FXi(x) = P (Xi ≤ x) (71)

=
∫ ∞

−∞
P (Xi ≤ x|Z = z) dFZ(z) (72)

=
∫ ∞

−∞
P
(
F−1

Xi|Z=z(U) ≤ x
)

dFZ(z) (73)

= FF−1
Xi|Z (U)(x). (74)

In view of Theorem 1 (35) this implies the second inequality. �

Let X be a random vector with marginals FX1 , . . . , FXn , and assume that we want to find a
lower bound, in the sense of convex order, for S = X1Y1 + . . . + XnYn. We can obtain such
a bound by conditioning on some random variable Z, again assumed to be a function of the
random vector X.

A lower bound for
∑n

i=1 XiYi

Finally, we prove the following relation

n∑
i=1

E[Xi|Z]E[Yi] ≤cx

n∑
i=1

XiYi (75)

Proof . By Jensen’s inequality, we find that for any convex function φ, the following inequality
holds:
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E[φ(X1Y1 + . . . + XnYn)] = EZE[φ(X1Y1 + . . . + XnYn)|Z] (76)
≥ EZ [φ(E[X1Y1 + . . . + XnYn|Z])] (77)
= EZ [φ(E[X1Y1|Z] + . . . + E[XnYn|Z])] (78)
= EZ [φ(E[X1|Z]E[Y1] + . . . + E[Xn|Z]E[Yn])] (79)

This proves the stated result. �

Appendix B

In this appendix we derive expressions for the cdf’s of Sl, S
′
u and Su.

Consider a random variable W which is defined as the product of two non-negative independent
variables X and Y :

W = XY (80)

The cdf of W follows from

FW (z) =
∫ ∞

−∞
FY

( z

x

)
dFX(x) =

∫ 1

0
FY

(
z

F−1
X (u)

)
du. (81)

The cdf of Su

From Theorem 2, we can write the convex upper bound for the discounted IBNR reserve as
follows

Su =
t∑

i=2

t∑
j=t+2−i

exp
(

F−1

(B�̂β)ij−Y (i+j−t−1)
(U)
)

exp
(
F−1

εij
(V )

)
(82)

= eσΦ−1(V )
t∑

i=2

t∑
j=t+2−i

e(B�β)ij−(µ− 1
2
δ2)(i+j−t−1)+

√
σ2(B(X′X)−1B′)ij+δ2(i+j−t−1)Φ−1(U). (83)

There are several possibilities to derive the cdf of Su. From previous results

FSu(z) =
∫ 1

0
FN

(
ln(z) − ln(F−1

S′′
u

(u))
)

du, (84)

with FN (x) the cdf of N(0, σ2) and

S′′
u =

t∑
i=2

t∑
j=t+2−i

exp
(

F−1

(B�̂β)ij−Y (i+j−t−1)
(U)
)

(85)

=
t∑

i=2

t∑
j=t+2−i

exp
(
E[Wij ] + σWijΦ

−1(U)
)
. (86)
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So, we have that FSu(z) =

∫ 1

0
FN


ln(z) − ln


 t∑

i=2

t∑
j=t+2−i

e(B�β)ij−(µ− 1
2
δ2)(i+j−t−1)+

√
σ2(B(X′X)−1B′)ij+δ2(i+j−t−1)Φ−1(u)




 du.
(87)

We can also derive an algorithm for the determination of the cdf of Su. We have that
Su | V = v is the sum of t(t − 1)/2 comonotonic risks. This implies

F−1
Su|V =v(p) =

t∑
i=2

t∑
j=t+2−i

exp
(

F−1

(B�̂β)ij−Y (i+j−t−1)
(p)
)

exp
(
F−1

εij
(v)
)

(88)

and

FSu|V =v(x) =
{

p ∈ [0, 1]|
t∑

i=2

t∑
j=t+2−i

exp
(

F−1

(B�̂β)ij−Y (i+j−t−1)
(p)
)

exp
(
F−1

εij
(v)
)
≤ x

}
.
(89)

If we in addition assume that the cdf’s F
(B�̂β)ij−Y (i+j−t−1)

are strictly increasing and continuous,

then FSu|V =v(x) follows from

t∑
i=2

t∑
j=t+2−i

exp
(

F−1

(B�̂β)ij−Y (i+j−t−1)
(FSu|V =v(x))

)
exp

(
F−1

εij
(v)
)

= x. (90)

In any case, the cdf of Su follows from

FSu(x) =
∫ 1

0
FSu|V =v(x)dv. (91)

The cdf of Sl

From Theorem 2, we obtained the convex lower bound for the discounted IBNR reserve from

Sl =
t∑

i=2

t∑
j=t+2−i

E


exp

(
(B�̂β)ij − Y (i + j − t − 1)

) ∣∣∣∣∣
t∑

i=2

t∑
j=t+2−i

νijYi+j−t−1


E [exp (εij)] .

(92)

Taking into account that Z =
∑t

i=2

∑t
j=t+2−i νijYi+j−t−1 is normally distributed, we find that

F−1
Z (1 − p) = E[Z] − σZΦ−1(p), (93)

and hence

F−1
sl

(p) = F−1�t
i=2

�t
j=t+2−i E[Vij |Z]E[eεij ]

(p), p ∈ (0, 1) (94)

=
t∑

i=2

t∑
j=t+2−i

F−1
E[Vij |Z]E[eεij ]

(p) (95)

=
t∑

i=2

t∑
j=t+2−i

E[Vij |Z = F−1
Z (1 − p)]E[eεij ] (96)

=
t∑

i=2

t∑
j=t+2−i

exp
(

E[Wij ] − ρijσWijΦ
−1(p) +

1
2
(1 − ρ2

ij)σ
2
Wij

+
1
2
σ2

εij

)
. (97)
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In order to derive the above result, we used the fact that for a non-increasing continuous function
g, we have

F−1
g(X)(p) = g(F−1

X (1 − p)), p ∈ (0, 1). (98)

Here, g = E[eWij |Z] is a non-increasing function of Z since ρij is always negative. So, we have
that

F−1
sl

(p) =
t∑

i=2

t∑
j=t+2−i

e
(B�β)ij−(µ− 1

2
δ2)(i+j−t−1)+

δ t
k=2

min(i+j−k,t)
l=t+2−k

νkl√
t
k=2

t
l=t+2−k

ν2
kl

Φ−1(p)

(99)

e

1
2

σ2(B(X′X)−1B′)
ij

+δ2(i+j−t−1)−
δ2 t

k=2
min(i+j−k,t)
l=t+2−k

νkl

2

t
k=2

t
l=t+2−k

ν2
kl

+ 1
2
σ2

, p ∈ (0, 1).(100)

FSl
(x) can be obtained from solving the equation

t∑
i=2

t∑
j=t+2−i

exp
(

E[Wij ] − ρijσWijΦ
−1(FSl

(x)) +
1
2
(1 − ρ2

ij)σ
2
Wij

+
1
2
σ2

εij

)
= x.

(101)

The cdf of S ′
u

From Theorem 2, we can obtain the improved convex upper bound for the discounted IBNR
reserve from

S′
u =

t∑
i=2

t∑
j=t+2−i

exp
(

F−1

(B�̂β)ij−Y (i+j−t−1)|Z
(U)
)

exp
(
F−1

εij
(V )
)

, (102)

with Z =
∑t

i=2

∑t
j=t+2−i νijYi+j−t−1.

From previous results

FS′
u
(z) =

∫ 1

0
FN

(
ln(z) − ln(F−1

S′′′
u

(y))
)

dy, (103)

with FN (x) the cdf of N(0, σ2) and S′′′
u =

∑t
i=2

∑t
j=t+2−i exp

(
F−1

(B�̂β)ij−Y (i+j−t−1)|Z
(U)
)

.

Now, we will derive an algorithm for the determination of FS′′′
u

(y). From Proposition 1 we know
that

S′′′
u =

t∑
i=2

t∑
j=t+2−i

exp
(
E[Wij ] + ρijσWijΦ

−1(U) +
√

1 − ρ2
ijσWijΦ

−1(V )
)

. (104)

Since FS′′′
u |U=u is a sum of t(t − 1) comonotonous random variables, we have

F−1
S′′′

u |U=u(p) =
t∑

i=2

t∑
j=t+2−i

exp
(
E[Wij ] + ρijσWijΦ

−1(u) +
√

1 − ρ2
ijσWijΦ

−1(p)
)

.
(105)
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FS′′′
u |U=u also follows implicitly from

t∑
i=2

t∑
j=t+2−i

exp
(
E[Wij ] + ρijσWijΦ

−1(u) +
√

1 − ρ2
ijσWijΦ

−1(FS′′′
u |U=u(y))

)
= y.

(106)

The cdf of S′′′
u then follows from

FS′′′
u

(y) =
∫ 1

0
FS′′′

u |U=u(y)du. (107)
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