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Abstract

We consider the problem of how to determine the required level
of the current provision in order to be able to meet a series of future
deterministic payment obligations, in case the provision is invested
according to a given random return process. Approximate solutions
are derived, taking into account imposed minimum levels of the future
random values of the reserve. The paper ends with numerical examples
illustrating the presented approximations.

1 Introduction

Consider the problem of how to determine at current time 0 the amount Ry
that will enable us to pay the amounts «; at timesi (i =1, 2 ,..., n). We
will call Ry the provision or the reserve at time 0.

A first way of determining the provision follows from noting that these
future liabilities are equivalent to the liabilities associated with selling n zero
coupon bonds with face values a1, as, ---,a, respectively. The provision
is then determined as the price of this zero-coupon bond portfolio. Investing
the provision in this sequence of zero-coupon bonds will exactly generate the
amount «; at times ¢ (i =1, 2 ,..., n), so that we will be able to meet our
future obligations with certainty under this investment strategy.

In this paper however, we will determine the level of the provision under a
given investment strategy. We will assume that the provision will be invested



such that it generates stochastic yearly returns Y;, Y5, --- Y, in the coming
years. The provision will be determined such that the probability that we will
be able to meet our future obligations will be sufficiently large. Conversely, if
the level of the provision is given, our methodology will enable us to compute
the probability that we will be able to meet our future obligations under the
given investment strategy. We note that we work with 'physical probabilities’
which implies that the required provision is different from the arbitrage free
price of this cash flow.

Note that the latter approach also allows to determine the optimal in-
vestment strategy by comparing the required provision (for a given level of
certainty) under different investment vectors (Y1, Ys, -+ ,Y,). The optimal
investment strategy is the one for which the provision is minimal. On the
other hand, if the level of the provision is given, the optimal investment
strategy could be determined as the one leading to the maximal probability
that we will be able to meet our future obligations. A somewhat related
problem has been considered by Spivak and Cvitanic (1999). They studied
the problem of maximising the probability of an agent’s wealth at some time
T being no less than the value of a contingent claim at that time; while they
consider one stochastic claim we consider a series of deterministic cash flows.

An example of a situation where our methodology is appropriate is an
insurer who wants to determine the current reserve or capital required to meet
his future obligations. An example in the framework of personal finance is an
individual who wants to invest today an amount that will provide him, with
a certain percentage of certitude, a predetermined fixed income during the
coming 20 years. In Section 4 we illustrate our results by several numerical
examples.

2 Determining the provision for future pay-
ment obligations

Let Ry be the provision at time 0, and consider the stochastic return process

(Y1,...,Y,), ie. 1 unit invested at time 0 is assumed to grow to e¥1 7Y at
time j (=1, 2,..., n). Let R; be defined recursively by
Rj:Rj_l €Yj—0éj, jzl,,n (1)

Hence, R; is the (stochastic) provision that will be available at time j, after
the payment of o, given that Ry is the provision at time 0. The realization of
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R; will be known at time j, and depends on the investment returns (stochastic
part) and on the payments (deterministic part) in the past years.

One could determine the initial provision as the minimal amount such
that R, will be non-negative with a probability of at least 1 — ¢,, with ¢,
sufficiently small. This means that we determine the initial provision in such
a way that we will be able to ”"reach the finish” with a predefined (high)
probability:

Ry=inf{Ry | Pr[R,>0| Ry] >1—¢,}. (2)

From the recursion (1) for the provisions, we find the following explicit ex-
pression for R;:

J
Rj = RO 6Y1+M+Yj - Z (67 6Yi+1+m+yj, j = 1, cee N (3)
=1
We always will conventionally take > " b, =0 if m > n. We find
Pr(R, > 0| Ry] = Pr[S < Ry (4)
with S defined by
S= D e M, 5)
i=1

The random variable S is the stochastically discounted value of all future
liabilities.
Hence, Ry is given by

RO = inf {RO | Pr [S < Ro] > 1-— €n}, (6)

which means that the initial reserve is determined as the (1 — &,)-quantile of

S
Ry=F5'(1—¢,). (7)

In general, it is impossible to determine the distribution function and the
quantiles of S analytically, because in any realistic model for the return pro-
cess (Y1,...,Y,) the random variable S will be a sum of strongly dependent
random variables. Approximations for the distribution function of sums of
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dependent random variables have been considered extensively in the actuarial
literature. These approximations are based on the concept of ”comonotonic-
ity” which describes a strong positive dependency between random variables,
see e.g. Heilmann (1986), Dhaene & Goovaerts (1996), Dhaene & Goovaerts
(1997), Miiller (1997), Baurle & Miiller (1998), Wang & Dhaene (1998),
Wang & Young (1998), Goovaerts & Dhaene (1999), Goovaerts & Redant
(1999), Dhaene, Wang, Young & Goovaerts (2000), Embrechts, McNeil &
Straumann (2000), Goovaerts, Dhaene & De Schepper (2000), Kaas, Dhaene
& Goovaerts (2000), Vyncke, Goovaerts & Dhaene (2000), Goovaerts & Kaas
(2001), Kaas, Dhaene, Vyncke, Goovaerts & Denuit (2001).

A drawback of the determination of the provision Ry as a quantile of
S is that the only goal that has to be met is "reaching the finish”. In a
situation where first the a; are positive (hence payments) and moderate in
absolute value, but the last ones are negative (hence incomes) and large in
absolute value, this may lead to a situation where the R; in the first years
become negative (or below a predefined level), which may be an undesirable
situation.

In this paper, we will present an (approximate) way of determining the
initial provision, which does not only take into account the goal of "reaching
the finish”, but also the conditions that year-to-year the provision R; is larger
than a given deterministic value V; with a sufficiently large probability. These
additional requirements are the "hurdles” that have to be taken. In the case
of an insurer establishing his reserve, these "hurdles” might be imposed by
a supervisory authority or by internal policy. Hence, in the sequel of this
paper the provision at time 0 is determined by

Ro=1inf{Ry| Ry >Vo; Pr[R; >V, | Ro] >1—¢;; j=1,...,n}, (8)

for given hurdles Vy, Vi, ..., V, and given (small) probabilities &1, €3, - - - , &p.
Determining the initial provision as in (8) allows one to make the probability
of taking the hurdles time-dependent. In situations where year-to-year ad-
justments of the level of the reserve are possible, the probabilities of taking
the hurdles in the first years could be chosen larger than these probabilities
in the later years.



Let us define the random variables Sjoj, (j =1,... ,n) by

Jj—1
Slo.g] = Zo‘i e” ) (V) 4 ay) e ()
i=1

J
=3 g e =1 (9)
i=1
with the «;(;) given by

- @i, 1F]
Odz(J)_{ V}"*’aj, ’L:j . (10)

The random variable Sjo ;) can be interpreted as the stochastically discounted
value of the future obligations in the restricted time period [0, j].

Theorem 1 The optimal initial provision W defined in (8) is given by

Ry = maz {Vo, Fs! (1= 1), Fgl (1=e2),..., Fgl (1-e)} (1)

Proof. From (3), it is straightforward to verify that
Pr(R; >V; | Ro)=Pr[Sp; <R, j=1,...,n (12)
Hence, R, follows from
Ro=inf{Ry | Ry > Vo; Pr[Sp; < Ro| >1—¢;, j=1,...,n}
:inf{Ro |Ro> Vo Ro>Fgl (1-¢j), j=1,... n}

This proves the stated result. m

Under certain constraints, the initial provision defined in (8) coincides
with the initial reserve defined in (4). This follows from the following corol-
lary.

Corollary 2 Ifa; >0, V; =0 and e; > &,, (j = 1,...,n), then Ry is
given by

Ry = maz {VO, Fl (1- gn)} . (13)



Proof. Under the constraints of the corollary, we have that

FS_[ol,ﬂ(l —&) = Fs‘[(ij](l —n) < Fg{c},n](l —n)
where the last inequality follows from the fact that Fg,  (z) > Fg () holds
for all values of x. This proves the stated result. m

If in addition to the conditions in the Corollary, we also have that V5 = 0,
then the initial provision defined in (4) and (8) are identical. In practice, one
will often choose the ¢; in the first years lower than the later ones because
the conditions in the immediate future have to be met with the highest
probability. In this case, the conditions of the corollary will not be fullfilled,
and Ry may be different from F 5 Ol’n] (1—¢y,).

3 Approximations for R,

In order to find an accurate approximation for Ry, we will use the approxima-
tions proposed in Kaas, Dhaene & Goovaerts (2000), see also Dhaene, Denuit,
Goovaerts, Kaas & Vyncke (2002 a, b). We will illustrate our methodology
for lognormal returns. Hence, in the remainder of this paper we will al-
ways assume that (Y7 Ys,...,Y,) has a multivariate normal distribution. The
random variables Y (i) are defined by

Y(@i)=Yi+Ya+-+Y;, i=1...,n (14)

Also consider the random variable A(;) defined by

j
Ay =) BipYe d=1....m, (15)
=1

for some choice of the parameters ;). Finally, let r;;) be Pearson’s corre-

lation coefficient between Y (i) and Aj):
rigy =corr [Y (i), Aypy], i=1,...,57i=1,...,n (16)

In order to determine Ry, one needs to compute quantiles of S, (J =
1,...,n), which in general can not be determined exactly. Following Kaas,
Dhaene & Goovaerts (2000) we will approximate the distribution functions



of the random variables Sjoj;, 7 = 1,...,n by the respective distribution
functions of the random variables Sfo, ; and Sj ;, which are defined by:

J
! ~Y (i
Sto) = 2 B [y ¢ 7V [ Ay
i=1
j —BY(@)]-ri(j) oy ®THO)+5(0-8;) 0%
= Z Qi(4) € i(5) (@) (17)

i=1

J

¢ — -1

=1
J

— Zai(j) e_E[Y(i)}+3i9n(0¢i(j)) oy 2HV) (18)
i=1

where U and V' are uniformly distributed on the interval (0, 1) and ® is the
cumulative distribution function of the N(0, 1) distribution.
One can verify that

E[Spz] = E[S},z) = ElSp] (19)

holds for any j. Furthermore, in Kaas, Dhaene & Goovaerts (2000) it is
proven that

E (S — d)+] < E[(Spq — d)+] < E (S, — d)+] (20)
holds for any j and any retention d. Hence, S[%’j] can be considered as a

stochastic upper bound (in the sense of convex order) for S j, while Sf& i is
a stochastic lower bound (in the sense of convex order) for Sjp ;. This implies

that E [u (—S[O,j])} >F [u (—S[CO’ j])} holds for any concave utility function

u. Hence, replacing (the distribution function of) Sj; by (the distribution
function of) S[CO’ jisa "safe” strategy in the sense that all risk averse decision
makers will prefer liabilities Spg j to S[CO, i Likewise they will prefer Sf& j to
Sjo.j)-

Following Theorem 1 and the ideas in Kaas, Dhaene and Goovaerts
(2000), we propose the following approximations for Ry:

Ré:max{%; FS_1 (1—5j),j:1,...,n}, (21)
[0,4]
ﬁg:max{vo; F@(}l

[‘1—@%j:1wnﬂ*. (22)



In Section 4 we will numerically illustrate that Elo, and R, will often be good

approximations for Ry. Especially, the approximation Ré for Ry performs

very good. In general, the quantiles F&l (1 —¢;) and FSC ](1 — ¢gj) can
[0,4)

easily be computed as is explained in Kaas, Dhaene & Goovaerts (2000) or
Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2001, b), see also the numerical
illustration section.

Note that (20) does not necesary imply Ré < Ry < R,. Let us now
assume in the remainder of this section that all ;) and all r;; are non-

negative. Then one can prove that the inequality EZO < R; holds provided the
¢; are sufficiently small. Indeed, in this case it is straightforward to verify
that for all p € (0,1), the condition

p>CI) Qmax{(l—i—n@)) UY(Z Z_l 7]} (23>
implies that F,' (p) < Fg.' (p). Hence, if all ¢; are chosen such that
S[o,j] S[O,J'] J
Ejél_pz})? J=1...n, (24)

the inequality Eﬁ) < Rj will hold.
If the Y; are i.i.d. with variance o2, then the conditions

ej§1—<1>[a\/3], j=1,....,n, (25)

ensure that }_%lo < R; holds. As we will see in the next section, these
conditions are often fullfilled in practical applications.
Similarly, one can prove that the condition

p<(1>l m1n{(1+r,(])) ay()izl,...,j}}zp(j) (26)

implies that Fgfol,j] (p) < Fgf;,]-] (p). Note that p; > 0.5.

We can also conclude that the distribution functions of S[lo’j] and Sﬁm
can only cross in the region where their distribution functions take a value
that is contained in the interval [p(_j), p?;.)]. In the region p < PGy the
distribution function of S[CO’ i will lay above the distribution function of Sfo, i
while in the region p > pzr) the distribution function of S[CO’ i will lay under
the distribution function of S[o i



4 Numerical examples

4.1 The return process

In this section, we will numerically evaluate the approximations Ré and ﬁg for
the provision Ry in various applications. In order to judge the accurateness
of these approximations, we have to compare them with the exact initial
provision. As Ry cannot be determined analytically, we will determine it by
simulation.

We will assume that the returns Y; are i.i.d. and N(u— %2, 0?). This implies
that E[Y(i)] = i(u — %2) and Var[Y(i)] = i 0. In order to determine Ré,
we will use conditioning random variables A(;) as defined in (15). In this case

we find

V@T () —O'QZﬁk ]:17 ) T, (27)
Ti() = M i=1....57=1L...,n.  (28)
/. 2
DY 5k(j)
In particular, we will choose the coefficients f;;y, j =1,... ,n as follows:
Zak( k(=) i=1,...,5;j=1,...,n (29)

This choice makes A(j) a linear transformation of a first order approximation
to S, (4 =1,...,n) . Indeed,

J 2
Sios) = 3 gy e T T

£
Il

1 =1

J J ]
:C’—Zak(j) ZY C — ZYZak( “77,
k=1

where C' is the appropriate constant. By thls ch01ce of the coefficients [;;),
the distribution function of S[Z(L i will be “close” to the distribution function
of Spo;), provided (Y; — (p — %2)) is sufficiently small, or equivalently, o is
sufficiently small, see Section 4.1 in Kaas, Dhaene & Goovaerts (2000). Note
that if all a;(;) are non-negative, then this particular choice of the ,;) implies
that all correlation coefficients r;(;) are non-negative.
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4.2 Example 1

Consider a person who invests at time 0 an amount of 10 units in a fund with
a yearly expected return g = In1.10 and a yearly volatility o = 0.10. Each
of the coming 10 years, he wants to withdraw 0.8 units of this initial amount.
In addition, at the end of the 10 year period he wants to recover his initially
invested capital of 10. The investor believes that it is very likely that his
investment will meet his requirements because the investment period is long
enough to eliminate the downside risk.

In terms of the notations introduced in Section 2, the investor has obli-
gations o; = 0.8, 7 =1,...,10, with a final hurdle V;y = 10, while his initial
provision equals Ry = 10. Let us assume that his belief can be expressed as
Pr[R, > 10 | Ry = 10] > 0.995.

In order to judge the investor’s belief, we determine

Pr[R, > 10 | Ry = 10] = Pr [Sj,19) < 10] .

From the expressions (17) and (18) one finds that the (approximate) prob-
ability that the investor will take the last hurdle succesfully if his initial
investment is 10 equals 65.28% if we perform the calculations with S[lo,m} and
64.53% if we use S[Co,lo]' In order to judge the quality of these approxima-

tions, we also determine Pr [5[0710] < 10} by simulating 100,000 values for
the return vector (Y1, Y5, ... ,Y,). This simulation leads to a value of 65.35%
for this probability, with a standard error equal to 0.077%. This indicates
that especially the approximation Sfo,m] will perform very well. Moreover,
the investors belief of reaching the finish with a probability of at least 99.5%
is certainly not true.

Let us now determine Ry which is the smallest Ry such that the investor
will take the final hurdle Viy = 10 with a probability of at least 99.5% :

Ry = inf {Ry | Pr[Rip > 10 | Ro] > 0.995}
= inf { Ry | Pr [Sjo,10) < 10] > 0.995}
= Fyg, ,, (0.995).

0,10

Using Sk, we find Ry = F' (0.995) = 16.98, while for S, we find

[0,10]

R, =F 5_[00110] (0.995) = 17.872. The value for Ry obtained by the simulation

of 100, 000 paths for the returns equals 16.985, which is again very close to
the approximation S[lo,m}-
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Finally, we determine the maximal amount Vpthat will be guaranteed
at time 10 with a probability of at least 99.5% if the initial invested amount
equals 10 :

Vlg = sup {‘/10 | Pr [ng Z ‘/10 | R() = 10] Z 0995}
= sup {Vio | Pr [Sp,10) < 10] > 0.995}

— sup {vm | stfolw} (0.995) > 10} .

This means that we want to determine the hurdle Vo as the maximal amount
such that the 99.5% percentile of Sio,10) is at least equal to 10. Using the

approximation S[o 19 We obtain V10 = 2.184, while for 5 ;5 we find Vi =
1.399. The simulation of 100,000 paths leads to a value of 2.179 for the
hurdle at time 10 with a standard error equal to 0.0929.

4.3 Example 2

Consider a person who invests an amount of 10 in the fund as described in
Example 1, with a yearly expected return g = 1n1.10 and a yearly volatility
o = 0.10. At the end of each of the coming 40 years he wants to withdraw
0.8 units of the fund. Moreover he would like to be sure that the value
of the invested amount will never become lower than 10. He wonders if his
requirements can be met by the given investment strategy.

In terms of the notations introduced in Section 2, the investor has obli-
gations a; = 0.8, 7 =1,...,40 with an initial provision Ry = 10. All hurdles
V; are equal to the inial invested amount of 10. We assume that the investor
wants to take each of these hurdles with a probability of at least 99, 5%.

As before, we can use the approximations F (0.995) and F. 57[01 | (0.995)
[0 | i
for the percentiles Fs_[olj] (0.995), j = 1,...,40. Note that each FS_[;‘J,] (0.995)

represents the initial required amount needed to take the hurdle at time
j. The quantiles F;' (0.995), F, 5[601 ,] (0.995) and the corresponding quantiles
[0,4] Y

'F S_fol,ﬂ (0.995)’ obtained by simulating 50,000 paths are presented in Tables

1 and 2.

If the investor wants to pass all hurdles with the predetermined degree of
certainty, the approximations (21) and (22) for the initial required amount
Ry as defined in (8) are given by Eﬁ) — 17.55 and R, = 20.10 respectively.
The value for Ry obtained by simulating 50,000 paths equals 17.57.
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i || Fg' (0.995) ’Fg[ol 1 (0.995)° Fg.b (0.995)
[0,5] »J [0,5]
1] 12.77 12.78 12.77
2 || 13.86 13.93 13.92
3| 14.63 14.58 14.78
4| 15.22 15.16 15.46
5 15.68 15.63 16.02
6 || 16.06 16.07 16.51
7| 16.36 16.38 16.92
8 || 16.61 16.66 17.28
9 || 16.81 16.81 17.60
10 || 16.98 16.91 17.87
11 || 17.11 16.96 18.12
12 || 17.22 17.13 18.33
13 || 17.31 17.11 18.53
14 || 17.38 17.23 18.70
15 || 17.43 17.25 18.85
16 || 17.47 17.16 18.99
17 || 17.50 17.20 19.11
18 || 17.53 17.25 19.22
19 || 17.54 17.44 19.32
20 || 17.55 17.31 19.41

Table 1: Approximate and simulated values for the quantiles in Example 2
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j [TFg" (0.995) [ 'Fgl (0.995)° | Fg.' (0.995)
[0,4] [0,5] [0,5]
21 || 17.55 17.33 19.49
22 || 17.55 17.45 19.56
23 || 17.55 17.45 19.62
24 || 17.55 17.49 19.68
25 || 17.54 17.50 19.73
26 || 17.53 17.57 19.78
27 || 17.52 17.54 19.82
28 || 17.51 17.54 19.86
29 || 17.50 17.51 19.89
30 || 17.49 17.56 19.92
31 || 17.48 17.52 19.95
32 || 17.47 17.45 19.97
33 || 17.46 17.54 19.99
34 || 17.45 17.47 20.01
35 || 17.44 17.42 20.03
36 || 17.43 17.49 20.05
37 || 17.42 17.44 20.06
38 || 17.41 17.39 20.08
39 || 17.40 17.39 20.09
40 || 17.39 17.41 20.10

Table 2: Approximate and simulated values for the quantiles in Example 2
(cont’d)
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In case of ﬁé the binding hurdles are the ones corresponding to years 20
to 24. For R, however the binding hurdle is the one at time 40. The binding
hurdle for the simulation is the one after 26 years.

A probability of 90% for taking the hurdles would have resulted in an

initial reserve equal to Rﬁ) = 12.36 corresponding to the binding hurdle at
time 12. For Ry, we find a value of 12.84 for the initial reserve and a binding
hurdle at time 23, while by simulation we obtain an initial reserve of 12.39
and a binding hurdle at time 12.
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