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Abstract

In their seminal paper, Gerber and Shiu (1994) introduced the concept of
the Esscher transform for option pricing. As examples they considered the
shifted Poisson process, the random walk, a shifted gamma process and a
shifted inverse Gaussian process to describe the logarithm of the stock price.
In the present paper it is shown how upper and lower bounds in convex order
can be obtained when we use these types of models to describe the stochastic
accumulation factors for a given cash-flow.

1 Introduction

In their seminal paper, H. Gerber and E. Shiu (1994) advocated the Esscher
transform as a tool to deal with stock price processes with infinitely divisible
marginal distributions. With M (h) denoting the moment generating function
of a random variable X, i.e.

M(h) =E [e’w} (1)

the Esscher transform (with parameter h) of the density f(z) is obtained in
case the function e fa)
e f(x

h) = 2

1 University of Leuven, Belgium
2 University of Amsterdam, the Netherlands
3 University of Antwerp, Belgium



is a density.

In this paper we will adapt the time-honored Esscher transform to a cash-
flow context. In many practical situations, projections are made for the future
premium income (over some time horizon) and the corresponding future pay-
ments. Taking the difference of these amounts yields a cash-flow for which
the net present value is the value of the operation (often called the embedded
value or appraisal value of the business). Assuming a return process X (t),
with dividends being reinvested, the net present value is given by e_5tA(t),
where § denotes the constant risk-free force of interest and where

¢

At) = / XO-X) g0 (s) 3)
0

is the accumulated value of the deterministic cash-flow process.

A common approach for calculating the distribution of (3) is to generate
thousands of paths for the return process and compute the corresponding
values of A(t). However, this simulation approach has the disadvantage that
little useful information is obtained on the tail of the distribution, while in
fact we would like to estimate, for instance, the 99.75% quantile. Increasing
the number of paths could solve this problem, but then also the computation
time would increase drastically. Hence, in a scenario testing context where
several scenarios for the deterministic cash-flow are considered, this would not
be very practicable. As in Kaas, Dhaene & Goovaerts (2000) we will therefore
derive bounds for A(t), which together with the Esscher transform could give
us reliable information on A(t) in a risk-neutral setting.

The paper is organized as follows. In the following section, we explain
the concept of convex order and describe a methodology to obtain upper
bounds. As we will also construct lower bounds, the results in this paper
extend the results in Goovaerts et al. (2000). To calculate the lower bound,
and to improve the upper bound, the methodology requires the knowledge
of the conditional distribution of the process {X(¢)}, conditionally on some
random variable Z. A potential conditional distribution is derived in section
3. Finally, in section 4 we apply the techniques to the problem at hand and
in section 5 we illustrate the obtained bounds graphically.

2 Convex order and comonotonicity

The distribution function of (3) is very hard, or even impossible, to obtain due
to the dependency structure among the different random variables. Therefore,



instead of calculating the exact distribution, we will look for bounds, in the
sense of “more favourable/less dangerous” and “less favourable/more danger-
ous”, with a simpler structure. This technique is common practice in the
actuarial literature. When lower and upper bounds are close to each other,
together they can provide reliable information about the original and more
complex variable. The notion “less favourable” or “more dangerous” variable

will be defined by means of the convex order.

Definition 1. A random variable V is smaller than a random variable W in
convex order if

Efu(V)] <E[u(W)], (4)

for all convez functions u: R — R : x — u(x), provided the expectations exist.
This is denoted as
V <z W (5)

Since convex functions are functions that take on their largest values in
the tails, the variable W is more likely to take on extreme values than the
variable V', and thus W is more dangerous.

The convex order can also be interpreted in terms of utility theory. Indeed,
if V<. W, then V is preferred to W by all risk averse decision makers, see
e.g. [4]. This means that replacing the unknown distribution function of the
variable V' by the distribution function of the variable W is a prudent strategy.

Since the functions u(z) = z, u(xr) = —x and u(z) = 22 are all convex
functions, it follows immediately that V' <. W implies E[V] = E[W] and
Var[V] < Var[W].

The following lemma provides an interesting and useful characterization
of convex order, a proof of which can be found in [6]:

Lemma 1. For any two random variables V. and W, we have the following
equivalence:

E[(V —k)4] <E[(W —k)4] for all k,

Ve e { L) ki R

where (x)4+ = max{0, z}.

Now, if V' consists of a sum of random variables X1, ..., X,, then replacing
the copula of (X1,...,X,) by the comonotonic copula yields an upper bound
for V in the convex order. On the other hand, applying Jensen’s inequality
to V provides us with a lower bound. Finally, if we combine both ideas, then
we end up with an improved upper bound. This is formalized in the following
theorem.



Theorem 1. Consider an arbitrary sum of random variables
V=X1+Xo+...+X,, (7)

and define the related stochastic quantities

Vu = Fl(U)+Fx(U)+...+ Fx (U) (8)
Vie = Fxl,(U)+Fx),(U)+...+ Fg' ,(U) (9)
V, = E[Xi|Z] +E[Xs|Z] +... + E[X,|Z], (10)

with U an arbitrary random variable, uniformly distributed on [0, 1], and with
Z an arbitrary random wvariable, independent of U. The following relations

then hold:
W SCZ’ V SCCE ‘/’Lu SCI VU‘ (11)

Proof: see [1] and [5].

For each j = 1,...,n, the terms in the original variable V' and the corre-
sponding terms in the upper bounds V, and V;, are all mutually identically
distributed, i.e.

X; £ Pl (U) £ Fil L, (0). (12)

For the lower bound, the equalities of the distributions of X; and E[X;|Z]
only hold in case all X, given Z = z, are constant for each z.

These results can be extended to the case where V consists of a sum of
monotonic functions ¢; of random variables X, simply by substituting Y} for
¢i(X;) and applying Theorem 1, see [4, 5, 7].

3 The conditional Esscher transform of a
process with stationary and independent in-
crements

The Esscher transform is a time-honored tool in actuarial science. It can be
seen to evolve from utility theory as is stated in the following theorem.

Theorem 2. Assume an insurer has an exponential utility function with risk
aversion a. If he charges a premium of the form E[p(X)X]| where ¢(-) is a
continuous increasing function with E[p(X)] = 1, his utility is mazimized if
o(z) x e, i.e. if he uses the Esscher premium principle with parameter «.
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For a proof of this theorem, we refer to the Appendix. So, the price of
the risk is calculated by choosing the coefficient of risk aversion such that
the premium coincides with the market price. If the utility function u is an
exponential one, i.e. u(z) = # (1 — e~"*), then

ehx

p(z) = M(h) (13)

so the Esscher transform of the risk X evolves. This rather simple result indi-
cates a relationship between the actuarial approach of premium principles and
the financial approach of pricing risks by means of a measure transformation.

Gerber and Shiu (1994) considered a non-dividend-paying stock or security
with price S(t) at time ¢ > 0 and assumed that there is a stochastic process
{X(t) }+>0 with stationary and independent increments, X (0) = 0, such that

S(t) = S(0)eX® (> 0). (14)

To make sure that the stock prices of the model are internally consistent, they
seek for a h = h* so that the discounted price process

—ot
S} 15
{esw}, (15)
is a martingale with respect to the probability measure corresponding to h*.
In particular,

S(0) = e O'E* [S(t)] (16)

where 0 denotes the constant risk-free force of interest.
In case of stationary and independent increments, the unconditional Ess-
cher transform of the process { X (s)}o<s<+ equals

M|z, s;h*] = E* [eZX(S)} = M|z, 1; h*]°. (17)

The application of Jensen’s inequality requires the knowledge of the condi-
tional distribution of the process {X (t) — X (s) }o<s<t, conditionally on some
random variable Z. To simplify the computations, we will choose Z = X (t).
Then, we have for the conditional Esscher transform

Mol = B [2XOXO] x (1) = o] %Prob*(X(t)gc) (18)

+o0
— 6ZC/ e f(x,t —s;h")f(c—z,sh7) dz, (19)

—00



where f(z,s;h*) = %F(m,s;h*). Inversion with respect to z gives us the
density of the conditional random variable X (t) — X (s)|X (¢) = ¢

Fuw,sih) = %Prob* (X(t) — X(s) < 2|X(8) = 0) (20)
f(l',t -5 h*>f(C —T,S; h*)
fle.t: 1) 21)
and of course
ﬁc(x)s;h*) = FX(t) X(s)|X(t)= (:‘U 55 h* ) (22)
_ fly,t —s; h*)f( —y, s, h")
= / (et ) dy. (23)

Consequently, for given s the inverse conditional distribution can be calculated
by solving

Fe (usih®) flz,t —s;h*) f(c — z,s;h*)
— ) ) M b . 24
! /_oo Fle,tsh*) o 24

Example: Shifted inverse Gaussian process

The conditional distribution can be calculated for any of the processes in
Gerber and Shiu (1994) with the right parameterization. As an example, we
consider the case of the shifted inverse Gaussian process

X(t) =Y(t) — at (25)

where {Y ()} is an inverse Gaussian process with cumulative probability func-
tion

ProblY(t) <y] = J(y;a,0)  (y>0) (26)

- 9 <\;—2iy + 2by> +2Vhg (\;—2% - \/%) (27)

and with probability density function

d .
d—meb[Y(t)Sy] = Jj(y;a,b)  (y>0) (28)
_ 2
L a gy (e 29)

NG



This gives
F(z,t; k") = J(x + at; at, b¥) (x > —at) (30)

and
f(z,t; ") = j(x + at; at, b¥) (x > —at), (31)

with b* = b — h*. For the conditional distribution, applying (24) yields, for
0<u<l,

FoNu,s:h*) - ) _ *\ gl . *
u:/ Jj@+a(t—s);a(t —s),b%) j(c x+as,as,b)dx (32)

—a(t—s) jlc+ at;at, b*)

where, taking into account the support of j(-), the following restriction applies

—a(t —s) < FYu,s;h%) < c+ as (33)

c

or

0< E '(u,8;h") +alt—s) <c+at. (34)

Hence,

L /ﬁc_l(u,S;h*)Jra(t—S) j(z;a(t —s),b%) j(c — x + at;as, b*)

dx .
0 jlc+ at;at, b*) x (35)

4 Bounds

We now derive the upper and lower bounds in convex order for the discrete
cash-flow (the continuous cash-flow arises by taking appropriate limits)

n n—1
A(t) = cheX(t)*X(tj) = ¢, + Z CjeX(t)fX(tj)j (36)
j=1 j=1

with ¢ = t,,, using the approach described in section 2. Henceforth, we will
assume that ¢; > 0, (j =1,...,n), merely to facilitate notation.

4.1 Upper bound
Applying (8) yields

E[(A(t) — k)+] < E[(Au(t) — k)] (37)



with
_cn+zcj U=t (38)

Since ﬁE[(Y —k)+] = Fy (k) —1 for any random variable Y and any retention
k, the distribution of the upper bound follows as

Fu(:v)zl—/ cn—i—ZCJ Hut=th) > o | dy (39)

where I(-) is the indicator function, i.e. I(A) =1 if A holds, I(A) = 0 if not.
Hence, let u, be defined as the value for which

cn + Zc] b=t = g (40)

then
Fu(z) = u,. (41)

4.2 Improved upper bound
Applying (9) with Z = X (t) yields

E[(A(t) — k)+] < E[(Aw(t) — k)+] < E[(Au(t) — k)] (42)
with
E [(Aw(t) — k)+] = EX(t)EU Ccn + Ti Cjeﬁc_‘é(U’tﬁh*‘X(t)) —k , (43)
Jj=1 +

where the distribution function Foo(u, tj; h*| X (t)) is defined by its realiza-
tions

Feolu, s;h*|X(t) = ¢) = Fu(u,s: 1. (44)
Since the stop-loss premium for the improved upper bound can be written as
+00
B4 - b4 = [ flet.h)
) (45)

></ cn+zcj FMwtih) _ g | dude
0

+



the distribution of the improved upper bound follows as

+oo
Fu(o) = [ feth?) ule)de

—0o0

where uy(c) is defined as the root of

cn—i-Zc] ¢ Ntyih™) — g,

4.3 Lower bound
Finally, applying (10) with Z = X (t) yields
E[(Ae(t) — k)+] < E[(A®t) — k)+]
with
E[(Ae(t) = k)+] =

Egxmy Cn+ZcE*[ WX X (1)| — &

Jr
The stop-loss premium for the lower bound equals
+o0
B~ bl = [ flenn)
n— 400
X cn+Zc]/ felx,tj;h*)de — k| de
' +

so the distribution of the lower bound follows as

:/ fle;t,h") de
G

where G C R is defined as the set of all values ¢ for which

cn—l—Zc]/ y,t],h)dy<x

(46)

(49)

(50)

(52)



Table 1: Esscher transforms for some types of stochastic processes

Stock-price model F(x,t; h*) h*
Wiener process N(x; (1 + h*o2)t,0?t) §=(u+h*o?) + %02
Shifted Poisson process A (%, )\eh*kt) 5= Xehk (e"’C - 1) —c
Random walk B (%:‘Zt it ﬂ(h*)) w(h*) = ZZ:SZ
Shifted Gamma process G(z+ct;at, 3 — h*) el = (%) “ e ¢
Shifted inverse Gaussian J (z + ct;at,b — h*) §=a(vb—h*—vb—h*—1)—c

5 Numerical illustration

The results presented by Gerber and Shiu (1994) can be summarized as in
Table 1, where F'(z,t; h*) is the cumulative distribution function of the Esscher
transform of the process X (¢). A definition of the stochastic processes as well
as an overview of the notations for the functions in the second column can be
found in the Appendix.

In this section, we illustrate the upper and lower bounds by plotting their
distribution functions. We assume that the process { X (¢)} is a shifted inverse
Gaussian process with parameters a = 3v/1.2, b = 7.5 and a = 0.5 (see [2],
p. 118). The parameter b* corresponding to a risk-free force of interest § = 0.1,
equals 961/120.

The distribution functions for A,, A;, and Ay corresponding to a cash-flow
c; =10, j = 1,...,10, are depicted in Figure 1. Since the upper and lower
bounds appear to be rather close to each other, they prove to be quite good
approximations for the unknown distribution of A(t,). The improved upper
bound A;, indeed improves the upper bound A, albeit slightly.

In order to assess the influence of the cash-flow, we change it to ¢; = j
and ¢;j = 11 — 7, j = 1,...,10, in Figures 2 and 3 respectively. Taking into
account the scale of the price axis, the bounds appear to behave very similarly
in both cases.
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Figure 1: Distribution functions of the lower bound A, (——), the improved upper
bound A;, (---) and the upper bound A, (—) for ¢; =10 (j =1,...,10).
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Figure 2: Distribution functions of Ay (——) and A, (—) for ¢; = 1,...,10.
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Figure 3: Distribution functions of A, (——) and A4, (—) for ¢; = 10,..., 1.
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Appendix

Overview of the stochastic processes of Table 1

e Wiener process:
X(t) =oZ(t) + pt
where {Z(t)} is a standard Brownian motion.

e Shifted Poisson process:
X(t) =EkN(t) —ct
where {N(t)} is a Poisson process with parameter A\, k and ¢ are positive
constants.

e Random walk:
X()—X1+X2+ —l—Xt
where X is such that P(X; =b)=p=1—-P(X;=4a),a < <b.

e Shifted Gamma process:
Xt)=Y(t)—ct
where {Y(¢)} is a Gamma process with parameters o and 3; c is a
positive constant.

e Shifted inverse Gaussian process:
X(t)=Y(t)—ct
where {Y(¢)} is an inverse Gaussian process with parameters a and b; ¢
is a positive constant.

Overview of the functional notations of Table 1
o N(z;p,0%) = (%H)
o« M@:0) =i~ (@>0)
o B(z;n,0)=>_ 0< )9’“(1—9) (x> 0)
o G(x;0,8) = iz Jo v te My (x> 0)

) J(x;a,b):@(\/——i-\/%)—i—ez“‘/_@(\/— \/%) (x >0)

Proof of Theorem 2

The proof of Theorem 2 is based on the technique of variational calculus and
adapted from Goovaerts et al. (1984). Let u(-) be a convex increasing utility
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function, and introduce Y = ¢(X). Then, because ¢(-) increases continuously,
we have X = o }(Y). Write f(y) = ¢ (y). To derive a condition for
E[u(—f(Y)+E[f(Y)Y])] to be maximal for all choices of continuous increasing
functions when E[Y] = 1, consider a function f(y) + eg(y) for some arbitrary
continuous function g(-). A little reflection will lead to the conclusion that
the fact that f(y) is optimal, and this new function is not, must mean that

d%.E[U( — fV)+E[f(V)Y]+e{—g(Y) + E[g(Y)Y]})] e 0.

But this derivative is equal to
Elu/(~ f(Y)+ E[f(Y)Y]+e{-g(Y) + E[g(Y)Y]}){-9(Y) + E[g(Y)Y]}].
For e = 0, this derivative equals zero if
E[u'(=f(Y) +E[f(Y)Y])g(Y)] = E [«(-f(Y) + E[f(Y)Y])] E[g(Y)Y].
Writing ¢ = E [v/(—f(Y) + E[f(Y)Y])], this can be rewritten as
E [{u/(-f(Y) +E[f(Y)Y]) — ¢V Hg(Y)}] =0.

Since the function g(+) is arbitrary, by a well-known theorem from variational
calculus we find that necessarily

u'(=f(y) +E[f(Y)Y]) —cy = 0.
Using z = f(y) and y = ¢(x), we see that
p(x) o u/(—z + E[X(X)]).
Now, if u(z) is exponential(a), so u(z) = —ae™**, then
a(—z+E[Xe(X))

o(x) x e~ x e,

Since E[p(X)] = 1, we obtain p(z) = e*/E[e*¥] for the optimal standard-
ized weight function. The resulting premium is an Esscher premium with
parameter h = a. O
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