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1 Introduction

Distortion risk measures were introduced in Wang (1996). For a given non-decrea-
sing function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1 for every risk the
corresponding risk measure is defined as follows:

Hg[X] =
∫ ∞

0
g(1− FX(t))dt =

∫ 1

0
F−1

X (1− q)dg(q), (1.1)

where FX(t) denotes the distribution function of X ≥ 0.
The distortion risk measures have some useful properties, e.g. positive homogeneity,
translation invariance, additivity for comonotonic risks, preservation of stochastic
dominance. Moreover if one additionally assumes concavity of the distortion func-
tion g than the corresponding risk measure will be also subadditive.
These properties of distortion risk measures have been comprehensively studied
in many works (see e.g. Wang (1996), Wang et. al (1998), Wang and Young
(1998), Wirch and Hardy (2000), Dhaene et. al (2004)). In this contribution we
investigate the behavior of distortion risk measures when applied to sums of random
variables against some well-known dependency measures between summands (we
assume that the marginal distributions are fixed). The theorem we cite below states
that when the dependency level differs strongly (which is expressed in the terms
of the so-called correlation order of pairs of random variables) and the distortion
function is concave (which implies the aversion towards risk well-known from the
utility theory), then the corresponding risk measure should behave consistently with
increasing dependence between the variates in the sum, and increase.

Definition 1 Let (X1, Y1) and (X2, Y2) be elements of R(FX , FY ) (i.e. have the
same marginal distributions equal to FX and FY ).Then we say that (X1, Y1) precedes
(X2, Y2) in correlation order when either of the two equivalent conditions holds:
(a) for all non-decreasing functions f , g one has that Cov(f(X1), g(Y1)) ≤
Cov(f(X2), g(Y2)), provided that the respective covariance functions exist.
(b) for all pairs (x, y) F(X1,Y1)(x, y) ≤ F(X2,Y2)(x, y).

We denote the correlation order by ≤corr, which is equivalent to ordering of copulas.

Theorem 1 Suppose that g is a non-decreasing concave function such that g(0) = 0
and g(1) = 1. Assume (X1, Y1), (X2, Y2) ∈ R(FX , FY ) are such that (X1, Y1) ≤corr

(X2, Y2). Let S1 = X1 + Y1 and S2 = X2 + Y2. Then Hg[S1] ≤ Hg[S2].
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Proof See Wang & Dhaene (1998).

However the correlation order defines only a partial order in the class R(FX , FY )
and thus recognizes only very severe differences in the level of dependency between
summands. In this paper we investigate how distortion risk measures are related to
some more elastic measures, namely:

• Pearson’s correlation coefficient

r(X, Y ) =
Cov(X, Y )
σ(X)σ(Y )

;

• Spearman’s rank correlation coefficient

ρ(X, Y ) =
E[FX(X)FY (Y )]− E[FX(X)]E[FY (Y )]

σ
(
FX(X)

)
σ
(
FY (Y )

) = r(FX(X), FY (Y ));

(1.2)

• Kendall’s rank correlation coefficient

τ(X,Y ) = Pr
(
(X −X ′)(Y − Y ′) > 0

)− Pr
(
(X −X ′)(Y − Y ′) < 0

)
, (1.3)

where (X, Y ) and (X ′, Y ′) are two independent copies from the considered
bivariate distribution.

We show that in general there is no strict relation between distortion risk measures
and these measures of dependencies. We prove that for any distortion function g
it is possible to find such random pairs with fixed marginals (X1, Y1) and (X2, Y2)
that

Hg[X1 + Y1] > Hg[X2 + Y2]

despite

r(X1, Y1) < r(X2, Y2).

Moreover we show that if the selected distortion function is not ”too concave” (we
formalize this notion in the next section) we can even strengthen the pitfall by
showing that also ρ(X1, Y1) < ρ(X2, Y2) and τ(X1, Y1) < τ(X2, Y2).

2 The main result

We split our results into two cases: the critical case when g is concave and the easy
case of non-concave distortion functions.
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2.1 Construction for concave distortion functions

We restrict ourselves only to the case when a distortion function g : [0, 1] → [0, 1]
satisfies some additional smoothness conditions. More precisely we will assume the
following:

(i) g(0) = 0 and g(1) = 1;

(ii) g is piecewise twice continuously differentiable;

(iii) for all x g′(x) ≥ 0 (thus g is nondecreasing) and g is concave;

(iv) g differs from the identity function.

Condition (iv) excludes the trivial case of the expectation. Note that assumption
(ii) allows for example piecewise linear distortion functions. In fact in our proof we
use only left continuity at 1 and right continuity at 0 of the first derivative.
We start with a helpful technical lemma.

Lemma 1 Let g be an arbitrary function satisfying conditions (i)-(iv). Then there
exist real numbers α1 < α2 in (0, 1) and x ∈ (1

2 , 1) such that g′(α1) > g′(α2) and

(1− x)g′(α1) + xg′−(1) > g′(α2). (2.1)

If we additionally assume that −4g′′−(1) < g′+(0)− g′−(1) then for (2.1) to hold true
we may take x = 2

3−√α2
.

Proof To prove the first part, we start with choosing any α1 ∈ (0, 1) such that

g′(α1) > g′−(1) > 0

(this is always possible in view of conditions (i)-(iv)). For fixed x ∈ (1
2 , 1) define

ε = (1−x)
(
g′(α1)− g′−(1)

)
> 0. Left continuity of g′ in 1 implies that it is possible

to choose a point α2 such that

0 < g′(α2)− g′−(1) < ε.

Then one gets
g′(α2) < g′−(1) + ε = (1− x)g′(α1) + xg′−(1).

Moreover,

g′(α2)− g′−(1) < ε <
g′(α1)− g′−(1)

2
< g′(α1)− g′−(1),

and hence
g′(α1) > g′(α2),

which completes the proof of the first part.
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The proof of the second part is a bit more subtle, because here, x is defined as a
function of α2. Recall that we additionally assume here that

−4g′′−(1) < g′+(0)− g′−(1).

From continuity of the first derivative it immediately follows that we can choose
α1 > 0 that

−4g′′−(1) > g′(α1)− g′−(1).

Note that inequality (2.1) which has to be proven can be rewritten as

g′(α1)− g′(α2) >
2

3−√α2

(
g′(α1)− g′−(1)

)
.

Consider an auxiliary function f defined as follows:

f(p) = g′(α1)− g′(p)− 2
3−√p

(
g′(α1)− g′−(1)

)
.

One can easily check that f(1) = 0 and

f ′−(1) = −g′′−(1)− 1
4
(
g′(α1)− g′−(1)

)
< 0.

Thus it is possible to choose α2 ∈ (α1, 1) such that f(α2) > 0. Moreover from the
identity

g′(α1) ≤ g′(t) ⇒ f(t) < 0

we conclude that g′(α1) > g′(α2) what completes the proof of Lemma 1.

Theorem 2 Let g be an arbitrary function satisfying conditions (i)-(iv). Then
there exist univariate discrete distributions FX(g), FY (g) and random couples(
X

(g)
1 , Y

(g)
1

)
,
(
X

(g)
2 , Y

(g)
2

)
belonging to R(FX(g) , FY (g)) such that

(i) r
(
X

(g)
1 , Y

(g)
1

)
< r

(
X

(g)
2 , Y

(g)
2

)
,

(ii) Hg

[
X

(g)
1 + Y

(g)
1

]
> Hg

[
X

(g)
2 + Y

(g)
2

]
.

Moreover under additional assumption that

−4g′′−(1) < g′+(0)− g′−(1), (2.2)

the random couples can be chosen such that also ρ
(
X

(g)
1 , Y

(g)
1

)
< ρ

(
X

(g)
2 , Y

(g)
2

)
and

τ
(
X

(g)
1 , Y

(g)
1

)
< τ

(
X

(g)
2 , Y

(g)
2

)
.

Proof Consider two points 0 < α1 < α2 < 1 satisfying the conditions of Lemma
1. Consider the random variables X(g) and Y (g) for which Pr

(
X(g) = i

)
= pi and

Pr
(
Y (g) = j

)
= qj are given below:

p0 = p1 =
1−√α2

2
, p2 =

√
α2 (2.3)
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and
q0 = 1− α1√

α2
, q1 =

α1√
α2

. (2.4)

Furthermore, let
(
X

(g)
1 , Y

(g)
1

)
be an independent pair with marginal distributions

as defined in (2.3) and (2.4), i.e.:

Pr
[
X

(g)
1 = i, Y

(g)
1 = j

]
= piqj . (2.5)

The joint distribution of
(
X

(g)
2 , Y

(g)
2

)
is defined in Table 1, where x denotes

(i) a fixed number in (1
2 , 1), e.g. x = 2

3 , if (2.2) is not satisfied;

(ii) x = 2
3−√α2

if (2.2) is satisfied

and ε is chosen as an arbitrary positive number such that

ε ≤ min
(p0q1

x
, p1q0,

p2q1

1− x

)
.

X
(g)
2

Y
(g)
2 0 1 2
0 p0q0 + xε p1q0 − ε p2q0 + (1− x)ε
1 p0q1 − xε p1q1 + ε p2q1 − (1− x)ε

Table 1: The distribution of
(
X

(g)
2 , Y

(g)
2

)
.

Note that in the case when (2.2) is satisfied the following inequalities hold:

1 ≥ x > max
(1

2
,

2
√

α2

1 +
√

α2
,
1 +

√
α2

3−√α2

)
(2.6)

One can immediately verify that (X(g)
2 , Y

(g)
2 ) ∈ R(FX , FY ). Note also that for the

first independent pair one has r(X1, Y1) = ρ(X1, Y1) = τ(X1, Y1) = 0, which have to
be compared to the correlation coefficients of the second pair calculated as follows:

(i) Cov(X2, Y2) = (2x− 1)ε > 0 and thus also r(X2, Y2) > 0;

(ii) From (1.2) we have that

ρ(X2, Y2) =
ε(1− q0)

(
(1− x)p0 + p1 − (1− x)

)

σ
(
FX(X)

)
σ
(
FY (Y )

) ,

which is positive when x > 1−p0−p1

1−p0
. Combining this with (2.3) we get that

x >
2
√

α2

1+
√

α2
which is in view of (2.6) true in the case when (2.2) holds.
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(iii) A straightforward manipulation on (1.3) leads to the formula:

τ(X2, Y2) = 2
(
(p0q0 + xε)(p2q1 − (1− x)ε) + (p0q0 + xε)(p1q1 + ε)

+ (p1q0 − ε)(p2q1 − (1− x)ε)
)− 2

(
(p0q1 − xε)(p2q0 + (1− x)ε)

+ (p0q1 − xε)(p1q0 − ε) + (p1q1 + ε)(p2q0 + (1− x)ε)
)
.

Note that all expressions without ε sum up to 0 (this can be also seen from a
heuristic argument that for ε = 0 one has the independent case when τ = 0) as
well as all expressions with ε2 and thus (after some calculations) the condition
for τ(X2, Y2) to be positive is equivalent to the inequality

xp0 + (2x− 1)p1 − (1− x)p2 > 0,

which — after taking into account (2.3) — gives x >
1+
√

α2

3−√α2
, which is true in

the case when (2.2) holds.

Let us define S
(g)
1 = X

(g)
1 + X

(g)
1 and S

(g)
2 = X

(g)
2 + Y

(g)
2 . To complete the proof of

Theorem 2, it suffices to prove that

Hg

[
S

(g)
1

]
> Hg

[
S

(g)
2

]
. (2.7)

We compute the distribution of S
(g)
1 as follows:

f1(2) = Pr
[
S

(g)
1 > 2

]
= p2q1 =

√
α2

α1√
α2

= α1; (2.8)

f1(1) = Pr
[
S

(g)
1 > 1

]
= p2q1 + p1q1 + p2q0 = α1 +

1−√α2

2
=

α1√
α2

+
√

α2

(
1− α1√

α2

)
>
√

α2 > α2; (2.9)

f1(0) = Pr
[
S

(g)
1 > 0

]
= 1− p0q0 < 1. (2.10)

One finds the following expression for the decumulative distribution function:

F
S

(g)
1

(t) =





1 for t < 0
f1(k) for k ≤ t < k + 1 and k = 0, 1, 2
0 for t ≥ 3

Now using formula (1.1), we find

Hg

[
S

(g)
1

]
= g

(
f1(0)

)
+ g

(
f1(1)

)
+ g

(
f1(2)

)
. (2.11)

Analogously, we define values f2(k) = Pr
[
S

(g)
2 > k

]
for k = 0, 1, 2. We get the

following identities:

f2(2) = f1(2)− (1− x)ε,
f2(1) = f1(1) + ε,

f2(0) = f1(0)− xε.
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Thus

Hg

[
S

(g)
2

]
= g

(
f1(0)− xε

)
+ g

(
f1(1) + ε

)
+ g

(
f1(2)− (1− x)ε

)
. (2.12)

After combining (2.11) with (2.12) we see that in order to complete the proof of
inequality (2.7) it suffices to prove that

g
(
f1(2)

)− g
(
f1(2)− (1−x)ε

)
+ g

(
f1(0)

)− g
(
f1(0)−xε

)
> g

(
f1(1) + ε

)− g
(
f1(1)

)
.

(2.13)
Now let us take a closer insight in differences occurring in inequality (2.13). From
the Lagrange Theorem it follows that there exist 0 < ε0, ε1, ε2 < ε such that the
following identities hold:

g
(
f1(0)

)− g
(
f1(0)− xε

)
= xεg′

(
f1(0)− xε0

)
> xg′−(1)ε, (2.14)

g
(
f1(1) + ε

)− g
(
f1(1)

)
= εg′

(
f1(1) + ε1

)
< g′(α2)ε, (2.15)

g
(
f1(2)

)−g
(
f1(2)−(1−x)ε

)
= (1−x)εg′

(
f1(2)−(1−x)ε2

)
> (1−x)g′(α1)ε. (2.16)

However, from Lemma 1 we find that

(1− x)g′(α1) + xg′−(1) > g′(α2). (2.17)

Multiplying both sides of (2.17) by ε and combining with inequalities (2.14), (2.15)
and (2.16), we get the sequence of inequalities:

g
(
f1(2)

)− g
(
f1(2)− (1− x)ε

)
+ g

(
f1(0)

)− g
(
f1(0)− xε

)

> (1− x)ε g′(α1) + xε g′−(1) > εg′(α2)
> g

(
f1(1) + ε

)− g
(
f1(1)

)
,

what completes the proof.

Remark 1 Condition (2.2) requires an additional comment. We believe that this
assumption can be somehow released (compare Darkiewicz et al. (2004)), however
for our construction this kind of restriction seems to be necessary. Fortunately a lot
of distortion functions encountered in practice satisfy this additional limitation. In
particular the theorem holds true for all concave piecewise linear functions (e.g. Tail
Value-at-Risk admits such representation), because then g′′(1) = 0. At the second
extreme we have distortion functions for which the first derivative at 0 is infinite
and also in this case condition (2.2) follows automatically. The latter case contains
other favorite distortion risk measures, like Proportional Hazard Transform (Wang
(1995) and Wang (1996)) or its generalization — a Beta distortion risk measure
(Wirch and Hardy (2000)).
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2.2 The non-concave case

Intuitively, it is clear that the assumption of concavity of g is somehow critical.
However in the proof we use this assumption explicitly. In fact, when one releases
the assumption of concavity, the construction follows easily from a general theorem
proved in Schmeidler (1986).

Theorem 3 Let BV be a set of bounded random variables. Suppose that a func-
tional H : BV → [0,∞)

(i) is additive for comonotonic risks;

(ii) preserves the first order stochastic dominance (i.e. ∀t FX(t) ≤ FY (t) ⇒
H[X] ≤ H[Y ]);

(iii) satisfies H[1] = 1.

Then there exists a distortion function h such that H[X] = Hh[X] for all X ∈ BV .
Moreover H[X + Y ] ≤ H[X] + H[Y ] holds for all X, Y ∈ BV if and only if h is
concave.

Proof See e.g. Denneberg (1994), Wang (1996).

Consider a distortion risk measure Hg generated by the distortion function g which
is not concave. Clearly, Hg obeys (i), (ii) and (iii) in the theorem above and therefore
we find the following corollary.

Corollary 1 Let Hg denote a distortion risk measure generated by a distortion
function g which is not concave. Then there exists a bivariate random variable
(X, Y ) such that Hg[X + Y ] > Hg[X] + Hg[Y ].

Now it is straightforward to prove the general theorem.

Theorem 4 Let g be an arbitrary non-concave distortion function. Then there
exist univariate distributions FX(g), FY (g) and bivariate distributions

(
X

(g)
1 , Y

(g)
1

)
,(

X
(g)
2 , Y

(g)
2

)
belonging to R

(
FX(g) , FY (g)

)
such that

(i) r
(
X

(g)
1 , Y

(g)
1

)
< r

(
X

(g)
2 , Y

(g)
2

)
;

(ii) ρ
(
X

(g)
1 , Y

(g)
1

)
< ρ

(
X

(g)
2 , Y

(g)
2

)
;

(iii) τ
(
X

(g)
1 , Y

(g)
1

)
< τ

(
X

(g)
2 , Y

(g)
2

)
;

(iv) Hg

[
X

(g)
1 + Y

(g)
1

]
> Hg

[
X

(g)
2 + Y

(g)
2

]
.
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Proof If g is not concave, one finds from Corollary 1 that there exists a random
couple (X, Y ) such that

Hg[X + Y ] > Hg[X] + Hg[Y ]. (2.18)

On the other hand, for the couple (Xc, Y c) with the same marginal distributions as
the couple (X,Y ), but with the comonotonic dependency structure, one has that

Hg

[
Xc + Y c

]
= Hg[X] + Hg[Y ]. (2.19)

Combining (2.18) with (2.19), one gets

Hg[X + Y ] > Hg

[
Xc + Y c

]
.

However we have that Var[X + Y ] < Var
[
Xc + Y c

]
and thus r(X, Y ) < r

(
Xc, Y c

)
(see Dhaene et al. (2002a,b)). The same is true also for Spearman’s ρ and Kendall’s
τ because ρ = τ = 1 holds true only in the comonotonic case.

Hence, taking
(
X

(g)
1 , Y

(g)
1

)
= (X, Y ) and

(
X

(g)
2 , Y

(g)
2

)
= (Xc, Y c) leads to the de-

sired result.
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Summary

Distortion Risk Measures for Sums of Random Variables

When we consider random couples (X1, Y1) and (X2, Y2), both elements of
R(FX , FY ), relative riskiness of the sums Si = Xi + Yi results from dependency
structure between the summands. In this paper we investigated the relation be-
tween a measure of risk for sums of random variables derived from distortion func-
tions and traditional measures of dependencies like Pearson’s r, Spearman’s ρ and
Kendall’s τ . In the general case we proved that there is no relation between dis-
tortion risk measures and Pearson’s r. We also showed that for many classes of
distortion risk measures (non-concave distortion risk measures, Tail Value-at-Risk,
proportional Hazard Transform, beta distortion risk measures and many others) the
same holds true additionally for Spearman’s ρ and Kendall’s τ . These findings aim
to illustrate the problem of defining what the right measure of dependency is, and
that risk measures widely used in practice are not always consistent with traditional
measures of dependencies.
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Zusammenfassung

Verzerrungsrisikomaße für die Summen von Zufallsvariablen

Beim Betrachten von Paaren von Zufallsvariablen, (X1, Y1) und (X2, Y2), beide
Elemente von R(FX , FY ), wird deutlich, dass das relative Risiko der Summen
Si = Xi + Yi sich aus der Abhängigkeitsstruktur zwischen den Summanden ergibt.
In dieser Studie untersuchen wir die Beziehung zwischen einem aus Verzerrungs-
funktionen hergeleiteten Risikomaß für die Summen von Zufallsvariablen auf der
einen Seite, und traditionellen Abhängigkeitsmaßen wie Pearsons r, Spearmans
ρ und Kendalls τ auf der anderen Seite. Wir zeigen auf, dass im Allgemein-
fall kein Zusammenhang besteht zwischen dem Verzerrungsrisikomaß und Pear-
sons r. Desweiteren zeigen wir, dass für viele Gruppen von Verzerrungsrisikomaßen
(nicht-konkave Verzerrungsrisikomaße, Tail Value-at-Risk, proportionaler Hazard
Transform, Beta Verzerrungsrisikomaße und viele andere), außerdem das gleiche
für Spearmans ρ and Kendalls τ gilt. Diese Ergebnisse veranschaulichen zum einen,
dass das richtige Abhängigkeitsmaß schwer definierbar ist und zum anderen, dass
die weit verbreiteten Risikomaße nicht immer übereinstimmen mit traditionellen
Abhängigkeitsmaßen.
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