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Lecture No. 1
Solvency Capital, Risk Measures and
Comonotonicity

Jan Dhaene
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Risk measures

• Risk : random future loss.
• Risk Measure: mapping from the set of quantifiable risks to

the real line:
X → ρ(X).

• Actuarial examples:
◦ premium principles,
◦ technical provisions (liabilities),
◦ solvency capital requirements.

• In sequel: ρ(X) measures the ”upper tails” of the d.f.
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Insurance company risk taxonomy

• Financial risks:
◦ asset risks (credit risks, market risks),
◦ liability risks (non-cathastrophic risks, catastrophic

risks).
• Operational risks:
◦ business risks,
◦ event risks.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 5/278



JKL M NOP Q J QR SP T QU VP L QP L

Required vs. available capital

• Required capital : required assets ρ(X) minus liabilities
L(X), to ensure that obligations can be met:

K(X) = ρ(X)− L(X).

• Different kinds of capital :
◦ regulatory capital: you must have,
◦ rating agency capital: you are expected to have,
◦ economic capital: you should have,
◦ available capital: you actually have.
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Required vs. available capital

• Parameters:
◦ default probability,
◦ time horizon,
◦ run-off vs. wind-up vs. going concern,
◦ valuation of liabilities: mark-to-model,
◦ valuation of assets: mark-to-market.

• Total balance sheet capital approach:

ρ(X) = L(X) +K(X).
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The quantile risk measure

• Quantiles:

Qp(X) = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1).

F (x)X




Q (X)

1

p

p x
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The quantile risk measure

• Determining the required capital by

K(X) = Q0.99(X)− L(X),

we have

K(X) = inf {K | Pr [X > L(X) +K] ≤ 0.01} .

• Qp(X) = F−1
X (p) = V aRp(X).

• Meaningful when only concerned about ”frequency of
default” and not ”severity of default”.

• Does not answer the question ”how bad is bad?”
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Tail Value-at-Risk and Conditional Tail Expectation

• Tail Value-at-Risk :

TV aRp(X) =
1

1− p

∫ 1

p
Qq(X) dq, p ∈ (0, 1).

• Determining the required capital by

K(X) = TV aR0.99(X)− L(X),

we define ”bad times” if X in ”cushion”
[Q0.99(X), TV aR0.99(X)].

• Conditional Tail Expectation:

CTEp(X) = E [X | X > Qp(X)] , p ∈ (0, 1) .

• CTEp = expectation of the top (1− p)% losses.
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Relations between risk measures

• Expected Shortfall :

ESFp(X) = E
[
(X −Qp(X))+

]
, p ∈ (0, 1).

• ESFp(X) = expectation of shortfall in case required capital
K(X) = Qp(X)− L(X).

• Relations:

TV aRp(X) = Qp(X) +
1

1− pESFp(X),

CTEp(X) = Qp(X) +
1

1− FX(Qp(X))
ESFp(X),

CTEp(X) = TV aRFX(Qp(X))(X).
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Relations between risk measures

• When FX is continuous:

CTEp(X) = TV aRp(X).

F (x)X




Q (X)

1

p

p xTVaR (X)p

ESF (X)p
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Normal random variables

• Let X ∼ N
(
µ, σ2

)
.

• Quantiles:
Qp(X) = µ+ σ Φ−1 (p) .

where Φ denotes the standard normal distribution function.
• Expected Shortfall :

ESFp(X) = σ Φ′ (Φ−1 (p)
)
− σ Φ−1 (p) (1− p) .

• Conditional Tail Expectation:

CTEp(X) = µ+ σ
Φ′ (Φ−1 (p)

)

1− p .
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Lognormal random variables

• Let lnX ∼ N
(
µ, σ2

)
.

• Quantiles:

Qp(X) = eµ+σ Φ−1(p).

• Expected Shortfall :

ESFp(X) = eµ+σ2/2 Φ
(
σ − Φ−1(p)

)

−eµ+σ Φ−1(p) (1− p) .

• Conditional Tail Expectation:

CTEp(X) = eµ+σ2/2 Φ
(
σ − Φ−1(p)

)

1− p .
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Risk measures and ordering of risks

• Ordering of risks:
◦ Stochastic dominance:

X ≤st Y ⇔ FX(x) ≥ FY (x) for all x.

◦ Stop-loss order:

X ≤sl Y ⇔ E[(X − d)+] ≤ E[(Y − d)+] for all d.

◦ Convex order:

X ≤cx Y ⇔ X ≤sl Y and E[X] = E[Y ].
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Risk measures and ordering of risks

• Stochastic dominance vs. ordered quantiles:

X ≤st Y ⇔ Qp(X) ≤ Qp(Y ) for all p ∈ (0, 1).

• Stop-loss order vs. ordered TVaR’s:

X ≤sl Y ⇔ TV aRp(X) ≤ TV aRp(Y ) for all p ∈ (0, 1).
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Comonotonicity

• A set S ⊂ Rn is comonotonic⇔
for all x and y in S either x ≤ y or x ≥ y holds.
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Comonotonicity

• A set S ⊂ Rn is comonotonic⇔
for all x and y in S either x ≤ y or x ≥ y holds.

• A comonotonic set is a “thin” set.
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Comonotonicity

• A random vector (X1, . . . , Xn) is comonotonic⇔
(X1, . . . , Xn) has a comonotonic support.
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Comonotonicity

• A random vector (X1, . . . , Xn) is comonotonic⇔
(X1, . . . , Xn) has a comonotonic support.

• Comonotonicity is very strong positive dependency
structure.

• Comonotonic r.v.’s are not able to compensate each other.
• (Y c

1 , . . . , Y
c
n ) is the ‘comonotonic counterpart’ of (Y1, . . . , Yn).
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Characterizations of comonotonicity

• Notations:
◦ U : uniformly distributed on the (0, 1).
◦ X = (X1, . . . , Xn) .

• Comonotonicity of a random vector :
X is comonotonic

⇔ X
d
=
(
F−1

X1
(U), . . . , F−1

Xn
(U)
)

⇔ There exists a r.v. Z, and non-decreasing functions

f1, . . . , fn such that X
d
= (f1(Z), · · · , fn(Z)),

⇔ Pr [X ≤ x] = min {FX1
(x1), FX2

(x2), . . . , FXn
(xn)}.

• The Fréchet bound :
Pr [Y ≤ x] ≤ min {FY1

(x1), FY2
(x2), . . . , FYn

(xn)}.
The upper bound is reachable in the class of random
vectors with given marginals.
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Comonotonicity and correlation

• Corr[X,Y ] = 1⇒ (X,Y ) is comonotonic.
• The class of all random couples with given marginals
◦ always contains comonotonic couples,
◦ does not always contain perfectly correlated couples.

• Risk sharing schemes:

X =

{
Z, Z ≤ d
d, Z > d,

Y =

{
0, Z ≤ d
Z − d, Z > d.

X and Y are comonotonic, but not perfectly correlated.
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Comonotonic bounds for sums of dependent r.v.’s

• Theorem: For any (X1, X2, . . . , Xn) and any Λ, we have

n∑

i=1

E [Xi | Λ] ≤cx

n∑

i=1

Xi ≤cx

n∑

i=1

F−1
Xi

(U).

• Notations:
◦ S =

∑n
i=1Xi.

◦ Sl =
∑n

i=1E [Xi | Λ] = lower bound.
◦ Sc =

∑n
i=1 F

−1
Xi

(U) = comonotonic upper bound.

• If all E [Xi | Λ] are↗ functions of Λ,
then Sl is a comonotonic sum.
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Risk measures and comonotonicity

• Additivity of risk measures of comonotonic sums:

Qp(

n∑

i=1

Xc
i ) =

n∑

i=1

Qp(Xi).

TV aRp(
n∑

i=1

Xc
i ) =

n∑

i=1

TV aRp(Xi).

• Sub-additivity of risk measures: Any risk measure that
◦ preserves stop-loss order
◦ is additive for comonotonic risks

is sub-additive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
• Examples:
◦ TailVaRp is sub-additive.
◦ CTEp, Qp and ESFp are NOT sub-additive.
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Distortion risk measures

• Expectation of a r.v.:

E[X] = −
∫ 0

−∞
[1− F̄X(x)] dx+

∫ ∞

0
F̄X(x) dx,

with F̄X(x) = Pr[X > x].
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Distortion risk measures

F (x)X

x

I

II

1

0

E[X] = I − II
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Distortion risk measures

• Expectation of a r.v.:

E[X] = −
∫ 0

−∞
[1− F̄X(x)] dx+

∫ ∞

0
F̄X(x) dx,

with F̄X(x) = Pr[X > x].
• Distortion function:
g : [0, 1]→ [0, 1] is a distortion function
⇔ g is↗, g(0) = 0 and g(1) = 1.
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Distortion risk measures: g(x) concave⇒ g(x) ≥ x

1

0 x1

g(x)
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Distortion risk measures

• Expectation of a r.v.:

E[X] = −
∫ 0

−∞
[1− F̄X(x)] dx+

∫ ∞

0
F̄X(x) dx,

with F̄X(x) = Pr[X > x].
• Distortion function:
g : [0, 1]→ [0, 1] is a distortion function
⇔ g is↗, g(0) = 0 and g(1) = 1.

• Distortion risk measure:

ρg[X] = −
∫ 0

−∞

[
1− g

(
F̄X(x)

)]
dx+

∫ ∞

0
g
(
F̄X(x)

)
dx.

ρg[X] = “distorted expectation” of X.
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Distortion risk measures: g(x) ≥ x

F (x)X

g(F (x))X

x

II

1

0

E[X] = I − (II+II')

ρ [X] = (I+I') − II ≥ E[X]
g

I'

II'

I
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Examples of distortion risk measures

• Expectation: X → E[X].

g(x) = x, 0 ≤ x ≤ 1.

1

0 x1

g(x)
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Examples of distortion risk measures

• The quantile risk measure: X → Qp(X).

g(x) = I (x > 1− p) , 0 ≤ x ≤ 1.

1

0 x1

g(x)

1−p
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Examples of distortion risk measures

• Tail Value-at-Risk : X → TV aRp(X).

g(x) = min

(
x

1− p, 1
)
, 0 ≤ x ≤ 1.

1

0 x1

g(x)

1−p
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Examples of distortion risk measures

• Conditional Tail Expectation: X → CTEp(X).
is NOT a distortion risk measure.

• Expected Shortfall : X → ESFp(X).
is NOT a distortion risk measure.

• Stoch. dominance vs. ordered distortion risk measures:

X ≤st Y ⇔ ρg[X] ≤ ρg[Y ] for all distortion functions g.
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The Wang transform risk measure

• Problems with TVaRp:
◦ no incentive for taking actions that increase the

distribution function for outcomes smaller than Qp,
◦ accounts for the ESF⇒ does not adjust for extreme

low-frequency, high severity losses.
• The Wang transform risk measure :

X → ρgp
(X), 0 < p < 1,

with

gp(x) = Φ
[
Φ−1(x) + Φ−1(p)

]
, 0 ≤ x ≤ 1.

offers a possible solution.
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The Wang transform risk measure

• Examples:
◦ if X is normal: ρgp

(X) = Qp(X).
◦ if X is lognormal: ρgp

(X) = QΦ[Φ−1(p)+ σ

2 ]
(X).
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Properties of distortion risk measures

• Additivity for comonotonic risks:

ρg [Xc
1 +Xc

2 + . . .+Xc
n] =

n∑

i=1

ρg(Xi).

• Positive homogeneity : for any a > 0,

ρg[aX] = aρg[X].

• Translation invariance:

ρg[X + b] = ρg[X] + b.

• Monotonicity :

X ≤ Y ⇒ ρg[X] ≤ ρg[Y ].
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Concave distortion risk measures

• Concave distortion risk measures:
◦ ρg(·) is a concave distortion risk measure if g is concave.
◦ TV aRp(·) is concave, Qp(·) not.

• SL-order vs. ordered concave distortion risk measures:

X ≤sl Y ⇔ ρg[X] ≤ ρg[Y ] for all concave g.
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The Beta distortion risk measure

• Problem with TVaRp: For any concave g, ρg strongly
preserves stop-loss order⇔ g is strictly concave.
⇒ TV aRp does not strongly preserve stop-loss order.

• The Beta distribution: (a > 0, b > 0)

Fβ(x) =
1

β (a, b)

∫ x

0
ta−1 (1− t)b−1 dt, 0 ≤ x ≤ 1.

• The Beta distortion risk measure:

X → ρFβ
(X).

ρFβ
strictly preserves stop-loss order provided 0 < a ≤ 1,

b ≥ 1 and a and b are not both equal to 1.
• A PH-transform risk measure: Wang (1995).
a = 0.1 and b = 1.
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Sub-additivity of risk measures

• Merging decreases the ‘insolvency risk’ :

(X + Y − ρ [X]− ρ [Y ])+ ≤ (X − ρ [X])+ + (Y − ρ [Y ])+

◦ Sub-additivity is allowed to some extent.
• Concave distortion risk measures are sub-additive:

ρg [X + Y ] ≤ ρg [X] + ρg [Y ] .

◦ Qp is not sub-additive,
◦ TV aRp is sub-additive.

• Optimality of TV aRp:

TV aRp(X) = min {ρg(X) | g is concave and ρg ≥ Qp} .
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Axiomatic characterization of risk measures

• A risk measure is "Artzner-coherent” if it is sub-additive,
monotone, positive homogeneous and translation invariant.
◦ Qp is not ”coherent”.
◦ Concave distortion risk measures are ”coherent”.

• The Dutch risk measure:

ρ(X) = E [X] + E
[
(X − E [X])+

]
.

ρ(X) is coherent, but not comonotonic-additive
⇒ ρ(X) is NOT a distortion risk measure.

• Coherent or not?
Markowitz (1959): “We might decide that in one context one
basic set of principles is appropriate, while in another
context a different set of principles should be used.”
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Distortion risk measures for sums of dependent r.v.’s

• Approximations for sums of dependent r.v.’s:
S =

∑n
i=1Xi with given marginals, but unknown copula.

Sl =
n∑

i=1

E [Xi | Λ] ≤cx S ≤cx

n∑

i=1

F−1
Xi

(U) = Sc

• Approximations for ρg[S]: (if all E [Xi | Λ] are↗ in Λ)

ρg [Sc] =

n∑

i=1

ρg [Xi] ,

ρg

[
Sl
]

=
n∑

i=1

ρg [E (Xi | Λ)] .

• If g is concave: ρg

[
Sl
]
≤ ρg [S] ≤ ρg [Sc] .
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Application: provisions for future payment obligations

• Problem description
◦ Consider a payment obligation of 1 per year, due at

times 1, 2, ..., 20,
◦ Let e−Y (i) be the discount factor over [0, i]:

e−Y (i) ≡ e−(Y1+Y2+...+Yi).

◦ Assume the yearly returns Yj are i.i.d. and normal
distributed with parameters µ = 0.07 and σ = 0.1.

◦ The stochastic provision is defined by

S =

20∑

i=1

e−(Y1+Y2+...+Yi).
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Provisions for future payment obligations

• Convex bounds for S =
∑20

i=1 e
−Y (i)

Let Λ =
∑20

i=1 Yi
∑20

j=i e
−jµ and ri = corr [Λ, Y (i)] > 0.

Then
Sl ≤cx S ≤cx S

c

where

Sl =
n∑

i=1

e−E[Y (i)]−ri σY (i) Φ−1(U)+ 1

2
(1−r2

i )σ2
Y (i) ,

Sc =

n∑

i=1

e−E[Y (i)]+ σY (i) Φ−1(U).
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Provisions for future payment obligations

• Provision (or total capital requirement)
◦ The provision for this series of future obligations is set

equal to ρg[S]

◦ Approximate ρg[S] by

ρg [Sc] =
n∑

i=1

ρg [Xi] ,

ρg

[
Sl
]

=

n∑

i=1

ρg [E (Xi | Λ)] .
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Provisions for future payment obligations

• The Quantile-provision principle: ρg[S] = Qp[S]

6
 8
 10
 12
 14
 16
 18
 20


5

10



15



20
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Provisions for future payment obligations

• The CTE-provision principle: ρg[S] =TVaRp[S]

p TVARp[S
l] ‘TVARp[S]’ TVARp[S

c]

0.950 17.24 17.26 18.61
0.975 18.45 18.50 20.14
0.990 20.03 20.10 22.16
0.995 21.22 21.30 23.69
0.999 23.98 24.19 27.29
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Theories of choice under risk

• Expected utility theory :
◦ von Neumann & Morgenstern (1947).
◦ Prefer loss X over loss Y if

E [u(w −X)] ≥ E [u(w − Y )] ,

◦ u(x) = utility of wealth-level x,↗ function of x.
◦ Risk aversion: u is concave.

• Yaari’s dual theory of choice under risk :
◦ Yaari (1987).
◦ Prefer loss X over loss Y if

ρf [w −X] ≥ ρf [w − Y ] ,

◦ f(q) = distortion function.
◦ Risk aversion: f is convex.
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Compare theories of choice under risk

• Transformed expected wealth levels:

E[w −X] =

∫ 1

0
Q1−q(w −X) dq,

E[u(w −X)] =

∫ 1

0
u [Q1−q(w −X)] dq,

ρf [w −X] =

∫ 1

0
Q1−q(w −X) df(q).

• Ordering of risks:
◦ In both theories, stochastic dominance reflects

common preferences of all decision makers.
◦ In both theories, stop-loss order reflects

common preferences of all risk-averse decision makers.
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Lecture No. 2
Comonotonicity and Optimal Portfolio
Selection

Jan Dhaene
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Introduction

• Strategic portfolio selection:
For a given savings and/or consumption pattern over a
given time horizon, identify the best allocation of wealth
among a basket of securities.

• The ’Terminal Wealth’ problem:
◦ Saving for retirement.
◦ A loan with an amortization fund with random return.

• The ’Reserving’ problem:
◦ The ’after retirement’ problem.
◦ Technical provisions.
◦ Capital requirements.
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Introduction

• The ’Buy and Hold’ strategy :
◦ Keep the initial quantities constant.
◦ A static strategy.

• The ’Constant Mix’ strategy :
◦ Keep the initial proportions constant.
◦ A dynamic strategy.
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Comonotonicity

• Notations:
◦ U : uniformly distributed on (0, 1).
◦ X = (X1, . . . , Xn) .

◦ F−1
X (p) = Qp [X] = VaRp [X]= inf {x ∈ R | FX(x) ≥ p} .

• Comonotonicity of a random vector :
X is comonotonic⇔ there exist non-decreasing functions
f1, . . . , fn and a r.v. Z such that

X
d
= [f1(Z), . . . , fn(Z)] .

• Comonotonicity: very strong positive dependency structure.
• Comonotonic r.v.’s cannot be pooled.
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Comonotonic bounds for sums of dependent r.v.’s

• Theorem:
For any X and any Λ, we have

n∑

i=1

E [Xi | Λ] ≤cx

n∑

i=1

Xi ≤cx

n∑

i=1

F−1
Xi

(U).

• Notations:
◦ S =

∑n
i=1Xi.

◦ Sl =
∑n

i=1 E [Xi | Λ] = lower bound.
◦ Sc =

∑n
i=1 F

−1
Xi

(U) = comonotonic upper bound.

• If all E [Xi | Λ] are increasing functions of Λ,
then Sl is a comonotonic sum.
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Performance of the comonotonic approximations

• Local comonotonicity :
Let B(τ) be a standard Wiener process.
The accumulated returns

exp [µτ + σ B(τ)] ,

exp [µ (τ + ∆τ) + σ B (τ + ∆τ)]

will be ’almost comonotonic’.
• The continuous perpetuity :

S =

∫ ∞

0
exp [−µτ − σ B(τ)] dτ

has a reciprocal Gamma distribution.
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Numerical illustration: µ = 0.07 and σ = 0.1.
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Circles: Plot of (Qp[S], Qp[S
l])
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Numerical illustration

p Qp[S
l] Qp[S] Qp[S

c]

0.95 23.62 23.63 25.90

0.975 26.09 26.13 29.34

0.99 29.37 29.49 34.08

0.995 31.90 32.10 37.86
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The Black-Scholes setting

• 1 risk-free and m risky assets:

dP 0(t)

P 0(t)
= r dt

dP i(t)

P i(t)
= µi dt+

d∑

j=1

σ̄ij dW
j(t)

with
(
W 1(τ), . . . , W d(τ)

)
:

independent standard Brownian motions.
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The Black-Scholes setting

• Equivalent formalism:

dP 0(t)

P 0(t)
= r dt

dP i(t)

P i(t)
= µi dt+ σi dB

i(t)

with
(
B1(τ), . . . , Bm(τ)

)

correlated standard Brownian motions.
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The Black-Scholes setting

• Return of asset i in year k:

P i(k) = P i(k − 1) eY i
k

• Y i
k normal distributed with

E
[
Y i

k

]
= µi −

1

2
σ2

i and Var
[
Y i

k

]
= σ2

i

• Independence over the different years:

k 6= l⇒ Y i
k and Y j

l are independent.

• Dependence within each year: Cov
[
Y i

k , Y
j
k

]
= (Σ)ij

• Assumptions: µ6=r1 and Σ is positive definite.
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Investment strategies

• Constant mix strategies:

π (t) = (π1, π2, . . . , πm)

with
πi = fraction invested in risky asset i,

1−
m∑

i=1

πi = fraction invested in riskfree asset.

◦ Fractions time-independent.
◦ Dynamic trading strategies.
◦ Requires continuously rebalancing.
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Investment strategies

• The portfolio return process: Merton (1971).
◦ P (t) = price of one unit of (π1, π2, . . . , πm).

dP (t)

P (t)
= µ (π) t+ σ (π) dB(t)

with B(τ) a standard Brownian motion and

µ (π) = r + πT ×
(
µ− r 1

)
, σ2 (π) = πT × Σ× π

◦ Yearly portfolio returns: P (k) = P (k − 1) eYk(π)

◦ The Yk (π) are i.i.d. normal with

E [Yk (π)] = µ (π)− 1

2
σ2 (π) , Var [Yk (π)] = σ2 (π)
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Markowitz mean-variance analysis

• The mean-variance efficient frontier :

max
π

µ (π) subject to σ (π) = σ

is obtained for the portfolio

πσ = σ
Σ−1 ·

(
µ− r1

)
√(

µ− r1
)T · Σ−1 ·

(
µ− r1

)

with

µ (πσ) = r + σ

√(
µ− r1

)T · Σ−1 ·
(
µ− r1

)
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Markowitz mean-variance analysis: r < µ
(
π(m)

)

π(m)

σ(π)

µ(
π)

r
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Markowitz mean-variance analysis: r < µ
(
π(m)

)

π(m)

σ(π)

µ(
π)

r
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Markowitz mean-variance analysis: r < µ
(
π(m)

)

π(m)

σ(π)

µ(
π)

r
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Markowitz mean-variance analysis: r < µ
(
π(m)

)

π(t)

π(m)

σ(π)

µ(
π)

r
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Markowitz mean-variance analysis

• The Capital Market Line and the Sharpe ratio:

µ (πσ) = r +

(
µ
(
π(t)
)
− r

σ
(
π(t)
)
)
σ.

• Two Fund Separation Theorem:

πσ =

(
µ (πσ)− r
µ
(
π(t)
)
− r

)
π(t).
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Saving and terminal wealth

• Problem description:
◦ α0, α1, . . . , αn: positive savings at times 0, 1, 2, . . . , n.
◦ Investment strategy : π(t) = (π1, π2, . . . , πm).
◦ Wealth at time j:

Wj (π) = Wj−1 (π) eYj(π) + αj

with W0 (π) = α0.
◦ What is the optimal investment strategy π∗?
◦ Depends on ’target capital’ and ’probability level’.
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Approximating Terminal Wealth

• Terminal wealth Wn(π):

Wn (π) =

n∑

i=0

αi e
Yi+1(π)+Y2(π)+···+Yn(π) =

n∑

i=0

Xi

• The comonotonic upper bound for Wn (π):

W c
n (π) =

n∑

i=0

F−1
Xi

(U)

• A comonotonic lower bound for Wn (π):

W l
n (π) =

n∑

i=0

E


Xi |

n∑

j=1

Yj (π)

j−1∑

k=0

αk e
−k µ(π)




• Convex ordering: W l
n(π) ≤cx Wn(π) ≤cx W c

n(π)
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Optimal investment strategies

• Terminal wealth Wn (π):

Wn (π) =

n∑

i=0

αi e
Yi+1(π)+Yi+2(π)+···+Yn(π)

• Utility Theory : Von Neumann & Morgenstern (1947).

max
π

E [u (Wn (π))]

• Yaari’s dual theory of choice under risk : Yaari (1987).

max
π

Ef [Wn (π)]

where
◦ Ef is determined with f (Pr (Wn (π) > x)),
◦ convexity of f corresponds with ‘risk aversion’.
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Optimal investment strategies

• Reduced optimization problem:

◦ For σ (π1) = σ (π2) and µ (π1) < µ (π2) , we have that

Wn (π1) ≤st Wn (π2) .

◦ Hence,

max
π

E [u (Wn (π))] = max
σ

E [u (Wn (πσ))]

and
max

π
Ef [Wn (π)] = max

σ
Ef [Wn (πσ)] .
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The Target Capital

• Distorted expectations: for

f(x) =

{
0 : x ≤ p
1 : x > p,

the distorted expection Ef [Wn (π)] reduces to

Q1−p [Wn (π)] = sup {x | Pr [Wn ( π) > x] ≥ p} .

• Problem: d.f. of Wn (π) too cumbersome to work with
◦ curse of dimensionality
◦ dependencies
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Maximizing the Target Capital, for a given p

• Optimal investment strategy : π∗ follows from

max
π

Q1−p [Wn (π)]

• Approximation:the approximation πl for π∗ follows from

max
σ

Q1−p

[
W l

n (πσ)
]

with

Q1−p

[
W l

n(πσ)
]

=

n∑

i=0

αie
(n−i)[µ(πσ)− 1

2
r2

i (πσ)σ2]−
√

n−i ri(πσ)σΦ−1(p)
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Numerical illustration

• Available assets:
◦ 1 riskfree asset with r = 0.03
◦ 2 risky assets with

µ1 = 0.06, σ1 = 0.10

µ2 = 0.10, σ2 = 0.20

and
Corr

[
Y 1

k , Y
2
k

]
= 0.5

• The tangency portfolio:

π(t) =

(
5

9
,
4

9

)
, µ

(
π(t)
)

=
7

90
, σ

(
π(t)
)

=

√
43

2700
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Numerical illustration

• Yearly savings: α0 = . . . = α39 = 1

• Terminal wealth:

W40 (π) =
39∑

i=0

eYi+1(π)+Y2(π)+···+Y40(π)

• Optimal investment strategy :

max
π

Q0.05 [W40 (π)]
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Numerical illustration
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Numerical illustration

• Minimizing the savings effort per unit of Target Capital :
The optimal investment strategy π is defined as the one that
minimizes α (π) in

Q1−p

[
α (π)

39∑

i=0

eYi+1(π)+Y2(π)+···+Y40(π)

]
= 1.
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Numerical illustration
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Solid line (left scale): minimal yearly savings amount as a function of p.
Dashed line (right scale): optimal proportion invested in the tangency portfolio.
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Other optimization criteria

• Maximizing the Target Capital for a given probability level p:

max
π

CLTE1−p [Wn (π)]

with
CLTE1−p[X] = E [X | X < Q1−p[X]]

• Maximizing p for a given Target Capital K:

max
π

Pr [Wn (π) > K]
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Provisions for future liabilities

• Problem description:
◦ α1, . . . , αn: positive payments, due at times 1, . . . , n.
◦ R0 = initial provision established at time 0.
◦ Investment strategy : π (t) = (π1, π2, . . . , πm).
◦ Provision at time j :

Rj (R0, π) = Rj−1 (R0, π) eYj(π) − αj

with R0 (R0, π) = R0.
◦ What is the optimal investment strategy π∗?
◦ Answer depends on ‘initial provision’ R0 and

‘probability level’ p.
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The stochastic provision

• Definition:

S (π) =
n∑

i=1

αi e
−(Y1(π)+Y2(π)+···+Yi(π)).

• Relation:

Rn (R0, π) = (R0 − S (π)) e(Y1(π)+···+Yn(π)).

• An investment strategy π is only acceptable if
Pr [Rn (R0, π) ≥ 0] is ”large enough”.

• Relation:

Pr [Rn (R0, π) ≥ 0] = Pr [S (π) ≤ R0] .

• PROBLEM: d.f. of S (π) too cumbersome to work with.
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Comonotonic approximations for S (π)

• The comonotonic upper bound for S (π):

S (π) ≤cx S
c (π) .

• A comonotonic lower bound for S (π):

◦ Sl (π) = E

[
S (π)

∣∣∣∣
∑n

j=1 Yj (π)
∑n

k=j αk e
−k[µ(π)−σ2(π)]

]
.

◦ Sl ≤cx S (π).
◦ Sl (π) is a comonotonic sum.
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Optimal investment strategies

• The Initial Provision:
◦ Definition:

R0 (π) = Eg [S (π)]

where S (π) is the Stochastic Provision.
◦ Eg[·] is a ‘distortion risk measure’.
◦ If g is concave, then Eg[·] is a ‘coherent’ risk measure.

• The optimal investment strategy : (π∗, R∗
0) follows from

R∗
0 = min

π
Eg [S (π)]
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Reduced optimization problem

• For σ (π1) = σ (π2) and µ (π1) < µ (π2) , we have that

S (π2) ≤st S (π1) .

• Hence,
min

π
Eg [S (π)] = min

σ
Eg [S (πσ)] .
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Minimizing the Initial Provision, for a given p

• The p - quantile provision principle:

If investment strategy = π, then

R0(π) = Qp [S (π)] = inf {x | Pr [Rn (x, π) ≥ 0] ≥ p} .

• Optimal strategy : (π∗, R∗
0) follows from

R∗
0 = min

π
Qp [S (π)] .

• Approximation: (πl, Rl
0) follows from

Rl
0 = min

σ
Qp

[
Sl (πσ)

]
.
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Numerical illustration

• Available assets:
◦ 1 riskfree asset with r = 0.03
◦ 2 risky assets with

µ1 = 0.06, σ1 = 0.10

µ2 = 0.10, σ2 = 0.20

and
Corr

[
Y 1

k , Y
2
k

]
= 0.5

• The tangency portfolio:

π(t) =

(
5

9
,
4

9

)
, µ

(
π(t)
)

=
7

90
, σ

(
π(t)
)

=

√
43

2700
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Numerical illustration

• Yearly consumptions: α1 = . . . = α40 = 1.

• Stochastic provision:

S (π) =

40∑

i=1

e−(Y1(π)+Y2(π)+···+Yi(π)).

• Optimal investment strategy :

R∗
0 = min

π
Qp [S (π)] .

• Approximation:

Rl
0 = min

σ
Qp [S (πσ)] .
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Numerical illustration
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Solid line (left scale): minimal initial provision Rl
0 as a function of p.

Dashed line (right scale): optimal proportion invested in the tangency portfolio.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 85/278



øù úû üýþ ÿ ø ÿ � �þ � ÿ� �þ ú ÿþ ú

Other optimization criteria

• Minimizing the Initial Provision, given p:

R∗
0 = min

π
CTEp [S (π)]

with
CTEp[X] = E [X | X > Qp[X]] .

• Maximizing p for a given Initial Provision R0:

p∗ = max
π

Pr [Rn (R0, π) > 0] .
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Generalizations

• Investment restrictions: are taken into account by redefining
the set of efficient portfolios.

• Yaari’s dual theory : The ‘final wealth problem’ can be solved
for general distorted expectations.

• Distortion risk measures: The initial provision can be
defined in terms of general distortion risk measures.

• Stochastic sums: ‘How to avoid outliving your money?’
• Positive and negative payments: ‘The savings - retirement

problem’.
• Other distributions: Lévy-type or Elliptical-type distributions
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[2] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002b).
The concept of comonotonicity in actuarial science and finance:
Applications.
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[3] Dhaene, Vanduffel, Goovaerts, Kaas, Vyncke (2004).
Comonotonic approximations for optimal portfolio selection
problems. (forthcoming)
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Lecture No. 3
Elliptical Distributions - An Introduction

Emiliano A. Valdez
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Elliptical Distributions

• This family coincides with the family of symmetric
distributions in the univariate case (e.g. normal, Student-t)
and can be characterized using either:
◦ characteristic generator
◦ density generator

• References:

◦ Landsman and Valdez (2003) “Tail Conditional Expectations
for Elliptical Distributions”, North American Actuarial Journal.

◦ Valdez and Dhaene (2004) “Bounds for Sums of
Non-Independent Log-Elliptical Random Variables”, work in
progress.

◦ Valdez and Chernih (2003) “Wang’s Capital Allocation
Formula for Elliptically-Contoured Distributions”, Insurance:
Mathematics & Economics.
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Why Elliptical Distributions?

• Provides a rich class of multivariate distributions that share
several tractable properties of the multivariate normal.
◦ Student t, Laplace, Logistic, etc.
◦ Linear combinations of components of multivariate

elliptical is again elliptical (Important for modelling yearly
returns, and for constructing the conditioning variable.)

• Allows more flexibility to model multivariate extremes and
other forms of non-normal dependency structures.
◦ Fat extremes, tail dependence.
◦ Some studies show that light tailness of normal show its

inadequacies to model extreme credit default events.
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Some Notation

• Consider an n-dimensional random vector

X = (X1, X2, ..., Xn)T .

◦ Distribution function:
FX (x1, x2, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)

◦ Density function:

fX (x1, x2, ..., xn) =
∂nFX (x1, x2, ..., xn)

∂x1 · · · ∂xn

◦ Characteristic function:
ϕX (t) = E

[
exp

(
iXT t

)]
= E [exp (i

∑n
k=1Xktk)]

◦ Moment generating function:
MX (t) = E

[
exp

(
XT t

)]
= ϕX (−it)

◦ Covariance matrix: Cov (X) = (Cov (Xi, Xj)) for
i, j = 1, ..., n
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Multivariate Normal Family

• It is well-known that the joint density of a multivariate normal
X is given by

fX (x) =
cn√
|Σ|

exp

[
−1

2
(x− µ)T

Σ−1 (x− µ)

]
.

• The normalizing constant is given by cn = (2π)−n/2.
• Its characteristic function is

ϕX (t) = exp
(
itTµ−1

2t
TΣt

)

= exp
(
itTµ

)
exp

(
−1

2t
TΣt

)

• And its covariance is

Cov (X) = Σ.
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Multivariate Normal - continued

• Define the characteristic generator as

ψ (t) = e−t

and density generator as

gn (u) = e−u

• The density can then be written as

fX (x) =
cn√
|Σ|

gn

[
−1

2
(x− µ)T

Σ−1 (x− µ)

]

and its characteristic function as

ϕX (t) = exp
(
itTµ

)
ψ
(

1
2t

TΣt
)
.
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Class of Elliptical Distributions

• X has multivariate elliptical distribution, X v En(µ,Σ,ψ), if
char. function can be expressed as

ϕX (t) = exp(itTµ)ψ
(

1
2t

TΣt
)

for some column-vector µ, n× n positive-definite matrix Σ.

• If density exists, it has the form

fX (x) =
cn√
|Σ|

gn

[
1

2
(x− µ)T

Σ−1 (x− µ)

]
,

for some function gn (·) called the density generator.
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Elliptical Distributions - continued

• The normalizing constant cn can be explicitly determined by
transforming into polar coordinates and we have

cn =
Γ (n/2)

(2π)n/2

[∫ ∞

0
xn/2−1gn(x)dx

]−1

.

• Thus, we see the condition
∫ ∞

0
xn/2−1gn(x)dx <∞

guarantees gn as density generator.
• Note that for a given characteristic generator ψ, the density

generator g and/or the normalizing constant c may depend
on the dimension of the random vector X.
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Some Properties

• If mean exists, it will be

E (X) = µ.

• If covariance exists, it will be

Cov (X) = −ψ′ (0)Σ.

• Let A be some m× n matrix of rank m ≤ n and b some
m-dimensional column-vector. Then

AX + b ∼ Em

(
Aµ+ b,AΣAT , gm

)
.

• Define the sum S = X1 +X2 + · · ·+Xn = eTX, where e is
a column vector of ones with dimension n. Then

S ∼ En

(
eTµ, eTΣe, g1

)
.
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Multivariate Student-t Family

• Density generator: gn (u) =
(
1 + u

kp

)−p
where parameter

p > n/2 and kp is some constant.

• Density: fX (x) = cn√
|Σ|

[
1 + (x−µ)T

Σ
−1(x−µ)

2kp

]−p

• Normalizing constant: cn = Γ(p)
Γ(p−n/2)(2πkp)

−n/2

• If p = (n+m) /2 where n, m are integers, and kp = m, we
get the traditional form of the multivariate Student t with
density:

fX (x) =
Γ
(

n+m
2

)

(πm)n/2Γ
(

m
2

)√
|Σ|

[
1 +

(x− µ)T
Σ−1 (x− µ)

m

]−(n+m

2 )
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Generalized Student-t Distribution

• Density: fX (x) = 1

σ
√

2kpB(1/2,p−1/2)

[
1 + (x−µ)2

2kpσ2

]−p
, where

B (·, ·) is the beta function.
• For p > 3/2, usually kp = (2p− 3)/2 becaue it leads to the

important property that V ar (X) = σ2.
• For 1/2 < p ≤ 3/2, variance does not exist and kp = 1/2.

• Note for example in the case where p = 1, we have
standard Cauchy distribution:

fX (x) =
1

σπ

[
1 +

(x− µ)2

σ2

]−1

.

It is well-known that mean and variance for this distribution
does not exist.
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Density Functions of GST - Figure 1
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Multivariate Logistic Family

• Density generator: g (u) = e−u

(1+e−u)2

• Density:

fX (x) =
cn√
|Σ|

exp
[
−1

2 (x− µ)T
Σ−1 (x− µ)

]

{
1 + exp

[
−1

2 (x− µ)T
Σ−1 (x− µ)

]}2

• Normalizing constant:

cn = (2π)−n/2




∞∑

j=1

(−1)j−1 j1−n/2



−1
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Multivariate Exponential Power Family

• Density generator: g (u) = e−rus , for r, s > 0

• Density:

fX (x) =
cn√
|Σ|

exp
{
−r

2

[
(x− µ)T

Σ−1 (x− µ)
]s}

• Normalizing constant:

cn =
sΓ (n/2)

(2π)n/2 Γ (n/2s)
rn/2s

• When r = s = 1, this reduces to multivariate normal. When
s = 1/2 and r =

√
2, we have Double Exponential or

Laplace distributions.
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Bivariate Densities - Figure 2

Normal

Normal Student t

Logistic Laplace
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Lecture No. 4
Tail Conditional Expectations for Elliptical
Distributions

Emiliano A. Valdez
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Introduction

• Developing a standard framework for risk measurement is
becoming increasingly important.

• This paper is about a risk measure called tail conditional
expectations and their explicit forms for the family of
elliptical distributions.

• This family coincides with the family of symmetric
distributions in the univariate case (e.g. normal, Student-t)
and can be characterized using either:

◦ characteristic generator
◦ density generator
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Introduction - continued

• We introduce the notion of a cumulative generator which
plays a key role in computing tail conditional expectations.

• We extended the ideas into the multivariate framework
allowing us to decompose the total of the tail conditional
expectations into its various constituents.

◦ decomposing the total into an allocation formula

• Landsman and Valdez (2003)
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Risk Measure

• A risk measure ϑ is a mapping from the space of random
variables L to the set of real numbers: ϑ : X ∈ L→ R.

• Some useful properties of a risk measure:

1. Monotonicity: X1 ≤ X2 with probability
1 =⇒ ϑ (X1) ≤ ϑ (X2) .

2. Homogeneity: ϑ (λX) = λϑ (X) for any non-negative λ.

3. Subadditivity: ϑ (X1 +X2) ≤ ϑ (X1) + ϑ (X2) .

4. Translation Invariance: ϑ (X + α) = ϑ (X) + α for any
constant α.

• Some consequences:

ϑ (0) = 0; a ≤ X ≤ b =⇒ a ≤ ϑ (X) ≤ b; ϑ (X − ϑ (X)) = 0.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 107/278



ÁÂ ÃÄ Ä Å Ä ÆÇ Â ÈÉ ÊË Ì Ê Å Á ÈÉ Í ÌÎ Ï

Ð ÊÂ É Å ÈÑ Ä ÆÒ Ä Ó ÓÎ Ë Â Î ÔÕ Â Ä ÖÄ Ó ÌÂ Ï

The Tail Conditional Expectation

• Notation: X : loss random variable; FX (x) : distribution
function; FX (x) = 1− FX (x): tail function; xq : q-th
quantile with FX (xq) = 1− q

• The tail conditional expectation (TCE) is

TCEX (xq) = E (X |X > xq ) .

• Other names used: tail-VAR, conditional VAR
• Value-at-risk: xq = Qq (X)

• Expected Shortfall: E
[
(X − xq)+

]
= ESFq (X)

• Relationships:

TCEX (xq) = xq+E (X − xq |X > xq ) = xq+
1

1− qE
[
(X − xq)+

]
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TCE for Univariate Elliptical

• Let X ∼ E1

(
µ, σ2, g

)
so that density fX (x) = c

σg
[

1
2

(x−µ
σ

)2]

where c is the normalizing constant.

• Since X is elliptical distribution, the standardized random
variable Z = (X − µ) /σ will have a standard elliptical
distribution function FZ (z) = c

∫ z
−∞ g

(
1
2u

2
)
du, with mean 0

and variance σ2
Z = 2c

∫∞
0 u2g

(
1
2u

2
)
du = −ψ′(0), if they

exist.

• Define the cumulative density generator:

G (x) = c

∫ x

0
g (u) du

and denote G (x) = G (∞)−G (x) .
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- continued

• The tail conditional expectation of X is

TCEX (xq) = µ+ λ · σ2

where λ is λ =

1

σ
G( 1

2
z2

q)

F X(xq)
=

1

σ
G( 1

2
z2

q)

F Z(zq)
and zq = (xq − µ) /σ.

• Moreover, if the variance of X exists, then 1
σ2

Z
G
(

1
2z

2
)

has
the sense of a density of another spherical random variable
Z∗ and λ has the form

λ =

1

σ
fZ∗(zq)

FZ (zq)
σ2

Z .
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Some Examples

• Normal Distribution:

λ =

1

σ
ϕ (zq)

1− Φ (zq)

where ϕ (·) and Φ (·) denote respectively the density and
distribution functions of a standard normal distribution.
Notice that Z∗ is simply the standard normal variable Z.

• Student-t:

λ =

√
2p−5
2p−3 · fZ

(√
2p−5
2p−3zq; p− 1

)

FZ (zq; p)

only for the case where p > 5/2. Here, Z∗ is simply a
scaled GST with parameter p− 1.
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Examples - continued

• Logistic:

λ =

[
1

2

1
(√

2π
)−1

+ ϕ (zq)

] 1

σ
ϕ (zq)

FZ (zq)

which resembles that of a normal distribution, but with a
correction factor.

• Exponential Power:

λ =
1

FZ (zq)

1√
2Γ (1/(2s))σ

{
Γ (1/s)− Γ

[
r

(
1

2
z2
q

)s

; 1/s

]}
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TCE for the Marginals

• Let X ∼En (µ,Σ,gn). Denote the (i, j) element of Σ by σij

so that Σ = ‖σij‖ni,j=1.

• Let FZ (z) = c1
∫ z
0 g1

(
1
2x

2
)
dx be the standard d.f.

corresponding to this elliptical family and
G (x) = c1

∫ x
0 g1 (u) du be its cumulative generator.

• The formula for computing TCEs for each component of X

is expressed as

TCEXk
(xq) = µk + λk · σ2

k

where λk =

1

σk
G( 1

2
z2

k,q)

F Z(zk,q)
, zk,q =

xq − µk

σk
, or λk =

1

σk
fZ∗ (zq)

F Z(zq)
σ2

Z ,

if σ2
Z <∞.
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Sums of Elliptical Risks

• The tail conditional expectation of the sum S

TCES (xq) = µS + λS · σ2
S

where

µS = eTµ =
n∑

k=1

µk, σ
2
S = eTΣe =

n∑

i,j=1

σij ,

and

λS =

1

σS
G
(

1
2z

2
S,q

)

FZ (zS,q)

with zS,q =
µS − xq

σS
.
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Portfolio Risk Decomposition

• TCE allows for natural decomposition of the total loss:

TCES (xq) =

n∑

k=1

E (Xk |S > xq ) .

• This is not in general equivalent to the sum of the tail
conditional expectations of the individual components since

TCEXk
(xq) 6= E (Xk |S > xq ) .

• Instead, we denote this as TCEXk|S (xq) = E (Xk |S > xq ),
the contribution to the total risk attributable to risk k.

• It can be interpreted as follows: in case of a disaster as
measured by an amount at least as large as the quantile of
the total loss distirbution, this refers to the average amount
that would be due to the presence of risk k.
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Theorem on Risk Decomposition

• Let X = (X1, X2, ..., Xn)T ∼ En (µ,Σ, gn) such that
condition

∫∞
0 g1(x)dx <∞ holds and let S = X1 + · · ·+Xn.

• Then the contribution of risk Xk, 1 ≤ k ≤ n, to the total TCE

TCEXk|S (xq) = µk + λS · σkσSρk,S ,

for k = 1, 2, ..., n, where ρk,S =
σk,S

σkσS
and λS =

1

σS
G 1

2
z2

S,q

F Z(zS,q)
.

• Notice that if we take the sum of TCEXk|S (xq), we have

n∑

k=1

TCEXk|S (xq) = µS + λS

n∑

k=1

σkσSρk,S︸ ︷︷ ︸
σk,S

= µS + λS · σ2
S
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Multivariate Normal Case

• Panjer (2002) demonstrated that in the case of a
multivariate normal random vector i.e. X ∼ Nn (µ,Σ), we
have

E (Xk |S > xq ) = µk +




1

σS
ϕ
(

xq−µ
σS

)

1− Φ
(

xq−µ
σS

)


σ2

k

(
1 + ρk,−k

σ−k

σk

)
,

where they have used the negative subscript −k to refer to
the sum of all the risks excluding the kth risk, that is,
S−k = S −Xk.

• Therefore, according to this notation, we have

ρk,−k
σ−k

σk
=

σk,−k

σkσ−k

σ−k

σk
=
σk,−k

σ2
k

=
Cov (Xk, S −Xk)

σ2
k

=
σk,S

σ2
k

−1.
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Multivariate Normal - continued

• Thus, our formula for risk decomposition becomes

E (Xk |S > xq ) = µk +




1

σS
ϕ
(

xq−µ
σS

)

1− Φ
(

xq−µ
σS

)


σkσSρk,S

which gives the case of multivariate normal.

• This confirms the formula above for risk decomposition
which holds for multivariate elliptical distributions including
multivariate normal distributions.
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Lecture No. 5
Bounds for Sums of Non-Independent
Log-Elliptical Random Variables

Emiliano A. Valdez
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Introduction

• This paper is about finding bounds for sums of
non-independent log-elliptical random variables.

• Extends the ideas developed in
◦ “The Concept of Comonotonicity in Actuarial Science

and Finance: Theory” IME, Dhaene, et al.
◦ “The Concept of Comonotonicity in Actuarial Science

and Finance: Applications” IME, Dhaene, et al.

• These papers considered bounds for the log-normal
random variables.
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Outline of Talk

• Comonotonicity

• Convex Upper and Lower Bounds

• Elliptical, Spherical, and Log-Elliptical Distributions

• Extension to Log-Elliptical Distributions

• The Results for Log-Normal Distributions
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Sums of Dependent Random Variables

• Consider an insurance portfolio X = (X1, X2, · · · , Xn)T

◦ Xi : claim amount of policy i at the end of the period.
◦ Assumption: all Xi are i.i.d.

• Introduction of stochastic financial aspects in actuarial
models reveals the necessity of determining distributions of
sums of dependent random variables.

• Assumption that the Xi are mutually independent
◦ is often approximately,
◦ leads to easier mathematics,
◦ but is sometimes violated.
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- continued

• Individual risks Xi may be influenced by the same
economic/physical environment:
◦ catastrophes (storms, explosions, etc.) cause an

accumulation of claims;
◦ weather conditions in automobile;
◦ fire insurance;
◦ pension fund; and
◦ lifetimes of a couple.

• The independence assumption probably underestimates:
◦ the deviation of the aggregate risk,
◦ the probability of large claims,
◦ the expected shortfall.
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Ordering of Random Variables

• Upper and lower tails
◦ E (X − d)+= surface above the d.f., from d on.
◦ E (d−X)+= surface below the d.f., from −∞ to d.

• Convex order: X ≤cx Y

◦ ⇔ the upper tails as well as the lower tails of Y eclipse
the respective tails of X.
• → Extreme values are more likely to occur for Y than

for X.
◦ ⇔ E (X) = E (Y ) and E [u (−X)] ≥ E [u (−Y )] for all

non-decreasing concave functions u.
• → Common preferences of risk averse decision

makers between rv’s with equal means.
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- continued

• Sufficient condition:
◦ E (X) = E (Y ) and the d.f.’s only cross once, (finally,
FY ≤ FX )

◦ ⇒ X ≤cx Y.

• Convexity order and moments:
◦ X ≤cx Y ⇒ E (X) = E (Y )
◦ X ≤cx Y ⇒ V ar (X) ≤ V ar (Y ).

◦ X ≤cx Y and V ar (X) = V ar (Y )⇒ X
d
= Y .
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Comonotonicity

• Suppose X has joint d.f. F . Well-known Frechet bounds:

max

[
n∑

k=1

Fk (xk)− (n− 1) , 0

]
≤ FX (x)

≤ min [F1 (x1) , ..., Fn (xn)] .

• Hoeffding (1940) and Frechet (1951).

• X is comonotonic if its joint distribution is the Frechet upper
bound:

FX (x) = min [F1 (x1) , ..., Fn (xn)] .
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Comonotonicity - continued

• Comonotonicity is very strong positive dependency
structure.

• Comonotonic rv’s are not able to compensate each other,
they cannot be used as ”hedge” against each other.

• Quantiles, distribution functions, and tails of sums of
comonotonic random variables follow immediately from the
respective quantities of the marginals.

◦ Notation: (Xc
1, · · · , Xc

n).
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Bounds for Sums

• COMONOTONIC UPPER BOUND:
◦ Define the comonotonic vector corresponding to X by

Xc = (Xc
1, ..., X

c
n)T where Xc

k = F−1
k (U) .

◦ Sum: Sc = Xc
1 + · · ·+Xc

n.

• IMPROVED UPPER BOUND:
◦ Define the random vector corresponding to X by

Xu = (Xu
1 , ..., X

u
n)T where Xu

k = F−1
Xk|Λ (U).

◦ Sum: Su = Xu
1 + · · ·+Xu

n .

• LOWER BOUND:
◦ Define the vector corresponding to X by

Xl =
(
X l

1, ..., X
l
n

)T where X l
k = E (Xk |Λ) .

◦ Sum: Sl = X l
1 + · · ·+X l

n.
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Bounds for Sums - continued

• We have the following bounds:

Sl ≤cx S ≤cx S
u ≤cx S

c

• Proofs can be found in:
◦ Tchen (1980)
◦ Dhaene, Wang, Young & Goovaerts (1997)
◦ Müller (1997); and
◦ Kaas, Dhaene, Goovaerts (2000).
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Class of Elliptical Distributions

• Y v En(µ,Σ,φ) if c.f. can be expressed as

ϕY (t) = exp(itTµ) · φ
(
tTΣt

)

for some scalar function φ and where Σ is given by
Σ = AAT for some matrix A(n×m).

• Density: fY (y) = cn√
|Σ|
gn

[
(y − µ)T

Σ−1 (y − µ)
]
, for some

function gn (·) called density generator.

• Normalizing constant: cn = Γ(n/2)
πn/2

[∫∞
0 zn/2−1gn(z)dz

]−1.
Condition

∫∞
0 zn/2−1gn(z)dz <∞ guarantees gn as density

generator.

• Kelker (1970); Fang, et al. (1990).
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Some Properties

• Mean: E (Y) = µ.

• Covariance: Cov (Y) = −φ′ (0)Σ.

• Y ∼En (µ,Σ, φ) , iff for any
b(n× 1),bTY ∼E1

(
bTµ,bTΣb,φ

)
.

• Marginals are also elliptical with the same characteristic
generator:,

Yk ∼ E1

(
µk,σ

2
k, φ
)
.

• For any matrix B (m× n), any vector c (m× 1) and any
random vector Y ∼ En (µ,Σ, φ), we have that

BY + c ∼ Em

(
Bµ+ c,BΣBT , φ

)
.
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Independence and Elliptical

• Any multivariate elliptical distribution with mutually
independent components must necessarily be multivariate
normal, see Kelker (1970).

• Let Y ∼En(µ,Σ, φ) with mutually independent components
Yk. Assume that the expectations and variances of the Yk

exist and that var (Yk) > 0. Then it follows that Y is
multivariate normal.

• Thus, it follows that the joint distribution of mutually
independent elliptical random variables is not elliptical,
unless all the marginals are normal.
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Spherical Distributions

• Z is spherical with c.g. φ if Z ∼En (0n, In,φ).
• Notation: Sn (φ) for En (0n, In,φ).

• Z ∼Sn (φ) iff E
[
exp

(
itTZ

)]
= φ

(
tT t
)
.

• Suppose m-dim vector Y is such that Y d
= µ+AZ, for some

µ(n× 1), some matrix A(n×m) and some m-dim elliptical
vector Z ∼Sm (φ). Then Y ∼En (µ,Σ,φ) where Σ = AAT .

• Z ∼Sn (φ) iff for any n-dim vector a,

aTZ√
aTa
∼S1 (φ) .

• Any component Zi of Z has a S1 (φ) distribution.

• Density: fZ (z) = cg
(
zT z

)
.
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Conditional Distributions

• Conditional distributions of bivariate Normal is again
Normal.

• GENERALIZATION OF RESULT TO ELLIPTICAL:
◦ Let Y ∼ En (µ,Σ, φ) with d.g. gn (·). Define Y and Λ to

be linear combinations of Y, i.e. Y = αTY and
Λ = βTY, for some αT = (α1, α2, . . . , αn) and
βT = (β1, β2, . . . , βn). Then,
(Y,Λ) ∼ E2

(
µ(Y,Λ),Σ(Y,Λ), φ

)
.

◦ Also, given Λ = λ, Y has a univariate elliptical
distribution:

Y |Λ = λ ∼ E1

(
µY + r (Y,Λ) σY

σΛ
(λ− µΛ) ,(

1− r (Y,Λ)2
)
σ2

Y , φa

)
, for some

char. gen. φa (·) depending on a = (λ− µΛ)2 /σ2
Λ.
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Log-Elliptical Distributions

• X is multivariate log-elliptical with parameters µ and Σ if
log X is elliptical:

log X ∼ En (µ,Σ, φ) .

• Notation: log X ∼ En (µ,Σ, φ) as X ∼ LEn (µ,Σ, φ) .

• When µ = 0n and Σ = In, we write X ∼ LSn (φ) .

• If Y ∼ En (µ,Σ, φ) and X = exp (Y), then
X ∼ LEn (µ,Σ, φ).
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Some Properties

• If density of X ∼ LEn (µ,Σ, φ) exists, then density of
Y = log X also exists with

fX (x) =
c√
|Σ|

(
n∏

k=1

x−1
k

)
· g
[
(log x− µ)T

Σ−1 (log x− µ)
]
,

see Fang et al. (1990).
• Any marginal of a log-elliptical distribution is again

log-elliptical.
• MEANS:

E (Xk) = eµkφ
(
−σ2

k

)
.

• COVARIANCES:

Cov (Xk, Xl) = e(µk+µl)·
{
φ
[
− (σk + σl)

2
]
− φ

(
−σ2

k

)
φ
(
−σ2

l

)}
.
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Some Risk Measures

• Let X ∼ LE1

(
µ,σ2, φ

)
and Z ∼ S1 (φ) with density fZ(x).

◦ Quantile:

F−1
X (p) = exp

(
µ+ σF−1

Z (p)
)
, 0 < p < 1,

◦ Expected Shortfall:

E
[
(X − d)+

]
= eµφ

(
−σ2

)
FZ∗

(
µ−log d

σ

)
− dFZ

(
µ−log d

σ

)

◦ Tail Conditional Expectation:

E
[
X
∣∣X > F−1

X (p)
]

=
eµ

1− pφ
(
−σ2

)
FZ∗

(
F−1

Z (1− p)
)

where the density of Z∗ is given by fZ∗(x) = fZ(x)eσx

φ(−σ2) .
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Non-Independent Log-Elliptical Risks

• Payments: α1, ..., αn

• Rates of return: Yi (i− 1, i) , i = 1, 2, . . . , n.

• Define Y (i) = Y1 + · · ·+ Yi, the sum of the first i elements
of Y.

◦ Xi = exp [−Y (i)].

• Present Value:
S =

∑n
i=1 αi exp [− (Y1 + · · ·+ Yi)] =

∑n
i=1Xi

• Assume return vector Y ∼ En (µ,Σ, φ) with parameters µ
and Σ.
◦ Then X = (X1, ..., Xn)T is log-elliptical.
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- continued

• We know Y (i) ∼ E1

(
µ (i) ,σ2 (i) , φ

)
with

µ (i) =
i∑

k=1

µk and σ2 (i) =
i∑

k=1

i∑

l=1

σkl.

• Conditioning rv: Λ =
∑n

i=1 βiYi

• Using the property of elliptical, Λ ∼ E1

(
µΛ,σ

2
Λ, φ

)
where

µΛ =
n∑

i=1

βiµi and σ2
Λ =

n∑

i,.j=1

βiβjσij .
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The Bounds

• COMONOTONIC UPPER BOUND:
Sc =

∑n
i=1 αi exp

[
−µ (i) + σ (i)F−1

Z (U)
]

• IMPROVED UPPER BOUND:

Su =

n∑

i=1

αi exp

[
−µ (i)− ri σ (i)F−1

Z (U) +
√

1− r2i σ (i) F−1
Z (V )

]

• LOWER BOUND:

Sl =
n∑

i=1

αie
[−µ(i)−ri σ(i) F−1

Z (U)] · φa

(
−σ2 (i)

(
1− r2i

))

where U and V are mutually indep. U(0, 1) rv’s, Z ∼ S1 (φ),

and ri =
i
k=1

n
l=1 βlσkl

σ(i)σΛ
.
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Sums of Log-Normal RV’s

In the case of log-Normal, we have the results from Dhaene, et
al. (2002):

Sl =
n∑

i=1

αi e
−E[Y (i)]−ri σY (i) Φ−1(U)+ 1

2
(1−r2

i )σ2
Y (i) ,

Su =

n∑

i=1

αie
−E[Y (i)]−ri σY (i) Φ−1(U)+

√
1−r2

i σY (i) Φ−1(V ),

Sc =
n∑

i=1

αi e
−E[Y (i)]+σY (i) Φ−1(U).
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Lecture No. 6
Capital Allocation and Elliptical
Distributions

Emiliano A. Valdez
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Introduction

• Why do we need to allocate capital?
◦ Redistribute capital cost equitably
◦ Division of capital provides division of risks across

business units
◦ Allocation of expenses, prioritizing capital budgeting

projects
◦ Fair assessment of manager performance

• This paper examines what constitutes a fair allocation and
studies Wang’s allocation within this fair allocation principle
and then extends to class of elliptical distributions.
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Fair Allocation

• Let XT = (X1, X2, ..., Xn) denote the vector of losses.

• Define an allocation A to be a mapping A : XT → Rn such
that A

(
XT
)

= (K1,K2, ...,Kn)T where∑n
i=1Ki = K = ρ (Z) .

• Each component Ki of allocation is viewed as the i-th line
of business contribution to total capital.

• Because allocation must also reflect the fact that each line
operates in the presence of other lines, the notation

A (Xi |X1, ..., Xn ) = Ki

is well-suited for this purpose.
• Notice also that the requirement

∑n
i=1Ki = ρ (Z) is

sometimes called the “full allocation” requirement.
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What constitutes a fair allocation?

• Let N = {1, 2, ..., n} be the set of the first n positive integers.
An allocation A is said to be a fair allocation if:
◦ No Undercut: For any subset M ⊆ N , we have∑

i∈M A (Xi |X1, ..., Xn ) ≤ ρ
(∑

i∈M Xi

)
.

◦ Symmetry: Let N ∗ = N − {i1, i2} . If M ⊂ N∗ (strict
subset) with |M | = m, XT

m = (Xj1 , ..., Xjm
) and if

A
(
Xi1

∣∣XT
m, Xi1 , Xi2

)
= A

(
Xi2

∣∣XT
m, Xi1 , Xi2

)
for every

M ⊂ N∗, then we must have Ki1 = Ki2 .
◦ Consistency: For any subset M ⊆ N with |M | = m, let

XT
n−m =

(
Xj1 , ..., Xjn−m

)
for all jk ∈ N −M where

k = 1, ..., n−m. Then we have

∑

i∈M

A (Xi |X1, ..., Xn ) = A

(
∑

i∈M

Xi

∣∣∣∣∣
∑

i∈M

Xi,X
T
n−m

)
.
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Relative Allocation

• This gives the allocation to the i-th line of business as

A(Xi|X1, · · · , Xn) = ρ(Z)
ρ (Xi)

ρ (X1) + · · ·+ ρ (Xn)
.

• Simple and appealing, but not a fair allocation.
• Consider 3 indep. risks X1, X2, and X3 with mean
E (Xi) = 0 and variances V ar (Xi) = σ2 (Xi) for i = 1, 2, 3.

Define the risk measure ρ (Xi) = F−1
i (1− α) · σ (Xi) .

• Now suppose a life company has four lines each facing risks
X1, −X1, X2, and X3 so that total risk is Z = X2 +X3.
Consider the subset M consisting of the risks
{X1,−X1, X2} and observe that
ρ
(∑

i∈M Xi

)
= ρ(X2) = F−1

2 (1− α) · σ (X2).
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Relative Allocation - continued

• Because
∑

i∈M

A (Xi |X1,−X1, X2, X3 )

= ρ(X2 +X3)
ρ (X1) + ρ(−X1) + ρ(X2)

ρ (X1) + ρ(−X1) + ρ(X2) + ρ(X3)
,

the “no undercut” cannot be satisfied unless the risks have
symmetric distributions.

• The “consistency” property is also not satisfied because

A

(
∑

i∈M

Xi

∣∣∣∣∣
∑

i∈M

Xi, X3

)
= A (X2 |X2, X3 )

= ρ(X2 +X3)
ρ(X2)

ρ(X2) + ρ(X3)
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Relative Allocation - continued

• Hence

∑

i∈M

A (Xi |X1,−X1, X2, X3 ) 6= A

(
∑

i∈M

Xi

∣∣∣∣∣
∑

i∈M

Xi, X3

)
.

• However, it can be shown that the “symmetry” property is
satisfied for this allocation formula. Consider for example
the case where A (X1 |X1,−X1, X2 ) = A (X2 |X1,−X1, X2 )
and it is straightforward to show that in this case
ρ (X1) = ρ (X2) so that

A (X1 |X1,−X1, X2, X3 ) = A (X2 |X1,−X1, X2, X3 )

and symmetry is satisfied.
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Covariance-Based Allocation

• The allocation formula is based on
A(Xi|X1, · · · , Xn) = λiρ(Z) where λT = (λ1, ..., λn) denotes
a vector of weights that add up to one so that full allocation
is satisfied.

• To determine these weights λi, we minimize the following
quadratic loss function

E
[
((X− µ)− λ (Z − µZ))T

W ((X− µ)− λ (Z − µZ))
]

where the weight-matrix W is assumed to be positive
definite. Differentiating with respect to λ and equating to
zero yields

λi =
E [(Xi − µi) (Z − µZ)]

E
[
(Z − µZ)2

] =
Cov (Xi, Z)

V ar (Z)
, for i = 1, 2, ..., n.
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Is the Covariance Principle Fair?

• The capital allocation formula based on the covariance
principle satisfies the three properties of a fair allocation:

◦ no undercut,

◦ symmetry, and

◦ consistency.
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Wang’s Capital Decomposition Formula

• Preserving the notation used by Wang (2002), denote the
expectation of Xi,Q by

Hλ[Xi, Z] = E (Xi,Q) =
E[X · exp (λZ)]

E[exp (λZ)]

and the expectation of the aggregate loss ZQ by

Hλ[Z,Z] = E (ZQ) =
E[Z · exp (λZ)]

E[exp (λZ)]
.

This exactly gives the Esscher transform of Z.
• Price of a random payment Xi traded in the market is
Hλ[Xi, Z] so that one can think of the difference
ρ (Xi) = E (Xi,Q)− E (Xi) = Hλ [Xi, Z]− E (Xi) as the risk
premium.
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- continued

• For the aggregate payment Z, its risk premium is given by
ρ (Z) = ρ (

∑n
i=1Xi) = Hλ [Z,Z]− E (Z) .

• It is rather straightforward to show ρ (Xi) = Cov(Xi,exp(λZ))
E[exp(λZ)]

and ρ (Z) = Cov(Z,exp(λZ))
E[exp(λZ)] .

• Wang proposes computing the allocation of capital to
individual business unit i based on the following formula:

Ki = Hλ [Xi, Z]− E (Xi) .

• Assuming an aggregate capital of K for the insurance
company as a whole, the parameter λ can be computed
using

K = Hλ[Z,Z]− E (Z) .

• For i = 1, 2, ..., n, it can readily be shown that K =
∑n

i=1Ki.
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Multivariate Normal

• If X1, ..., Xn follow a multivariate normal, we have that
Wang’s allocation method reduces to the covariance
method.

• Some straightforward calculation yields the results:

E
(
ZeλZ

)
= exp

(
λµZ +

λ2σ2
Z

2

)
· (µ+ λσ2

Z)

E
(
Xie

λZ
)

= exp

(
λµZ +

λ2σ2
Z

2

)
· (µi + λσi,Z)

• Then it follows that K = λσ2
Z and Ki = λσi,Z which is clearly

equivalent to the covariance method.
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Some Notation and Assumptions

• Suppose X ∼En (µ,Σ,gn) and e = (1, 1, ..., 1)T .
• Assume density generator gn exists.
• Define

Z = X1 + · · ·+Xn =

n∑

k=1

Xk = eTX

which is the sum of elliptical risks. We know that
Z ∼ E1

(
eTµ, eTΣe, g1

)
.

• Denote by µZ = eTµ =
∑n

j=1 µj and
σ2

Z = eTΣe =
∑n

i,j=1 σij .

• Define the tail generator by

Tn (u) =

∫ ∞

1

2
u2

cngn (x) dx.
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Two Useful Lemmas

• Let X ∼ En (µ,Σ, gn) . Then for 1 ≤ i ≤ n, the vector
Xi,Z = (Xi, Z)T has an elliptical distribution with the same
generator, i.e., Xi,Z ∼ E2

(
µi,Z ,Σi,Z , g2

)
, where

µi,Z=
(
µi,
∑n

j=1 µj

)T
, Σi,Z =

(
σ2

i σi,Z

σi,Z σ2
Z

)
, and

σ2
i = σii, σi,Z =

∑n
j=1 σij , σ

2
Z =

∑n
j,k=1 σjk.

• Let X ∼En (µ,Σ,gn) and assume condition for existence of
density generator holds. Let T be the tail generator as
defined above and associated with Z. Then

Hλ [Xi, Z] = µi+λρi,ZσiσZ
exp (λµZ)

MZ (λ)

∫ ∞

−∞
Tn (w) exp (λσZw) dw
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Wang’s Allocation for Elliptical

• Let X ∼En (µ,Σ,gn) and assume conditions for existence of
density generator and |ψ′ (0)| <∞ hold. Then Wang’s
capital allocation formula can be expressed as

Ki = −λψ′ (0) ρi,ZσiσZ

• The result immediately follows from the previous lemma:

Ki = Hλ [Xi, Z]− E (Xi)

= λρi,ZσiσZ
1

MZ (λ)

∫ ∞

−∞
exp [λ (µZ + σZw)]Tn (w) dw

= λρi,ZσiσZ
1

MZ (λ)

[
−ψ′ (0)MZ (λ)

]

= −λψ′ (0) ρi,ZσiσZ .
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Panjer’s Example

• Panjer (2002) example to illustrate the capital allocation.
• Insurer has 10 lines of business is faced with risks

represented by vector XT = (X1, ..., X10) where each Xi

represents the P.V. of losses over a specified time horizon.

• The estimated covariance structure, Σ̂, (in millions-squared)
is given by [see paper for variance matrix] and the
estimated mean vector µ̂T (in millions) is given by

(25.69, 37.84, 0.85, 12.70, 0.15, 24.05, 14.41, 4.49, 4.39, 9.56) .

• The resulting allocation KT is given by

(2.72, 12.55, 0.08, 1.92, 0.37, 6.27, 2.51,−0.70,−0.30, 1.89) ,

expressed in millions, with total capital equal to 27.31 million.
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Lecture No. 7
Convex Bounds for Scalar Products of
Random Variables (With Applications to
Loss Reserving and Life Annuities)

Tom Hoedemakers
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Outline

• Introduction to comonotonicity
• Comonotonic bounds for dependent random variables
• Generalization to scalar products of random variables
• Discounting with Gaussian returns
• Moments based approximations
• Part I Applications: Life Annuities
• Part II Applications: Loss Reserving
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Convex order and comonotonic risks

• Convex order: Consider two random variables X and Y .
Then X is said to precede Y in the convex order sense,
notation X ≤cx Y , if and only if

E[X] = E[Y ] and E[(X − d)+] ≤ E[(Y − d)+] ∀ d

• Property: X ≤cx Y ⇒ Var[X] ≤ Var[Y ]

• Comonotonicity: very strong positive dependence structure
→ each two possible outcomes (x1, · · · , xn) and (y1, · · · , yn)

of ~X = (X1, · · · , Xn) are ordered componentwise
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Comonotonicity

Characterizations: ~X is comonotonic if any of the following
conditions holds:

1. For U ∼ Uniform(0, 1) we have

~X
d
= (F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)),

2. ∃ a random variable Z and non-decreasing functions
f1, f2, . . . , fn, (or non-increasing functions) such that

~X
d
= (f1(Z), f2(Z), . . . , fn(Z)),

3. For the n-variate cdf we have

F ~X(~x) = min{FX1
(x1), FX2

(x2), . . . , FXn
(xn)}, ∀ ~x ∈ R

n.
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Quantiles and stop-loss premiums

• Notations:

Φ = cdf of N(0, 1)

FX(x) = Pr[X ≤ x]
FX(x) = 1− FX(x)

(x− d)+ = max(x− d, 0)

• Quantiles:

F−1
X (p) = inf{x ∈ R | FX(x) ≥ p}, p ∈ (0, 1).

• Stop-loss premiums:

E[(X − d)+] =

∫ ∞

d
FX(x)dx, −∞ < d <∞.
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Quantiles and stop-loss premiums

• Relations:
◦ 1

2Var[X] =
∫ +∞
−∞ {E[(X − t)+]− (E[X]− t)+} dt,

◦ if X ≤cx Y , thus E[(Y − t)+] ≥ E[(X − t)+] for all t, then

1

2
{Var[Y ]− Var[X]} =

∫ +∞

−∞
{E[(Y − t)+]− E[(X − t)+]} dt.
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Comonotonic bounds for sums of dependent r.v.’s

• General result: (Kaas et al., 2000)
Let U be a uniform(0,1) random variable. For any random
vector ~X = (X1, X2, · · · , Xn) with marginal cdf’s
FX1

, FX2
, · · · , FXn

, we have

n∑

i=1

E[Xi|Λ] ≤cx

n∑

i=1

Xi ≤cx

n∑

i=1

F−1
Xi

(U)

• Notations:
◦ S =

∑n
i=1Xi.

◦ Sl =
∑n

i=1 E[Xi|Λ] =lower bound.
◦ Sc =

∑n
i=1 F

−1
Xi

(U) =comonotonic upper bound.

• If all E[Xi|Λ] are↗ functions of Λ, then S l is a comonotonic
sum.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 166/278



��� � ��� � � �� �� � ��  � � �� �

Comonotonic sums

• Kaas et al. (2000):
◦ The quantile function is additive for comonotonic risks

F−1
Sc (p) =

n∑

i=1

F−1
Xi

(p), p ∈ (0, 1)

◦ In case of strictly increasing and continuous marginals,
the cdf FSc(x) is uniquely determined by

F−1
Sc (FSc (x)) =

n∑

i=1

F−1
Xi

(FSc (x)) = x,

(
F−1

Sc (0) < x < F−1
Sc (1)

)
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Comonotonic sums

• Dhaene et al. (2002):
◦ Let (X1, . . . , Xn) denote a comonotonic vector with

strictly increasing marginal distributions and let
Sc = X1 + · · ·+Xn. Then the stop-loss premium of Sc

can be computed as follows:

E[(Sc − d)+] =

n∑

i=1

E
[(
Xi − F−1

Xi
(FSc (d))

)
+

]
,

(
F−1

Sc (0) < d < F−1
Sc (1)

)
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Lower bound S l =
∑n

i=1 E[Xi|Λ]: comonotonic

If Λ is such that all gi(Λ) = E[Xi|Λ] are non-decreasing and
continuous functions of Λ

F−1
Sl (p) =

n∑

i=1

F−1
E[Xi|Λ](p) =

n∑

i=1

F−1
gi(Λ)(p)

=

n∑

i=1

E[Xi|Λ = F−1
Λ (p)], p ∈ (0, 1)

If the cdf’s of gi(Λ) are strictly increasing and continuous

E[(Sl − d)+] =
n∑

i=1

E

[(
E [Xi | Λ]− F−1

E[Xi|Λ] (FS`(d))
)

+

]

=
n∑

i=1

E
[(

E [Xi | Λ]− E
[
Xi | Λ = F−1

Λ (FS`(d))
])

+

]
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Lower bound S l =
∑n

i=1 E[Xi|Λ]: not comonotonic

FSl(x) =

∫ +∞

−∞
Pr

[
n∑

i=1

E[Xi | Λ] ≤ x|Λ = λ

]
dFΛ(λ)

E[(Sl − d)+] =

∫ +∞

−∞

(
n∑

i=1

E [Xi | Λ = λ]− d
)

+

dFΛ (λ)

If FΛ is strictly↗ and continuous: Define U as follows
U ≡ FΛ(Λ) ∼ Unif(0, 1), then U = u⇔ Λ = F−1

Λ (u), ∀ 0 < u < 1

FSl(x) =

∫ 1

0
Pr

[
n∑

i=1

E[Xi | Λ] ≤ x|U = u

]
du

E[(Sl − d)+] =

∫ 1

0

(
n∑

i=1

E
[
Xi | Λ = F−1

Λ (u)
]
− d
)

+

du
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Moments based approximations

• Convex order relation: S l ≤cx S ≤cx S
c

⇓

E[(Sl − d)+] ≤ E[(S − d)+] ≤ E[(Sc − d)+]

E[Sl] = E[S] = E[Sc]

Var(Sl) ≤ Var(S) ≤ Var(Sc).

• Define the random variable Sm by its stop-loss premiums

E[(Sm−d)+] = zE[(Sl−d)+]+(1−z)E[(Sc−d)+], 0 ≤ z ≤ 1,

⇓
E[Sm] = zE[Sl] + (1− z)E[Sc] = E[S]
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Moments based approximations

• By taking the (right-hand) derivative we find

FSm(x) = zFSl(x) + (1− z)FSc(x), 0 ≤ z ≤ 1

→ the d.f. of the approximation can be calculated fairly
easily

• Determine z such that Sm is as close as possible to S. In
Vyncke et al. (2004) z is chosen as

z =
Var(Sc)−Var(S)

Var(Sc)−Var(Sl)

This choice doesn’t depend on the retention d and it leads
to equal variances

Var[Sm] = Var[S]
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Generalization to scalar products

• Consider sums of the form: S = X1Y1 +X2Y2 + . . .+XnYn

with ~X = (X1, X2, . . . , Xn) and ~Y = (Y1, Y2, . . . , Yn)
assumed to be mutually independent

• One can take Vj = XjYj and apply the techniques for sums
of dependent random variables→ not practical !
◦ it is not always easy to find the marginal distributions of
Vj

◦ it is usually very difficult to find a suitable conditioning
random variable Λ, which will be a good approximation
to the whole scalar product, taking into account the
riskiness of the random vector ~X and ~Y simultaneously.
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Generalization to scalar products

Lemma 1 Assume that ~X = (X1, . . . , Xn), ~Y = (Y1, . . . , Yn) and
~Z = (Z1, . . . , Zn) are non-negative random vectors and that ~X is
mutually independent of the vectors ~Y and ~Z.
If for all possible outcomes x1, . . . , xn of ~X:

n∑

i=1

xiYi ≤cx

n∑

i=1

xiZi,

then the corresponding scalar products are ordered in the
convex order sense, i.e.

n∑

i=1

XiYi ≤cx

n∑

i=1

XiZi.
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Generalization to scalar products

Proof. Let φ be a convex function. By conditioning on ~X and
taking the assumptions into account, we find that

E
[
φ
( n∑

i=1

XiYi

)]
= E ~X

[
E
[
φ
( n∑

i=1

XiYi

)
| ~X
]]

≤ E ~X

[
E
[
φ
( n∑

i=1

XiZi

)
| ~X
]]

= E
[
φ
( n∑

i=1

XiZi

)]

holds for any convex function φ.
�
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Generalization to scalar products

• General result: Let U and V be two uniform(0,1) r.v.’s.
Assume that the vectors ~X = (X1, X2, . . . , Xn) and
~Y = (Y1, Y2, . . . , Yn) are mutually independent. Then

n∑

i=1

E[Xi|Γ]E[Yi|Λ] ≤cx

n∑

i=1

XiYi ≤cx

n∑

i=1

F−1
Xi

(U)F−1
Yi

(V )

with

{
Γ a r.v. independent of ~Y and Λ

Λ a r.v. independent of ~X and Γ

• Notations:
◦ S =

∑n
i=1XiYi.

◦ Sl =
∑n

i=1 E[Xi|Γ]E[Yi|Λ] =lower bound.
◦ Sc =

∑n
i=1 F

−1
Xi

(U)F−1
Yi

(V ) =comonotonic upper bound.
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Generalization to scalar products: (Proof.)

1.
∑n

i=1XiYi ≤cx
∑n

i=1 F
−1
Xi

(U)F−1
Yi

(V )

• For all possible outcomes (x1, x2, . . . , xn) of ~X:∑n
i=1 xiYi ≤cx

∑n
i=1 F

−1
xiYi

(V ) =
∑n

i=1 xiF
−1
Yi

(V )
Lemma
=⇒ ∑n

i=1XiYi ≤cx
∑n

i=1XiF
−1
Yi

(V )

• The same reasoning can be applied to show that∑n
i=1XiF

−1
Yi

(V ) ≤cx
∑n

i=1 F
−1
Xi

(U)F−1
Yi

(V )

2.
∑n

i=1 E[Xi|Γ]E[Yi|Λ] ≤cx
∑n

i=1XiYi

• ∑n
i=1 E[Xi|Γ]E[Yi|Λ] ≤cx

∑n
i=1XiE[Yi|Λ]

• ∑n
i=1XiE[Yi|Λ] ≤cx

∑n
i=1XiYi

�
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How to deal with two-dimensionality?

• Assume that X =
∑n

i=1 fi(Θ)gi(V )




V ∼ Unif(0, 1) and independent of θ
fi non-decreasing
gi non-negative and non-decreasing

• Distribution function: 3-step calculation:

1. F−1
X|Θ=θ(p) =

∑n
i=1 fi(θ)gi(p)

2. Obtain FX|Θ=θ from
∑n

i=1 fi(θ)gi

(
FX|Θ=θ (y)

)
= y;

3. Compute FX(y) =
∫∞
−∞ FX|Θ=θ(y)dFΘ(θ)
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How to deal with two-dimensionality?

• Convex bounds:
◦ In the case of the upper bound one can always use the

described procedure. Indeed, notice that Θ = U ,
fi(u) = F−1

Xi
(u) and gi(p) = F−1

Yi
(p) for which the

conditions are naturally satisfied.
◦ In the case of the lower bound one takes Θ = Λ,
fi(γ) = E[Xi | Γ = γ] and gi(p) = E[Yi | Λ = F−1

Λ (p)]

• In general:
The conditions of the previous slide are not always satisfied!
However, in our applications they are satisfied.
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Stop-loss premia for scalar products of r.v.’s

Upper bound: E[(Sc − d)+]:

1. Consider the comonotonic sum

Sc|U=u =
n∑

i=1

F−1
Xi

(u)F−1
Yi

(V )

2. Apply the basic theorem for stop-loss premia

3. Condition on U : ⇒ E[(Sc − d)+] = E
[
E[(Sc − d)+|U ]

]
=

∫ 1

0

n∑

i=1

F−1
Xi

(u)E
[(
Yi − F−1

Yi

(
FSc|U=u(d)

))
+

]
du
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Stop-loss premia for scalar products of r.v.’s

Lower bound: E[(Sl − d)+]:

1. Assume that Γ and Λ can be chosen in such a way that for
any fixed γ ∈ supp(Γ) all components
E[Xi|Γ = γ]E[Yi|Λ = λ] are non-decreasing (or equivalently
non-increasing) in λ.

2. The vector
(
E[X1|Γ = γ]E[Y1|Λ], . . . ,E[Xn|Γ = γ]E[Yn|Λ]

)
is

comonotonic

3. Apply the basic theorem for stop-loss premia

4. Condition on Γ⇒ E[(S l − d)+] = E[E[(Sl − d)+|Γ]] =

∫ 1

0

n∑

i=1

E[Xi|Γ = F−1
Γ (u)]E

[(
E[Yi|Λ]− F−1

E[Yi|Λ]

(
FSl|Γ=F−1

Γ (u)(d)
))

+

]
du
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Gaussian returns

• Suppose that one invests the value 1 at time 0. Then at time
t it accumulates to the random value eY (t). The collection of
r.v.’s {Y (t)}t≥0 is called a stochastic return process.

• We assume that the return process Y (t) is Gaussian, i.e.
such that (Y (t1), Y (t2), . . . , Y (tn)) is normally distributed
∀ 0 < t1 < t2 < ... < tn.

• Note that any Gaussian process is determined
unequivocally by its mean and covariance functions:
m(t) = E[Y (t)] and c(s, t) = Cov(Y (s), Y (t)).
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Two examples

• The Black & Scholes model:

Y (t) = µt+ σBt

with Bt: Brownian motion process.

E[Y (t)] = µt

Cov(Y (s), Y (t)) = σ2 min(s, t)
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Two examples

• The Ornstein-Uhlenbeck process:

Y (t) = µt+X(t)

with dX(t) = −aX(t)dt+ σdBt

E[Y (t)] = µt

Cov(Y (s), Y (t)) =
σ2

2a

(
exp(−a|t− s|)− exp(−a(t+ s))

)

=⇒ in both cases: Cov(Y (s), Y (t)) > 0 for any t, s > 0.
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Two examples
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a) The Ornstein-Uhlenbeck process: a=0
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b) The Ornstein-Uhlenbeck process: a=0.02
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c) The Ornstein-Uhlenbeck process: a=0.1
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d) The Ornstein-Uhlenbeck process: a=0.5

Figure1: Typical paths for the Ornstein-Uhlenbeck process with the mean parameter

µ = 0.05, volatility parameter σ = 0.07 and different values of parameter a.
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Two examples

Remark:

• For a = 0 the Ornstein-Uhlenbeck process degenerates to
an ordinary Brownian motion with drift and is equivalent to
the Black & Scholes setting.

• When a > 0, the process Y (t) has no independent
increments any more. Moreover, it becomes mean reverting.

• ⇒ a measures how strong the process Y (t) is attracted by
its mean function.
(a = 0: no attraction⇒ increments are independent)
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Discounting with Gaussian returns

DS =
n∑

i=1

Xie
−Y (i)

• ~Y = (Y (1), Y (2), . . . , Y (n)) ∼ N(~µ,Σ) with

~µ = (µ1, . . . , µn) = (E[Y (1)],E[Y (2)], . . . ,E[Y (n)])

Σ = [σij ]1≤i,j≤n =
[
Cov(Y (i), Y (j))

]
1≤i,j≤n

(σii will be denoted by σ2
i )

• ~X = (X1, X2, . . . , Xn): a vector of non-negative r.v.’s

↪→ DS: discounted value of future benefits Xi with return
process described by one of the well-known Gaussian models
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Discounting with Gaussian returns: convex bounds

DSc =
n∑

i=1

F−1
Xi

(U)F−1
e−Y (i)(V )

=

n∑

i=1

F−1
Xi

(U)e−µi+σiΦ−1(V ),

DSl =
n∑

i=1

E[Xi|Γ]E[e−Y (i)|Λ],

-U and V are independent Unif(0, 1) r.v.’s
-Γ is independent of Λ and ~Y

-Λ is independent of Γ and ~X

Remark: the quality of the lower bound heavily depends on the
choice of the conditioning random variables!
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Discounting with Gaussian returns: CDF DSc

1. Suppose that U = u is fixed⇒ conditional quantiles:

F−1
DSc|U=u(p) =

n∑

i=1

F−1
Xi

(u)e−µi+σiΦ−1(p);

2. F−1
DSc|U=u(p) is continuous and strictly↗ ∀ u⇒ FDSc|U=u(y)

can be computed as a solution of

n∑

i=1

F−1
Xi

(u)e−µi+σiΦ−1(FDSc|U=u(y)) = y;

3. The cumulative distribution function of DSc can be now
derived as

FDSc(y) =

∫ 1

0
FDSc|U=u(y)du.
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Discounting with Gaussian returns: stop-loss premia

Lemma 2 Let X be a lognormal random variable of the form
αeZ with Z ∼ N(E[Z], σZ) and α ∈ R. Then the stop-loss
premium with retention d equals for αd > 0

E[(X − d)+] = sign (α) eµ+ σ2

2 Φ(sign (α) b1)− dΦ(sign (α) b2),

where

µ = ln |α|+ E[Z] σ = σZ

b1 =
µ+ σ2 − ln |d|

σ
b2 = b1 − σ

The cases αd < 0 are trivial.
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Discounting with Gaussian returns: SL DSc

E[(e−Y (i) − du,i)+] = e−µi+
σ2

i
2 Φ
(
b
(1)
u,i

)
− du,iΦ

(
b
(2)
u,i

)
,

with

du,i = F−1
exp(−Y (i))

(
FDSc|U=u(d)

)
= e−µi+σiΦ−1(FDSc|U=u(d))

b
(1)
u,i = −µi+σ2

i −ln(du,i)
σi

, b
(2)
u,i = b

(1)
u,i − σi

E[(DSc − d)+] =

∫ 1

0

n∑

i=1

F−1
Xi

(u)E[(e−Y (i) − du,i)+]du

=
n∑

i=1

e−µi+
1

2
σ2

i

∫ 1

0
F−1

Xi
(u)Φ

(
σi − Φ−1(FDSc|U=u(d))

)
du

−d(1− FDSc(d)).
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A comonotonic approximation for cumulative returns

• The exact random variable

S =
n∑

i=1

αie
−Y (i)

• Approximation: replace

[Y (1), Y (2), . . . , Y (n)]

by
[Y (1)c, Y (2)c, . . . , Y (n)c]

where the
◦ marginals are the same,
◦ copula is replaced by the comonotonic copula.
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The best comonotonic approximation

• The exact random variable

S = E[S|S] =
n∑

i=1

αiE[e−Y (i)|S]

• Approximation: replace S by

S = E[S|Λ] =
n∑

i=1

αiE[e−Y (i)|Λ]

or equivalent, replace [Y (1), Y (2), . . . , Y (n)] by

[Y (1)l, Y (2)l, . . . , Y (n)l]

where the marginals are replaced and the copula is
replaced by the comonotonic copula.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 193/278



óô õö ÷øù ú ó ú û üù ý úþ ÿù õ úù õ

Choice of the conditioning variable: return component

a) ⇒ choose Λ such that Λ ≈ S ( Var(S) ≈ Var(S l) )

Λ =

n∑

i=1

βiY (i)

• Taylor based (Kaas et al., 2000): βi = αie
−µi

→ Λ: linear transformation of a first order approximation to S

S =
n∑

i=1

αie
−µi+(Y (i)+µi) ≈

n∑

i=1

αie
−µi (1 + Y (i) + µi)

≈ C +
n∑

i=1

αie
−µiY (i),
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Choice of the conditioning variable: return component

• Maximal variance (Vanduffel et al., 2004): βi = αie
−µi+

1

2
σ2

i

→ the first order approximation of Var(S`) is maximized

Var(Sl) ≈

n∑

i=1

n∑

j=1

αiαje
−µi−µj+

1
2
(σ2

i +σ2
j )(rirjσiσj)

=

n∑

i=1

n∑

j=1

αiαje
−µi−µj+

1
2
(σ2

i +σ2
j )

(
Cov[Y (i),Λ]Cov[Y (j),Λ]

Var(Λ)

)

=
(Cov(

∑n
i=1 αie

µi+
1
2
σ2

i Y (i),Λ))2

Var(Λ)

= (Corr(
n∑

i=1

αi e
µi+

1
2
σ2

i Y (i),Λ))2Var(
n∑

i=1

αie
−µi+

1
2
σ2

i Y (i)).
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Choice of the conditioning variable: return component

b) ⇒ based on the standardized logarithm of the geometric
average G = (

∏n
i=1 αie

−Y (i))1/n (Nielsen and Sandman,
2002)

Λ =
ln G− E[ln G]√

Var[ln G]
=

∑n
i=1(µi − Y (i))√

Var(
∑n

i=1 Y (i))
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Discounting with Gaussian returns: lower bound DS l

• Λ =
∑n

i=1 βiY (i) ⇒ Y (i)|Λ = λ ∼ N(µi,λ, σ
2
i,λ)

µi,λ = µi + Cov(Y (i),Λ)
Var(Λ) (λ− E[Λ]) and σ2

i,λ = σ2
i −

Cov(Y (i),Λ)2

Var[Λ]

=⇒ DSl =
n∑

i=1

E[Xi|Γ]E[e−Y (i)|Λ]

=

n∑

i=1

E[Xi|Γ]e−µi,Λ+
σ2

i,Λ

2

=
n∑

i=1

E[Xi|Γ]e−µi+
1

2
σ2

i (1−r2
i )−σiriΦ−1(U),

with U ∼ Unif(0, 1)
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Discounting with Gaussian returns: lower bound DS l

and correlations given by

ri = Corr(Y (i),Λ) =
Cov(Y (i),Λ)√

Var[Y (i)]
√

Var[Λ]
.

• Note that when the βi’s and Xi’s are non-negative, also the
ri’s are non-negative and the r.v. DS l is (given a value
Γ = γ) the sum of the components of a comonotonic vector.
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Discounting with Gaussian returns: CDF DS l

1. The conditional quantiles (given Γ = γ) can be computed as

F−1
DSl|Γ=γ(p) =

n∑

i=1

E[Xi|Γ = γ]e−µi+
1

2
σ2

i (1−r2
i )+σiriΦ−1(p);

2. The conditional distribution function is computed as the
solution of

n∑

i=1

E[Xi|Γ = γ]e−µi+
1

2
σ2

i (1−r2
i )+σiriΦ−1(FDSl|Γ=γ(y)) = y;

3. Finally, the cumulative distribution function of DS l can be
derived as

FDSl(y) =

∫ 1

0
FDSl|Γ=F−1

Γ (u)(y)du.
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Discounting with Gaussian returns: SL DS l

E
[(

E[e−Y (i)|Λ]− dγ,i

)
+

]
= e−µi+

1

2
σ2

i Φ
(
b
(1)
γ,i

)
− dγ,iΦ

(
b
(2)
γ,i

)
,

with

dγ,i = F−1
E[e−Y (i)|Λ]

(
FDSl|Γ=γ(d)

)
= e−µi+

1
2 σ2

i (1−r2
i )+σiriΦ

−1(F
DSl|Γ=γ

(d))

b
(1)
γ,i =

−µi+
1
2 σ2

i (1−r2
i )+σ2

i r2
i −ln(dγ,i)

σiri
, b

(2)
γ,i = b

(1)
γ,i − σiri

E[Sl − d]+ =

∫ 1

0

n∑

i=1

E[Xi|Γ = F−1
Γ (u)]E

[(
E[e−Y (i)|Λ]− dγ,i

)
+

]
du

=

n∑

i=1

e−µi+
1

2
σ2

i

∫ 1

0
E[Xi|Γ = F−1

Γ (u)]

×Φ
(
riσi − Φ−1(FDSl|Γ=γ(d))

)
du− d(1− FDSl(d))
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Discounting with Gaussian returns

Model Variable Formula

B-SM E[Y (i)] = µi iµ

Var[Y (i)] = σ2
i iσ2

Var[Λ] = σ2
Λ

∑n
j=1 jβ

2
j σ

2 +
∑

1≤j<k≤n 2jβjβkσ
2

Cov[Y (i),Λ]
∑n

j=1 min(i, j)βjσ
2

O-UM E[Y (i)] = µi iµ

Var[Y (i)] = σ2
i

σ2

2a (1− e−2ia)

Var[Λ] = σ2
Λ

σ2

2a

(∑n
j=1 β

2
j (1− e−2ja)+

+
∑

1≤j<k≤n 2βjβk(e
−(k−j)a − e−(j+k)a)

)

Cov[Y (i),Λ] σ2

2a

∑n
j=1 βj(e

−|i−j|a − e−(i+j)a)
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Moments based approximations

How to calculate the variances of DSc and DSl?

In general: X =
n∑

i=1

fi(U)gi(V )

−fi and gi : non-negative functions
−U and V : independent standard uniform r.v.’s

• DSc: fi(U) = F−1
Xi

(U) and gi(V ) = F−1
e−Y (i)(V )

• DSl: fi(U) = E
[
Xi|Γ

]
and gi(V ) = E

[
e−Y (i)|Λ

]
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Moments based approximations

Var[X]

= E[Var[X|U ]] + Var[E[X|U ]]

=

∫ 1

0
VarV

[ n∑

i=1

gi(u)fi(V )
]
du

+

∫ 1

0

(
EV

[ n∑

i=1

gi(u)fi(V )
])2

du−
(∫ 1

0
EV

[ n∑

i=1

gi(u)fi(V )
]
du

)2

.
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Moments based approximations

S =
∑n

i=1 αigi(V )

for any vector of non-negative numbers (α1, α2, . . . , αn)

• The upper bound: gi(V ) = e−µi+σiΦ−1(V )

⇒ Var[Sc] =
n∑

i=1

n∑

j=1

αiαje
−µi−µj+

σ2
i +σ2

j

2

(
eσiσj − 1

)

• The lower bound: gi(V ) = e−µi+
1

2
σ2

i (1−r2
i )+σiriΦ−1(V )

⇒ Var[Sl] =

n∑

i=1

n∑

j=1

αiαje
−µi−µj+

σ2
i +σ2

j

2

(
erirjσiσj − 1

)
.

E[S] = E[Sc] = E[Sl] =
∑n

i=1 αie
−µi+

1

2
σ2

i
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Part I Applications

Life Annuities

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 205/278



�� �� ��� � � � � �� � �� �� � �� �

Stochastic returns in life insurance

• Traditionally actuaries have used deterministic interest rates
in life insurance;

• However the investment risk, unlike the insurance risk,
cannot be diversified with an increase in the number of
policies;

• In this approach conservative assumptions for the technical
interest rate aim to protect against poor investments results
in some periods;

• A risk-based approach however requires to take the random
nature of returns into account;

• However, then there are no closed-form expressions for
traditional actuarial functions;

• We show how to apply the comonotonicity theory to get very
accurate approximations of typical present value functions
in life annuity business.
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Decrements

• Life annuity: a series of periodic payments where each
payment will actually be made only if a designated life is
alive at the time the payment is due

• Notation:
◦ T : total lifetime with limiting age ω
◦ Tx: future lifetime of (x) (a person aged x years)
• Gx(t) = Pr[Tx ≤ t] = tqx, t ≥ 0 (G−1

x (1) = ω − x)
• Gx(t) = Pr[Tx > t] = tpx, t ≥ 0

◦ Kx = bTxc: curtate future lifetime of (x)
• Pr(Kx = k) = Pr(k ≤ Tx < k + 1) = k+1qx − kqx =

k|qx, k = 0, 1, . . .

◦ T (j)
x : future lifetime of the j-th insured (assumed to be

mutually independent)
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Three types of life annuities

• The present value of a single whole life annuity
immediate paying αi at the end of year i:

Spolicy
x =

Kx∑

i=1

αie
−Y (i) =

bω−xc∑

i=1

αiI(Tx>i)e
−Y (i)

• The present value of a homogeneous portfolio of N0

whole life annuity contracts paying at the end of year i a
fixed amount αi: (Ni: # survivals in year i)

Sportfolio
x =

bω−xc∑

i=1

αi

(
I(T

(1)
x >i) + . . .+ I(T

(N0)
x >i)

)
e−Y (i)

=

bω−xc∑

i=1

αiNie
−Y (i),
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Three types of life annuities

• Consider a portfolio of N0 homogeneous life annuity
contracts. From the Law of Large Numbers for sufficiently
large N0:

bω−xc∑

i=1

αiNie
−Y (i) = N0




bω−xc∑

i=1

αi
Ni

N0
e−Y (i)


 ≈ N0




bω−xc∑

i=1

αi ipxe
−Y (i)


 .

=⇒ in the case of large portfolios of life annuities it suffices
to compute risk measures of an ‘average’ portfolio:

Saverage
x =

bω−xc∑

i=1

αi ipxe
−Y (i)

= E[Spolicy
x |Y (1), · · · , Y (bω − xc)]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 209/278



ÃÄ ÅÆ ÇÈÉ Ê Ã Ê Ë ÌÉ Í ÊÎ ÏÉ Å ÊÉ Å

The Gompertz-Makeham law

• Force of mortality at age ξ:

µξ = α+ βcξ

-α > 0: constant component→ capturing accident hazard
-βcξ: variable component→ capturing the hazard of aging
(β > 0, c > 1)

• Survival probability:

tpx = Pr(Tx > t) = exp

(
−
∫ x+t

x
µξdξ

)
= stgcx+t−cx

,

where s = exp(−α) and g = exp
(
− β

log c

)
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The Gompertz-Makeham law

• Denote by T ′
x the future lifetime of (x) from the Gompertz

family with force of mortality µ′ξ = βcξ

• Tx
d
= min(T ′

x, E/α) and E ∼ exp(1)

Pr(min(T ′
x, E/α) > t) = Pr(T ′

x > t) Pr(E > αt)

= exp

(
−
∫ x+t

x

µ′
ξdξ

)
e−αt

= exp

(
−
∫ x+t

x

µξdξ

)

= Pr(Tx > t).

Simulation from Makeham’s law :
(a) Generate G from the Gompertz’s law by the inversion method
(b) Generate E from the exp(1) distribution
(c) Retain T = min(G,E/α)
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Personal finance problem

• Suppose that (x) disposes a lump sum L.
What is the amount that (x) can yearly consume to be
almost sure (i.e. sure with a sufficiently high probability e.g.
p = 99%) that the money will not be run out before death?
A solution to the latter problem is crucial to determine the
fair value of future liabilities and the solvency margin.

• Notice that the presented methodology is appropriate not
only in the case of large portfolios when the limiting
distribution can be used on the basis of the law of large
numbers but also for portfolios of average size (e.g.
1000-5000) which are typical for the life annuity business.
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Single life annuity: CDF upper bound SLAc
x

• Xi = I(Tx>i) ∼ Bern(ipx)⇒ F−1
Xi

(p) =

{
1 for p > iqx

0 for p ≤ iqx.

SLAc
x =

∞∑

i=1

F−1
Xi

(U)F−1
αie−Y (i)(V ) =

bF−1
Tx

(U)c∑

i=1

F−1
αie−Y (i)(V )

FSLAc
x
(y) =

bω−xc∑

k=1

k|qxFSLAc
x|Kx=k(y)

-conditional quantiles: F−1
SLAc

x|Kx=k(p) =
k∑

i=1

αie
−µi+sign(αi)σiΦ

−1(p)

-conditional df:
k∑

i=1

αi exp
(
−µi + sign(αi)σiΦ

−1(FSLAc
x|Kx=k(y))

)
= y
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Single life annuity: SL upper bound SLAc
x

E[(SLAc
x − d)+] = EKx

[
E
[
(SLAc

x − d)+ |Kx

]]

=

bω−xc∑

k=1

k|qx
( k∑

i=1

E[(αie
−Y (i) − dk,i)+]

)
,

with dk,i = αi exp
(
−µi + sign(αi)σiΦ

−1(FS̃c
k
(d))

)

E[(SLAc
x − d)+] =

bω−xc∑

k=1

k|qx

k∑

i=1

αi e
−µi+

σ2
i
2 Φ

[
sign(αi)σi − Φ−1(FS̃c

k
(d))

]
− d

(
1− FS̃c

k
(d)
)

(SLAc
x|Kx=k

not
= S̃c

k)
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Single life annuity: CV lower bound SLAl
x

• Γ = Tx ⇒ E[I(Tx>i)|Tx] = I(Tx>i)

• Λ?
a) Λ(a) =

∑bω−xc
i=1 αi ipxe

−µi+
1

2
σ2

i Y (i)→ first order
approximation to the PV of the limiting portfolio

b) Λ(M) := Λj0 with

j0 = arg max
j
{Var(SLAl,j

x ), j = 1, . . . , bω − xc}

-SLAl,j
x =

∑Kx

i=1 E[αie
−Y (i)|Λj ]

-Λj =
∑j

i=1 αie
−µi+

1

2
σ2

i Y (i)

SLAl
x|Kx=k =

k∑

i=1

αie
−µi+

1
2 σ2

i (1−r2
i )−σiriΦ

−1(V )
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Single life annuity: CDF lower bound SLAl
x

SLAl
x =

Kx∑

i=1

E[αie
−Y (i)|Λ]

FSLAl
x
(y) =

bω−xc∑

k=1

k|qxFSLAl
x|Kx=k(y)

-conditional quantiles: F−1
SLAl

x|Kx=k
(p) =

k∑

i=1

αie
−µi+

1
2 σ2

i (1−r2
i )+σiriΦ

−1(p)

-conditional df:
k∑

i=1

αi exp

(
−µi +

1

2
σ2

i (1− r2i ) + σiriΦ
−1(FSLAl

x|Kx=k(y))

)
= y
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Single life annuity: SL lower bound SLAl
x

E[(SLAl
x − d)+] = EKx

[
E

[(
SLAl

x − d
)

+
|Kx

]]

=

bω−xc∑

k=1

k|qx

(
k∑

i=1

E

[(
E[αie

−Y (i)|Λ]− dk,i

)
+

])

with dk,i = αi exp
(
−µi + 1

2σ
2
i (1− r2i ) + σiriΦ

−1(FSLAl
x|Kx=k(d))

)

E[(SLAl
x − d)+] =

bω−xc∑

k=1

k|qx

k∑

i=1

αi e
−µi+

σ2
i
2 Φ

[
riσi − Φ−1

(
FS̃l

k
(d)
)]
− d

(
1− FS̃l

k
(d)
)

(SLAl
x|Kx=k

not
= S̃l

k)
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Single life annuity: an alternative approximation

• Take as conditioning variable:

ΛKx
=

Kx∑

i=1

αie
−µi+

1

2
σ2

i Y (i)

• The lower bound is then given by

bω−xc∑

k=1

k|qx

k∑

i=1

αie
−µi+

1

2
σ2

i (1−r2
i,k)−σiri,kΦ−1(Uk),

with
◦ correlations: ri,k = Cov(Y (i),Λk)√

Var[Y (i)]
√

Var[Λk]

◦ {Uk}k=1,...,bω−xc ∼ Unif(0, 1)⇒ multidimensional lower
bound
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Single life annuity: an alternative approximation

A new approximation based upon this lower bound:

◦ SLAcl
x =

bω−xc∑

k=1

k|qx

k∑

i=1

αie
−µi+

1

2
σ2

i (1−r2
i,k)−σiri,kΦ−1(U)

• The “comonotonic upper bound of the lower bound”
• SLAcl

x 6≤cx SLAx
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A numerical illustration: Quantiles

-Return process: Black & Scholes model µ = 0.05, σ = 0.1
-Mortality process: Makeham’s model, 65 years, males with
coefficients Belgian analytical life table MR:
(m : a = 1000266.63, s = 0.999441703848, g = 0.999733441115, c = 1.101077536030)
-Monte-Carlo (MC) simulation: 500× 100 000 paths
-Payments: αi = 1 ∀i

p SLAl
65 SLAcl

65 SLAc
65 MC (s.e.× 103)

0.995 27.5124 27.6700 30.2983 27.6933 (6.324)

0.975 22.2495 22.2875 23.6574 22.2839 (2.816)

0.95 19.9565 19.9713 20.8754 19.9731 (1.896)

0.90 17.5905 17.5972 18.0797 17.5969 (1.420)

0.75 14.1741 14.1887 14.1867 14.1887 (0.978)
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A numerical illustration: QQ-plot

0 5 10 15 20 25

0
5

10
15

20
25

30

QQ-plot of the quantiles of SLAl
65 (◦), SLAcl

65 (4) and SLAc
65 (�)

versus those of ‘SLA65’ (MC).
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A numerical illustration: Stop-loss premia

d SLAl
65 SLAcl

65 SLAc
65 MC (s.e.× 104)

0 11.0944 11.0944 11.0944 11.0937 (9.43)

5 6.3715 6.3756 6.3792 6.3748 (8.67)

10 2.5956 2.6071 2.6900 2.6068 (5.89)

15 0.7151 0.7201 0.8629 0.7201 (0.34)

20 0.1628 0.1664 0.2536 0.1668 (0.21)

25 0.0357 0.0379 0.0758 0.0382 (0.10)

30 0.0080 0.0091 0.0239 0.0093 (0.02)

35 0.0019 0.0023 0.0081 0.0024 (0.004)
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Homogeneous portfolio of life annuities

PLAx =

bω−xc∑

i=1

αi

(
I(T

(1)
x >i) + . . .+ I(T

(N0)
x >i)

)
e−Y (i)

=

bω−xc∑

i=1

αiNie
−Y (i),

=

N0∑

j=1

SLA(j)
x

=

N0∑

j=1

bω−xc∑

i=1

αiI(T
(j)
x >i)e

−Y (i)

Ni ∼ binomial(N0, ipx)⇒ difficult to deal with !

−→ Normal Power Approximation (NPA)
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Homogeneous portfolio of life annuities: NPA

Approximate the distribution of Ni by the NPA Ñi

FÑi
(x) = Φ

(
− 3

γNi

+

√
9

γ2
Ni

+
6(x− µNi

)

γNi
σNi

+ 1

)

with

µNi
= E[Ni] = N0 ipx

σ2
Ni

= Var[Ni] = N0 ipxiqx

γNi
=

E[Ni − µNi
]3

σ3
Ni

=
1− 2ipx√
N0 ipxiqx

The p-th quantile of Ñi:

F−1
Ñi

(p) = µNi
+ σNi

Φ−1(p) +
γNi

σNi

6

(
(Φ−1(p))2 − 1

)
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homogeneous portfolio of life annuities: convex bounds

• The upper bound is straightforward, from

PLAc
x|U=u =

bω−xc∑

i=1

αiF
−1
Ñi

(u)e−µi+sign(αi)σiΦ−1(V )

• Conditioning variables of the lower bound
◦ Γ = Ni0 → the number of policies-in-force in the year i0

E[Ni|Ni0 = n0] = i−i0px+i0n0 for i ≥ i0

E[Ni|Ni0 = n0]
(Bayes)

=

N0∑

k=n0

k
Pr(Ni0 = n0|Ni = k)Pr(Ni = k)

Pr(Ni0 = n0)

=

N0∑

k=n0

k

(
N0 − n0

k − n0

)
ip

k−n0
x

i0−iq
k−n0
x+i iq

N0−k
x

i0q
N0−n0
x

for i < i0
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homogeneous portfolio of life annuities: convex bounds

• Conditioning variables of the lower bound
◦ Γ : take for simplicity Γ = N1 ⇒ E[Ni|N1] = i−1px+1N1

◦ Λ =
∑bω−xc

i=1 αi ipxe
−µi+

1

2
σ2

i Y (i)

• The lower bound is then straightforward, from

PLAl
x|U=u =

bω−xc∑

i=1

αi i−1px+1F
−1
Ñ1

(u)e−µi+
1

2
σ2

i (1−r2
i )−σiriΦ−1(V )

• Moments based approximation PLAm
x

Var[PLAx] = E[Var[PLAx|~Y ]] + Var[E[PLAx|~Y ]]

= N0E[Var[SLAx|~Y ]] +N2
0 Var[E[SLAx|~Y ]]

= N0Var[SLAx] + (N2
0 −N0)Var[E[SLAx|~Y ]]
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A numerical illustration: Quantiles

-Return process: Black & Scholes model µ = 0.05, σ = 0.1
-Mortality process: Makeham’s model MR, 65 years, males
-Portfolio: 1000 policies
-Payments: αi = 1 ∀i

p PLAl
65 PLAm

65 PLAc
65 MC (s.e.)

0.995 20209 20250 22620 20242 (22.09)

0.975 17252 17272 18722 17276 (8.80)

0.95 15937 15951 17029 15947 (8.15)

0.90 14565 14574 15290 14568 (5.08)

0.75 12574 12577 12821 12577 (3.90)
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A numerical illustration: QQ-plot

6000 8000 10000 12000 14000 16000 18000 20000

50
00

10
00

0
15

00
0

20
00

0

QQ-plot of the quantiles of PLAl
65 (◦), PLAm

65 (4) and PLAc
65 (�)

versus those of ‘PLA65’ (MC).
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A numerical illustration: Stop-loss premia

d PLAl
65 PLAm

65 PLAc
65 MC (s.e.)

0 11094 11094 11094 11098 (2.11)

5000 6094 6094 6095 6098 (2.10)

10000 1608 1610 1793 1611 (1.95)

15000 153.7 155.3 278.4 155.3 (1.78)

20000 10.23 10.57 36.02 10.67 (1.26)

25000 0.680 0.734 4.816 0.743 (0.09)

30000 0.051 0.059 0.711 0.036 (0.02)
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Part II Applications

Loss Reserving
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Loss Reserving: general framework

• Stochastic liability payments: Li ≥ 0 at times i = 1, 2, . . . , n
(modified by certain forces that influence the liability over time)

• Lt
i = Lt−1

i RLt, t = 1, . . . , i

◦ Lt
i : amount of liability expressed in money values of

time t
◦ RLt = 1 + rLt

◦ rLt : inflation of claim costs over interval (t− 1, t]

• At = At−1RAt

◦ At : holding of assets of value At at time t
◦ RAt = 1 + rAt

• Assume RXt (X = A,L) follows CAPM:

rXt = rFt + βX∆t + εXt

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 231/278



áâ ãä åæç è á è é êç ë èì íç ã èç ã

Loss Reserving: general framework

• rXt = rFt + βX∆t + εXt

◦ ∆t = rMt − rFt (distribution independent of t)
◦ rFt: risk-free rate in period t
◦ rMt: periodic increase in value of the economy wide

portfolio of assets
◦ βX : CAPM beta associated with X
◦ εXt ∼ i.i.d. and E[εXt] = 0 and Var(εXt) := ω2

X

◦ εAt, εLt,∆t independent
• Assume RXt ∼ i.i.d logN(µX , σ

2
X) and L0

s ∼ logN(ν0s, τ
2
0s)

• L0
s and RXt independent ∀s, t,X

• ρ = Corr(logRAt, logRLt) and κ(rs) = Corr(logL0
r , logL0

s)

• R̄X = E[RXt] = exp(µX + 1
2σ

2
X)
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Discounted loss reserve

Discounted loss reserve:

V =

n∑

i=1

Vi =

n∑

i=1

Lt
tR

−1
A (t)

=
n∑

i=1

L0
tRL(t)R−1

A (t)

• RX(i) = RX1 + · · ·+RXi ∼ logN(iµX , iσ
2
X)

=⇒ Vi ∼ logN(α(i), δ2(i))

◦ α(i) = ν0i + i(µL − µA)

◦ δ2(i) = τ2
0i + i(σ2

L + σ2
A − 2ρσLσA)
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Loss Reserving: general framework

Three relevant values of the loss reserve:
• ∑n

i=1 E[L0
i ] : CAPM-based economic value of the liability

• E[V ] : expected value of the discounted liability cash-flows

• F−1
V (p) : 100p% confidence loss reserve
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Convex bounds discounted loss reserve

V =
n∑

i=1

Vi :
not
=

n∑

i=1

eZi

V l :=
n∑

i=1

E[Vi|Λ] ≤cx V ≤cx V
c :=

n∑

i=1

F−1
Vi

(U)

Qp[V
l] =

n∑

i=1

eE[Zi]+
1

2
(1−r2

i )σ2
Zi

+riσZi
Φ−1(p), p ∈ (0, 1)

Qp[V
c] =

n∑

i=1

eE[Zi]+σZi
Φ−1(p), p ∈ (0, 1)

E[V ] = E[V l] = E[V c] =
n∑

i=1

eE[Zi]+
1

2
σ2

Zi
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Convex bounds discounted loss reserve

Λ =
∑n

i=1 βiZi with βi = exp(E[Zi] +
1
2σ

2
Zi

)

E[Zi] = ν0i + log





(
R̄L

R̄A

(
1 + (β2

Aσ
2
M + ω2

A)/R̄2
A

1 + (β2
Lσ

2
M + ω2

L)/R̄2
L

)1/2
)i




Var(Zi) = σ2
Zi

= τ2
0i + iσ̂2

The variability of the discounting structure

σ̂2 not
= σ2

L + σ2
A − 2ρσLσA is given by

log

{
[1 + (β2

Aσ
2
M + ω2

A)/R̄2
A][1 + (β2

Lσ
2
M + ω2

L)/R̄2
L]

[1 + βAβLσ2
M/R̄AR̄L]2

}
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Convex bounds discounted loss reserve

The correlation between Zi and Λ is given by

ri =
Cov(Zi,Λ)

σZs
σΛ

=

∑n
k=1 βk

(
σ̂2 min(i, k) + η(i,k)

)

σZi

√∑n
k=1

∑n
l=1 βkβl(σ̂2 min(k, l) + η(k,l))

with
η(k,s) = Cov

(
logL0

k, logL0
s

)
= κ(ks)τ0kτ0s

Note that if the liability cash-flows are independent
η(k,s) = τ2

0kI(k=s) and I(.) the indicator function.
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Moment matching vs. convex bounds

Security margin for confidence level p (Taylor, 2004):

SMp[V ]
not
= (Qp[V ]/E[V ])− 1

LB not
=

SMp[V l] − SMp[V MC ]

SMp[V MC ]
×100% and LN not

=
SMp[V LN ] − SMp[V MC ]

SMp[V MC ]
×100%,

(MC: Monte Carlo simulation - LN: lognormal moment matching)

Stochastic liability cash-flow structure: (n = 30)
-ν0i = −4.46 for i = 1, . . . , 30

τ0i =





5% s ≤ 5; 10% 5 < i ≤ 15; 15% 15 < i ≤ 25

20% 25 < i ≤ 28; 25% 28 < i ≤ 30 .

-
∑30

i=1 E[Li] = 100% and E[L0
i ] = 35.51%

- ωL = 10% and ωA = 5%
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Moment matching vs. convex bounds

p = 0.975 σM = 0.05 σM = 0.10 σM = 0.15 σM = 0.20 σM = 0.25 σM = 0.30

LB −0.19% −0.15% −0.23% −0.16% −0.11% −0.17%

LN −4.94% −3.92% −3.17% −2.49% −1.95% −1.56%

MC 0.4390 0.5250 0.6528 0.8103 0.9924 1.1970

s.e.(×105) (0.15) (0.29) (0.41) (0.69) (1.22) (3.78)

σM = 0.25 p = 0.995 p = 0.975 p = 0.95 p = 0.90 p = 0.80 p = 0.70 p = 0.60

LB −0.93% −0.04% −0.02% −0.18% −0.03% −0.6% +0.86%

LN −3.94% +3.78% +7.22% +11.29% +19.68% +53.46% −15.50%

MC 4.4521 2.2264 1.4998 0.8814 0.3508 0.0761 −0.1069

s.e.(×105) (37.63) (2.99) (7.44) (2.79) (0.78) (0.27) (0.08)
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Loss Reserving: overview

3 categories of reserves in non-life:

1. Reserves with respect to unexpired or unearned exposure
- Unearned Premium Reserve (UPR)
- Additional Unexpired Risk Reserve (AURR): correction on
UPR if loss ratio higher than expected

2. Catastrophe Reserves
(Also ‘claims equalisation reserves’; ‘adverse deviation
reserves’, ‘fluctuation reserves’, ...)
↪→ To smooth the influence of perils such as hurricanes,
floods, earthquakes, ... on the result

3. Reserves with respect to earned exposures (loss reserves)
- Outstanding claims reserves (‘also case reserves’): for
reported losses that are not yet settled
- IBNR: Incurred But Not Reported
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IBNR reserves

The settlement of claims is always subject to delay: as well in
claim settlement as in claim reporting.
• Outstanding Claims Reserves (delay in settlement)

- lengths of delays vary according to the class of business
(short / long tail)
- regulation in general demands the use of individual
estimates with respect to all known outstanding claims at
the accounting date and hardly tolerates the use of over-all
statistical methods
- a ‘case reserve’ reflects the expected ultimate settlement
value of a claim as established by the claims handling staff

• IBNR (delay in reporting)
- requires a statistical treatment based on past experience
and expected trends
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IBNR reserves

For an insurance company, the ability to estimate its loss
reserves correctly is of great importance:

- a correct view of the liabilities on the balance sheet
- premium calculation
- solvency
- ...

=⇒ Actuarial loss reserving methods (also ‘IBNR techniques’):
to estimate the loss reserves statistically on aggregated data
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IBNR reserves

• Traditionally: claims are aggregated and displayed in a
run-off triangle

• Using a triangle simply avoids us having to introduce
complicated notation to cope with all possible situations

• We assume that we have the following set of incremental
claims data {Yij : i = 1, . . . , t; j = 1, . . . , s− i+ 1}

• Most claims reserving methods usually assume that t = s

• We consider annual development and assume that the time
it takes for the claims to be completely paid is fixed and
known
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Run-off triangle

Accident Development year
year 1 2 · · · j · · · t− 1 t

1 Y11 Y12 · · · Y1j · · · Y1,t−1 Y1t

2 Y21 Y22 · · · Y2j · · · Y2,t−1

... · · · · · · · · · · · · · · ·
i Yi1 · · · · · · Yij

... · · · · · · · · ·
t Yt1
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Three directions

Fundamental influences (exogenous factors) in the direction of:
• Accident Year

- changes in underwriting conditions (premium / coverage)
- changes in the size of the portfolio

• Development Year
- development pattern characteristics for short tail / long tail
business
- changes in the claim handling procedures changes in the
finalization of the claims

• Calendar Year
- monetary inflation
- changes in jurisprudence

Remark: Accident years and development years mostly
assumed to be independent; calendar year trends operate on
both development years and accident years
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Lognormal models

Zij = log Yij = ηij + εij ηij = (X~β)ij

εij ∼ i.i.d N(0, σ2)

1. Transform the incremental claims by taking their logarithm

2. Fit a model to the transformed values using ordinary
LS-regression analysis

3. Obtain estimates for the parameters in the linear predictor
and the process variance

4. Fitted values (on a log scale) are obtained by forming the
appropriate sum of estimates

5. Fitted values (on an untransformed scale) are NOT given by
Ŷij = exp(η̂ij)

↪→ This gives an estimate of the median!
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Lognormal models

Zij = log Yij = ηij + εij ηij = (X~β)ij

εij ∼ i.i.d N(0, σ2)

1. Transform the incremental claims by taking their logarithm

2. Fit a model to the transformed values using ordinary
LS-regression analysis

3. Obtain estimates for the parameters in the linear predictor
and the process variance

4. Fitted values (on a log scale) are obtained by forming the
appropriate sum of estimates

5. Fitted values (on an untransformed scale) are given by
Ŷij = exp(η̂ij + 1

2 σ̂
2
ij) with σ̂2

ij = σ̂2
(
R(X′X)−1R′)

ij
+ σ̂2

X/R: design matrix corresponding to the upper
triangle/square
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Linear predictors

Examples
• Chain-ladder model

ηij = αi + βj , i+ j ≤ t+ 1

• PTF

ηij = αi +

j−1∑

k=1

βk +

i+j−2∑

t=1

γt, i+ j ≤ t+ 1

• Hoerl curve

ηij = αi + βilog(j) + γij, (j > 0) i+ j ≤ t+ 1
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Statistical analysis

• Check the model assumptions!
- Gauss-Markov conditions of a regression model
- Normality for inference

• Goodness-of-Fit
- (Adjusted) coefficient of determination and AIC/BIC
- Residual plots
- Plot of the observed values vs. the fitted values

• Estimation of the parameters by maximum likelihood
methods
- σ̂2 = 1

n(~Z −X~̂β)′(~Z −X~̂β)

- ~̂β = (X′X)−1X′ ~Z

Remark: σ̃2 = 1
n−p(~Z −X~̂β)′(~Z −X~̂β)→ unbiased

estimator of σ2
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Lognormal models

• The mean of the IBNR reserve equals

W =

t∑

i=2

t∑

j=t+2−i

e(R
~β)ij+

1
2 σ2(1+(R(X′

X)−1
R

′)ij)

• The unique UMVUE of the mean of the IBNR reserve is given by

ŴU = 0F1

(n− p
2

;
SSz

4

) t∑

i=2

t∑

j=t+2−i

e(R
~̂β)ij ,

where 0F1(α; z) denotes the hypergeometric function.

• The MLE of the mean of the IBNR reserve:

ŴM =

t∑

i=2

t∑

j=t+2−i

e(R
~̂β)ij+

1
2 σ̂2(1+(R(X′

X)−1
R

′)ij)
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Lognormal models

• Verrall (1991) has considered an estimator similar to ŴM , but with
σ̂2 replaced with σ̃2:

ŴV =

t∑

i=2

t∑

j=t+2−i

e(R
~̂β)ij+

1
2 σ̃2(1+(R(X′

X)−1
R

′)ij)

• Doray (1996) has considered the following simple estimator
estimator

ŴD =

t∑

i=2

t∑

j=t+2−i

e(R
~̂β)ij+

1
2 σ̃2

⇒ Now we have the order relation

ŴU < ŴD < ŴV ,

which implies that W = E[ŴU ] < E[ŴD] < E[ŴV ]
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Generalized Linear Models

1. Random component
f(yij ; θij , φ) = exp {[yijθij − b(θij)] /a(φ) + c(yij , φ)}
• f(.) belongs to the exponential family
• a(.), b(.) en c(., .) are known functions: a(φ) = φ/wij

• E[Yij ] = µij = b′(θij) and Var[Yij ] = b′′(θij)a(φ) = V (µij)a(φ)

2. Systematic Component

ηij = (X~β)ij = β1Rij,1 + · · ·+ βpRij,p, i, j = 1, . . . , t

3. Link function

ηij = g(µij)

g is a monotone, differentiable function
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Generalized Linear Models: link function

• Canonical link→ when g(µij) = θij

↪→ sufficient statistic in ~η (when ~η = ~θ) given by R′~Y

• Logarithmic link→ multiplicative parametric structure +
positive fitted values

Distribution Density φ Canonical Mean Variance

link θ(µ) function µ(θ) function V (µ)

N(µ, σ2) 1
σ
√

2π
exp

ÿ

− (y−µ)2

2σ2

�

σ2 µ θ 1

Poisson(µ) e−µ µy

y!
1 log(µ) eθ µ

Gamma(µ, ν) 1
Γ(ν)

ÿ

νy
µ

� ν
exp

ÿ
− νy

µ

�

1
y

1
ν

1/µ −1/θ µ2

IG(µ, σ2) y−3/2
√

2πσ2
exp

ÿ

−(y−µ)2

2yσ2µ2

�

σ2 1/µ2 (−2θ)−1/2 µ3
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Generalized Linear Models

• Estimation of the parameters by maximum likelihood
methods (using iteratively reweighted least squares)

• Suppose:
response is always positive
data are invariably skew to the right
variance increases with mean




⇒ no particular distr.

• Quasi-likelihood (Wedderburn, 1974) estimation allows us
to model the response variable in a regression context
without specifying its distribution. We need only to specify
the link and variance functions to estimate the regression
coefficients.

• If all the data are positive (greater than 0), identical
parameter estimates are obtained using full or
quasi-likelihood.
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Generalized Linear Models

1. Over-dispersed Poisson model:
The incremental claims Yij are distributed as independent
over-dispersed Poisson random variables, with

Var[Yij ] = φE[Yij ]

↪→ not only suitable for data consisting exclusively of
positive integers

⇓
quasi-likelihood approach

2. Gamma model:

Var[Yij ] = φ (E[Yij ])
2
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Generalized Linear Models

Log-normal model:

Zij = log(Yij) ∼ N(µij , σ
2)

⇓
ηij = µij and φ = σ2

↪→ limitation: incremental claim amounts must be positive

Ŷij = exp(η̂ij +
1

2
σ̂2

ij)
ηij=g(µij)←→ Ŷij = µ̂ij = g−1(η̂ij)
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Quasi-likelihood equations

When using a logarithmic link function, the quasi-likelihood
equations are given by

t+1−i∑

j=1

eηij =

t+1−i∑

j=1

Yij 1 ≤ i ≤ t;

t+1−j∑

i=1

eηij =

t+1−j∑

i=1

Yij 1 ≤ j ≤ t.

↪→ The sum of the incremental claims in every row and column
has to be non-negative⇒ problems when modelling incurred
data with a large number of negative incremental claims in the
later stages of development, which is the result of overestimates
of case reserves in the first development years.

⇒Work without GLM-software and without the log-link
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Distribution of ~̂µ

• R~̂β ∼MN(R~β,Σ(R~̂β)) (asymptotically) with

- Σ(R~̂β) = Σa = {σa
ij} = R(X′WX)−1R′

- W = diag{w11, · · · , wt1} with wij = Var[Yij ]
−1(dµij/dηij)

2

• The function g−1(η11, · · · , ηtt) has a nonzero differential
~ψ = (ψ11, · · · , ψtt)

′ at (R~β), where ψij = dµij/dηij

• Delta method:
[
~̂µ− ~µ

]
d→ N

(
0,Σ(~̂µ)

)

where Σ(~̂µ) = ~ψ′Σa ~ψ
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Distribution of ~̂µ

The n−1 bias of ~̂µ: Cordeiro and McCullagh (1991)

B(~̂β) = −1
2Σ

bX′Σc
dFd1̄,

- Σb = Σ(~̂β) = {σb
ij} = (X′WX)−1

- Σc = Σ(U~̂β) = {σc
ij} = XΣbX′ (Σc

d = diag{σc
11, · · · , σc

t1})
- Fd = diag{f11, · · · , ft1} with fij = Var[Yij ]

−1 dµij

dηij

d2µij

dη2
ij

- 1̄ : t(t+ 1)/2× 1 vector of ones

⇓

B(R~̂β) = −1
2RΣbX′Σc

dFd1̄
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Distribution of ~̂µ

Because µ̂ij = g−1(η̂ij) = g−1((R~β)ij) and the link function is
monotone and twice differentiable, we can apply a Taylor series
expansion of µ̂ij around ηij :

µ̂ij
∼= µij +

dµij

dηij
(η̂ij − ηij) +

1

2

d2µij

dη2
ij

(η̂ij − ηij)
2

µ̂ij − µij
∼= dµij

dηij
(η̂ij − ηij) +

1

2

d2µij

dη2
ij

(η̂ij − ηij)
2

E[µ̂ij − µij ] ∼=
dµij

dηij
E[(η̂ij − ηij)] +

1

2

d2µij

dη2
ij

Var(η̂ij)
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Distribution of ~̂µ

In matrix notation

E[~̂µ− ~µ] ∼= G1E[(~̂η−~η)] +
1

2
G2[Var(~̂η)]

∼= −1

2
G1RΣbX′Σc

dFd1̄ +
1

2
G2Σ

a
d1̃

- G1 = diag{ψ11, · · · , ψtt} and ψij = dµij/dηij

- G2 = diag{ϕ11, · · · , ϕtt} and ϕij = d2µij/dη
2
ij

- Σa
d = diag{σa

11, · · · , σa
tt}

- 1̃ : t2 × 1 vector of ones

B(~̂µ) = 1
2

{
G2Σ

a
d1̃−G1RΣbX′Σc

dFd1̄
}

→ the corrected adjusted values are ~̂µc = ~̂µ− B̂(~̂µ)

(B̂(.) = the value of B(.) at (φ̂, ~̂µ))
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Discounted IBNR reserve: lognormal framework

IBNR reserve

R
def
=

t∑

i=2

t∑

j=t+2−i

e(R
~̂β)ij+εij

εij ∼ i.i.d. N(0, σ2)

(R~̂β)ij ∼ N
(
(R~β)ij , σ

2
(
R(X′X)−1R′)

ij

)

⇓
Discounted IBNR reserve

S
def
=

t∑

i=2

t∑

j=t+2−i

e(R
~̂β)ij+εij−Y (i+j−t−1)

Y (k) ∼ N((µ+
δ2

2
)k, δ2k)
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Convex bounds discounted IBNR reserve (lognormal)

1. Upper bound

Sc =

t∑

i=2

t∑

j=t+2−i

F−1
exp(Wij)

(U)F−1
exp(εij)

(V )

=
t∑

i=2

t∑

j=t+2−i

exp
(
E[Wij ] + σWij

Φ−1(U) + σεij
Φ−1(V )

)

with Wij = (R~̂β)ij − Y (i+ j − t− 1)

2. Lower bound

Sl =

t∑

i=2

t∑

j=t+2−i

E[exp(Wij)|Z]E[exp(εij)] (Z normal distributed)

=
t∑

i=2

t∑

j=t+2−i

exp
(

E[Wij ] + ρijσWij
Φ−1(U) +

1

2
(1− ρ2

ij)σ
2
Wij

+
1

2
σ2

εij

)

with ρij = Corr(Z,Wij)
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Convex bounds discounted IBNR reserve (lognormal)

• Choice of normal random variable Z?

Z =

t∑

i=2

t∑

j=t+2−i

νijY (i+ j − t− 1)

with
νij = exp

(
(R~β)ij − (i+ j − t− 1)µ

)

• To compute the cdf’s one can use the following result

FXY (z) =

∫ ∞

−∞
FY

( z
x

)
dFX(x) =

∫ 1

0
FY

(
z

F−1
X (u)

)
du

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 264/278



�� �� ��� � � �� �� � �� �� � �� �

Convex bounds discounted IBNR reserve (lognormal)

Upper bound

FSc(z) =

∫ 1

0
FN

(
log(z)− log(F−1

S̃c
(u))

)
du

with FN (x) the cdf of N(0, σ2) and

S̃c =
t∑

i=2

t∑

j=t+2−i

exp
(
F−1

(R~̂β)ij−Y (i+j−t−1)
(U)

)

=
t∑

i=2

t∑

j=t+2−i

exp
(
E[Wij ] + σWij

Φ−1(U)
)
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Convex bounds discounted IBNR reserve (lognormal)

Lower bound

F−1
sl (p) =

t∑

i=2

t∑

j=t+2−i

F−1
E[Vij |Z]E[eεij ]

(p), p ∈ (0, 1)

=

t∑

i=2

t∑

j=t+2−i

E[Vij |Z = F−1
Z (1− p)]E[eεij ]

=
t∑

i=2

t∑

j=t+2−i

exp
(

E[Wij ]− ρijσWij
Φ−1(p) +

1

2
(1− ρ2

ij)σ
2
Wij

+
1

2
σ2

εij

)

(E[eWij |Z]: non-increasing function in Z since ρij ≤ 0)
FSl(x)→ solving the equation:

t∑

i=2

t∑

j=t+2−i

exp
(

E[Wij ]− ρijσWij
Φ−1(FSl

(x)) +
1

2
(1− ρ2

ij)σ
2
Wij

+
1

2
σ2

εij

)
= x

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 266/278



ª« ¬­ ®¯° ± ª ±² ³° ´ ±µ ¶° ¬ ±° ¬

Discounted IBNR reserve: GLM framework

IBNR reserve

R
def
=

t∑

i=2

t∑

j=t+2−i

µ̂ij

[
~̂µ− ~µ

]
d→ N(0, ~ψ′Σa ~ψ)

~̂µc = ~̂µ− B̂(~̂µ)

⇓
Discounted IBNR reserve

S
def
=

t∑

i=2

t∑

j=t+2−i

µ̂ije
−Y (i+j−t−1)

Y (k) ∼ N((µ+
δ2

2
)k, δ2k)
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Convex bounds discounted IBNR reserve (GLM)

1. Upper bound

Sc =

t∑

i=2

t∑

j=t+2−i

F−1
µ̂ij

(U)F−1
exp(Vij)

(V )

=
t∑

i=2

t∑

j=t+2−i

(
µij + B(~̂µ)ij +

√
Σ(~̂µ)ijΦ

−1(V )

)
exp(E[Wij ] + σWij

Φ−1(U))

with Vij = −Y (i+ j − t− 1)

2. Lower bound

Sl =

t∑

i=2

t∑

j=t+2−i

E[µ̂ij ]E[exp(Vij)|Z] (Z normal distributed)

=
t∑

i=2

t∑

j=t+2−i

(
µij + B(~̂µ)ij

)
exp

(
E[Wij ] + ρijσWij

Φ−1(U) +
1

2
(1− ρ2

ij)σ
2
Wij

)

with ρij = Corr(Z, Vij)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 268/278



ÄÅ ÆÇ ÈÉÊ Ë Ä ËÌ ÍÊ Î ËÏ ÐÊ Æ ËÊ Æ

Convex bounds discounted IBNR reserve (GLM)

• Choice of normal random variable Z?

Z =

t∑

i=2

t∑

j=t+2−i

νijY (i+ j − t− 1)

with

νij =
(
µij + B(~̂µ)ij

)
exp (−(i+ j − t− 1)δ)

• The computation of the cdf’s is analogous to the lognormal
case
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A numerical illustration: dataset

292686 683476 701376 747034 504265 312468 284954 170814 249348 69752

423113 991584 1032142 945156 500205 413863 434622 206319 342383

344386 936335 971651 1104206 575666 416179 359195 246463

308603 830615 864751 981609 504837 372329 353145

338073 884174 895252 927435 647289 391208

322270 927791 980275 952298 577483

387598 1084439 1126376 1035701

385603 1143038 1209301

388795 951100

308586
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A numerical illustration

• Statistical model:

E[Yij ] = µij ,

Var[Yij ] = φµ2
ij ,

log(µij) = ηij ,

ηij = αi + βj .

• Return process: Black & Scholes model µ = 0.08, σ = 0.11

• Simulation: 100 000 generated paths
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A numerical illustration: Quantiles

p F−1
Sl (p) F−1

S (p) F−1
Sc (p)

0.95 17888702 18033971 18926155

0.975 18749885 18923975 20077389

0.99 19809569 19986346 21511663

0.995 20569107 20799492 22551353

0.999 22239104 22410022 24870374
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A numerical illustration: QQ-plot

10^7 1.2*10^7 1.4*10^7 1.6*10^7 1.8*10^7 2*10^7

10
^7

1.
4*

10
^7

1.
8*

10
^7

2.
2*

10
^7

QQ-plot of the quantiles of Sl (◦) and Sc (�) versus those of S
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A numerical illustration

FSl FS

year 95% mean st. dev. 95% mean st. dev.

2 102356 85934 9481 103187 85934 9747

3 462847 387251 43602 466609 387251 44775

4 619090 503187 66173 624112 503187 68014

5 1042181 842092 113871 1050345 842092 117188

6 1432744 1142369 164543 1444486 1142369 169224

7 2286615 1815836 266221 2305985 1815836 273721

8 3590200 2864235 410836 3619252 2864235 422643

9 4197088 3312169 499465 4231171 3312169 513473

10 4197710 3264577 524580 4231798 3264577 539321

total 17888702 14217631 2076583 18033971 14217631 2135185
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A numerical illustration

• Estimation error→ from the estimation of the vector
parameters β̂ from the data

• Statistical error→ from the stochastic nature of the
underlying model

=⇒ Use bootstrapping to construct statistical confidence
intervals for the bounds incorporating the estimation error !

⇓

1. Bootstrap an upper triangle: this involves resampling, with
replacement, from the original residuals and then creating a
new triangle of past claims payments using the resampled
residuals together with the fitted values

2. Calculate for each bootstrap sample the desired percentile
of the distribution of S l
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A numerical illustration

QSl(0.95)-distribution based on 5000 bootstrapped run-off
triangles

Distribution of bootstrapped Simulated distribution

95th percentiles of Sl of F−1
S (0.95)

1 st percentile 16661827 16333152

2.5 th percentile 16861353 16576586

5 th percentile 17048933 16759301

10 th percentile 17233865 17101271

25 th percentile 17551891 17450048

50 th percentile 17913169 17904390

75 th percentile 18284619 18380651

90 th percentile 18641949 18832716

95 th percentile 18850593 19117307

97.5 th percentile 18999178 19264184

99 th percentile 19187288 19481477
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