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Lecture No. 1
Solvency Capital, Risk Measures and

Comonotonicity

Jan Dhaene
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Risk measures

* Risk: random future loss.

* Risk Measure: mapping from the set of quantifiable risks to
the real line:

X — p(X).
* Actuarial examples:
© premium principles,
°© technical provisions (liabilities),
© solvency capital requirements.
* In sequel: p(X) measures the "upper tails” of the d.f.
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Insurance company risk taxonomy

* Financial risks:
o asset risks (credit risks, market risks),

° liability risks (non-cathastrophic risks, catastrophic
risks).

* QOperational risks:

© business risks,
© event risks.
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Required vs. available capital

* Required capital: required assets p(X) minus liabilities
L(X), to ensure that obligations can be met:

* Different kinds of capital:

° regulatory capital: you must have,

° rating agency capital: you are expected to have,
© economic capital: you should have,

© available capital: you actually have.
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Required vs. available capital

* Parameters:
o default probability,
© time horizon,
° run-off vs. wind-up vs. going concern,
© valuation of liabilities: mark-to-model,
° valuation of assets: mark-to-market.

* Jotal balance sheet capital approach:

p(X) = L(X) + K(X).
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The quantile risk measure

* Quantiles:

Qp(X) =inf{x e R| Fx(x) > p}, p€(0,1).

Ex)

0,%) x
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The quantile risk measure

* Determining the required capital by
K(X) = Qo.99(X) — L(X),
we have
K(X)=inf{K |Pr[X > L(X)+ K] <0.01}.

* Qy(X) = Fx'(p) = VaR,(X).

* Meaningful when only concerned about "frequency of
default” and not "severity of default”.

* Does not answer the question "how bad is bad?”

| |
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Tail Value-at-Risk and Conditional Tail Expectation

e Jail Value-at-Risk:

1

TVaRy(X) = -
—p

/ Qu(X)ds, pe(0,1).

* Determining the required capital by
K(X) = TVCLRO.QQ(X) — L(X),

we define "bad times” if X in "cushion”
(Q0.99(X), TVaRy.g9(X)].

* Conditional Tail Expectation:

CTE,(X)=FE[X | X >Q@pX)], pe(0,1).

* CTE, = expectation of the top (1 — p)% losses.
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Relations between risk measures

* Expected Shortfall-

ESF(X) = E[(X -~ Qy(X)),].  pe(0.0)

* ESF,(X) = expectation of shortfall in case required capital
K(X) = Qp(X) — L(X).

* Relations:

TVaR,(X) = Qp(X)+——ESF(X),

l—p
1
CTEp(X) — TV@RFX(QP(X))(X)-
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Relations between risk measures

* When Fx IS continuous:
CTE,(X)=TVaR,(X).

ESE,(X)

1 N

0,(X) TVaR,(X) x
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Normal random variables

° Let X NN(,u, 02).

* Quantiles:

Qp(X) =U+o0o ! (p) :
where & denotes the standard normal distribution function.
* Expected Shortfall:

BSFy(X) =0 & (& (p) —0 &' (p) (1—p).

* Conditional Tail Expectation:

¥ (27 ()

CTE,(X)=p+o
l—-p
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Lognormal random variables

o LetlnX ~ N (u, 02).

* Quantiles:

Qp(X) = et+o 70,
* Expected Shortfall:

ESF,(X) = &7 (0 — o ' (p))

_phto 27 (p) (1—p).

* Conditional Tail Expectation:

® (00 (p))

CTEy(X) = et /2—— -
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Risk measures and ordering of risks

* QOrdering of risks:

© Stochastic dominance:
X <q4Y < Fx(x) > Fy(x) for all .
° Stop-loss order:
X <gY < E[(X—-d)4i] <FE[(Y —d)] forall d.
° Convex order:

X <Y & X <,Y and E[X] = E[Y].
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Risk measures and ordering of risks

* Stochastic dominance vs. ordered quantiles:

X <qaY & Q,(X)<Q,Y)forall pe(0,1).

* Stop-loss order vs. ordered TVaR's:

X <qgY & TVaR,(X)<TVaR,(Y)forallpe (0,1).
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Comonotonicity

* Aset S C R"Is comonotonic <
for all x and y in S either x <y or x > y holds.
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Comonotonicity

* Aset S C R"Is comonotonic <
for all x and y in S either x <y or x > y holds.

* A comonotonic set is a “thin” set.
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Comonotonicity

* A random vector (X1,...,X,) is comonotonic <
(X1,...,X,) has a comonotonic support.
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Comonotonicity
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Comonotonicity

* A random vector (X1,...,X,) is comonotonic <
(X1,...,X,) has a comonotonic support.

* Comonotonicity is very strong positive dependency
structure.

* Comonotonic r.v.s are not able to compensate each other.
°* (YS, ..., Y% is the ‘comonotonic counterpart’ of (Yi,...,Y,).

KATHOLIEKE UNIVERSITEIT I
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Characterizations of comonotonicity

* Notations:
° U : uniformly distributed on the (0,1).
° X =(X1,...,Xn).
* Comonotonicity of a random vector:
X Is comonotonic

& X £ (FFHU),...,Fx (U))

n

< There exists a r.v. Z, and non-decreasing functions

fi.--oo fosuch that X < (f1(2), - . fu(2)).
& Pr|X <x|=min{Fx, (1), Fx,(x2),...,Fx (z,)}.

* The Frechet bound:
Pr|Y < x| <min{Fy (1), Fy,(x2),..., Fy (z,)}.
The upper bound is reachable in the class of random
vectors with given marginals.

| |
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Comonotonicity and correlation

°* Corr|[X,Y]=1= (X,Y) is comonotonic.
* The class of all random couples with given marginals

° always contains comonotonic couples,
© does not always contain perfectly correlated couples.

* Risk sharing schemes:
/, /4 < <
X — : <d v — 0, Z <d
d, Z>d, Z —d, Z>d.
X and Y are comonotonic, but not perfectly correlated.
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Comonotonic bounds for sums of dependent r.v.'s

* Theorem: For any (X, Xo,...,X,) and any A, we have

}n:E (X | A] <eo }ani <es }n:F);j(U»
1=1 =1 =1

* Notations:
o §=>".X,.
o §t=3%"" FEI[X;| A] = lower bound.
o §¢=3"" | Fy'(U) = comonotonic upper bound.

° Ifall £|X; | A|l are / functions of A,
then S' is a comonotonic sum.
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Risk measures and comonotonicity

* Additivity of risk measures of comonotonic sums:

Qp(z Xf) — Z Qp(Xi)-

TVaR,(Y X{) = ) TVaR,(X;).
1=1 1=1

* Sub-additivity of risk measures: Any risk measure that

© preserves stop-loss order
© |s additive for comonotonic risks
IS sub-additive: p(X +Y) < p(X) + p(Y).
* Examples:

° TailVaR, is sub-additive.
° CTE,, @, and ESF, are NOT sub-additive.
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Distortion risk measures

* Expectation of a r.v..

0 00
E[X] :—/ [1 — Fx(x)] da:+/0 Fx(z) dz,

— 00

with Fix (z) = Pr[X > z].
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Distortion risk measures

11\

E (%)

B[X]=1-11

I1

Y
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Distortion risk measures

* Expectation of a r.v..

0 00
FE[X] = —/_ [1 — Fx(x)] dx +/0 Fx(z) dz,
with Fix (z) = Pr[X > z].

* Distortion function:
g :10,1] — |0, 1] is a distortion function
< gis /', g(0)=0and g(1) = 1.
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Distortion risk measures: g(x) concave = g(x) > x

g(x)

0 ' 1 x
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Distortion risk measures

* Expectation of a r.v..

0 00
E[X] :—/ [1 — Fx(x)] dCC—l—/O Fx(z) dz,

— 00

with Fix (z) = Pr[X > z].

* Distortion function:
g :10,1] — |0, 1] is a distortion function
< gis /', g(0)=0and g(1) = 1.

e Distortion risk measure:

— 00

0 00
pgl X] :—/ 1—g(Fx(z))] d:l}—l—/o g (Fx(z)) dx.

pq| X | = “distorted expectation” of X.

|
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Distortion risk measures: g(z) > x

E[X] =1 - (IT+IT")
p,[X]= (I+1") ~ I 2 E[X]
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Examples of distortion risk measures

* Expectation: X — E[X].

g(x)
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Examples of distortion risk measures

* The quantile risk measure: X — Q,(X).

glx)=1(x>1—-p), 0<ax<l1.

g(x)

b e e Em e e e =)

()
T
o
[E—
)
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Examples of distortion risk measures

* TJail Value-at-Risk: X — TVaR,(X).

g

0 1-p I x
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Examples of distortion risk measures

* Conditional Tail Expectation: X — CTE,(X).
IS NOT a distortion risk measure.

* Expected Shortfall: X — ESF,(X).
IS NOT a distortion risk measure.

* Stoch. dominance vs. ordered distortion risk measures:

X <a'Y & pg|X]| < pg|Y] for all distortion functions g.
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The Wang transform risk measure

* Problems with TVaR,:

© no incentive for taking actions that increase the
distribution function for outcomes smaller than @),

© accounts for the ESF =- does not adjust for extreme
low-frequency, high severity losses.

* The Wang transform risk measure

X_>ng(X>a 0<p<lI,
with
gp(x) =@ [@7H(x) + @7 (p)], O0<z<1.

offers a possible solution.
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The Wang transform risk measure

* Examples:
° if X is normal: pg (X) = Qp(X).
° if X is lognormal: p, (X) = Qq)[ 1 (p)+ ](X).
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Properties of distortion risk measures

* Additivity for comonotonic riskKs:

pg[XT+ X5+ ...+ X5 = pg(Xy).
1=1

* Positive homogeneity: for any a > 0,

pglaX] = apg|X].

* Translation invariance:

oyl X +8] = pylX] +b.

* Monotonicity:

X <Y = pg|X] < pglY].
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Concave distortion risk measures

* Concave distortion risk measures:
° pg(-) is a concave distortion risk measure if g is concave.

°© TVaR,(-) is concave, Q,(-) not.

e Sl -order vs. ordered concave distortion risk measures:

X <aY & py|X] < pg|Y] for all concave g.
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The Beta distortion risk measure

* Problem with TVaR,: For any concave g, p, strongly

preserves stop-loss order < ¢ is strictly concave.
= T'VaR, does not strongly preserve stop-loss order.

* The Beta distribution: (a > 0,b > 0)

1
G (a,0)

* The Beta distortion risk measure:

Fy(z) = /O Pl b la 0<z<l.

X — ,OFB(X)-

pr, Strictly preserves stop-loss order provided 0 < a < 1,
b > 1 and a and b are not both equal to 1.

* A PH-transform risk measure: Wang (1995).
a=0.1andb=1.
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Sub-additivity of risk measures

* Merging decreases the ‘insolvency risk’:

(X+Y —p[X]—p[Y]) . S (X —p[X])  + (¥ —p[Y]),

° Sub-additivity is allowed to some extent.
* Concave distortion risk measures are sub-additive:

pg | X +Y] < pg[X]+pgY].

° @p IS not sub-additive,
° TVaR, is sub-additive.

* Optimality of TV aR,:

TVaR,(X)=min{p,(X) | g is concave and p, > @, } .

|||||||||||||||||||||| I
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Axiomatic characterization of risk measures

* A risk measure is "Artzner-coherent” it it is sub-additive,
monotone, positive homogeneous and translation invariant.

° @p 1S not "coherent”.
o GConcave distortion risk measures are "coherent”.

* The Dutch risk measure:

p(X) = E[X]+E[(X - E[X]),].
p(X) is coherent, but not comonotonic-additive
= p(X) is NOT a distortion risk measure.

* Coherent or not?
Markowitz (1959): “We might decide that in one context one
basic set of principles is appropriate, while in another
context a different set of principles should be used.”

IIIIIIIIIIIIIIIIII
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Distortion risk measures for sums of dependent r.v.s

* Approximations for sums of dependent r.v.’s:
S = > ", X; with given marginals, but unknown copula.

=) E[Xi|Al € S < Y Fx (U) =
=l 1=1
* Approximations for p,|S]: (if all E'|X; | A] are ' in A)

pg 5] = iﬂg[X
ﬂg[sl} - Zpg (Xi | A)].

* If gis concave: p, [S'] < py [S] < pg [5°].

|||||||||||||||||||||| I
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Application: provisions for future payment obligations

* Problem description

o Consider a payment obligation of 1 per year, due at
times 1,2, ..., 20,

° Let e=Y() be the discount factor over [0, 1]:

oY () = —(VitYat. 4Y)

° Assume the yearly returns Y; are i.i.d. and normal
distributed with parameters . = 0.07 and ¢ = 0.1.

° The stochastic provision is defined by

20
S = E 6—(Y1+Y2—|----—|-Yi)
=1
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Provisions for future payment obligations

* Convex bounds for S = 3% =Y

Let A= Zizl 1 Zj:z

Then

where

n

St = Ze_

1=1

n

S¢ = Ze_

1=1

e~ * and r; = corr [A, Y (i)] > 0.

Sl SCCB S SCCB SC

ElY ())]-r: oyuy @7 (U)+5(1-r?)ot :

E[Y i)+ oy @71 (U)
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Provisions for future payment obligations

* Provision (or total capital requirement)

© The provision for this series of future obligations is set
equal to p, 5]

° Approximate p,|S| by

Py [SC] — Zpg [X’L

pg[sl} - Zpg (Xi | A)].
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Provisions for future payment obligations

* The Quantile-provision principle: p,[S] = @,[9]

6 8 10 12 14 16 18 20
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Provisions for future payment obligations

* The CTE-provision principle: p,[S] =TVaR,[S5]

p  TVAR,[SY] TVAR,S] TVAR,[S]

0.950 17.24 17.26 18.61
0.975 18.45 18.50 20.14
0.990 20.03 20.10 22.16
0.995 21.22 21.30 23.69
OeIee 23.98 24.19 27.29

IIIIIIIIIIIIIIIIIIIIII
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Theories of choice under risk

* Expected utility theory

° von Neumann & Morgenstern (1947).
° Prefer loss X overloss Y if

Elu(w— X)| > Flu(w =Y)],
° u(x) = utility of wealth-level z, ~ function of .
° Risk aversion: u IS concave.

* Yaari’s dual theory of choice under risk:

© Yaari (1987).
o Prefer loss X over loss Y |f

prlw—X| > pylw-Y],

° f(q) = distortion function.

© Risk aversion: f is convex.
| |
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Compare theories of choice under risk

* Transformed expected wealth levels:

FElw — X]

1
/0 Ql—q(w _ X) dga

Blu(w=X)] = [ ulQi-yfw=X)] da

oflw — X] Lﬁ@kmwamww»

* QOrdering of risks:
° In both theories, stochastic dominance reflects
common preferences of all decision makers.
° In both theories, stop-loss order reflects
common preferences of all risk-averse decision makers.

|
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Lecture No. 2
Comonotonicity and Optimal Portfolio

Selection

Jan Dhaene
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Introduction

* Strategic portfolio selection:

For a given savings and/or consumption pattern over a
given time horizon, identify the best allocation of wealth

among a basket of securities.
* The "Terminal Wealth’ problem:

° Saving for retirement.
° A loan with an amortization fund with random return.

* The ‘Reserving’ problem:

° The ’after retirement’ problem.
© Technical provisions.
o Capital requirements.
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Introduction

* The ‘Buy and Hold’ strategy:

© Keep the initial quantities constant.
© A static strategy.

* The ‘Constant Mix’ strategy:

o Keep the initial proportions constant.
° A dynamic strategy.
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Comonotonicity

* Notations:

° U: uniformly distributed on (0,1).

o X =(X1,...,X5).

° Fy'(p) = Qp[X] = VaR, [X]=inf {z € R | Fx(z) > p}.
* Comonotonicity of a random vector:

X is comonotonic < there exist non-decreasing functions
fi,..., fn and ar.v. Z such that

X 211(2),..., fa(2)].

* Comonotonicity: very strong positive dependency structure.
* Comonotonic r.v.s cannot be pooled.
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Comonotonic bounds for sums of dependent r.v.'s

* Theorem:
For any X and any A, we have

iE X, | A] <o zanz- <z znjF;}(U»
1=1 1=1 1=1

* Notations:

° § = 2?21 X;.
o St=35" EI[X;|A] =lowerbound.
° §¢=3" F¢'(U) =comonotonic upper bound.

° If all E[X; | A] are increasing functions of A,
then S! is a comonotonic sum.
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Performance of the comonotonic approximations

* [ocal comonotonicity:

Let B(7) be a standard Wiener process.
The accumulated returns

exp [uT + o B(7)],
exp [p (T + A7) + 0 B (7 + A7)

will be "almost comonotonic’.
* The continuous perpetuity:

S = /Oooexp |—um — o B(71)| dr

has a reciprocal Gamma distribution.

| |
| |
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Numerical illustration: = 0.07 and o0 = 0.1.

10 15 20 25 30

Circles: Plot of (Q,[S], @,[S)

uv N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 55/278



Numerical illustration

p Qp [S'] QplS]  Qp[S°]
0.95 23.62 23.63 25.90
0.975 26.09 26.13 29.34
0.99 2937 29.49 34.08
0.995 31.90 32.10 37.86
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The Black-Scholes setting

* 1 risk-free and m risky assets:

dP°(t)
Po(t) = rdt
i d
d}];(%) = pidt+» oy dW (1)

g=1

with (Wh(r), ..., Wi(r)):
independent standard Brownian motions.
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The Black-Scholes setting

* Equivalent formalism:

dP(t)
POy r dt
d;j(%) = ; dt + oy dB" (1)

with (B(7), ..., B™(7))
correlated standard Brownian motions.
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The Black-Scholes setting

* Return of asset ¢ in year k:

Pi(k) = P(k — 1) e¥*

* Y} normal distributed with

E[Y¢] = pi — %a,? and Var [V}]| = o7

* Independence over the different years:
k #1= Y and Y/ are independent.

* Dependence within each year: Cov [Ylj, Y;;j ] = @)ij

* Assumptions: u#rl and X is positive definite.

| KATHOLIEKE UNIVERSITEIT I
LE UVE N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 59/278



Investment strategies

* Constant mix strategies:

E(t) — (7T177T27 I 77Tm)
with
m; = fraction invested in risky asset ¢,

m
1 — Z n; = fraction invested in riskfree asset.
=1

° Fractions time-independent.
° Dynamic trading strategies.
© Requires continuously rebalancing.
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Investment strategies

* The portfolio return process: Merton (1971).

° P(t) = price of one unit of (71,7, ..., 7).

‘if_((tt)) = p(x) t+ o (x)dB(t)

with B(7) a standard Brownian motion and

p(m)=r+a" x(p—rl), o*(@r)=a"xTxmw

° Yearly portfolio returns: P(k) = P(k — 1) e¥*(®)
°© The Yy (x) are i.i.d. normal with

BIY; ()] = 4 (x) — 50% (x),  Var [Vi ()] = o (x)

|||||||||||||||||||||| I
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Markowitz mean-variance analysis

* The mean-variance efficient frontier:

max i () subjectto o (rm) =0

IS obtained for the portfolio

with
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Markowitz mean-variance analysis: 7 < [ (g(m))

w(rm)
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Markowitz mean-variance analysis: 7 < [ (g(m))

w(rm)
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Markowitz mean-variance analysis: 7 < [ (g(m))

w(rm)
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Markowitz mean-variance analysis

* The Capital Market Line and the Sharpe ratio:

a®) —
p(m?) =71+ (M g(w()t)) ) -

* Two Fund Separation Theorem:

o[ rE) =T
N p(@®) —r | =
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Saving and terminal wealth

* Problem description:

° ag, a1, ..., an. POSitive savings at times 0,1,2,...,n.

° Investment strategy: w(t) = (71,72, ..., Tm).
o Wealth at time j:

W; (xr) = Wj-1 (z) €™ + a;

with Wy () = ayp.
° What is the optimal investment strategy 7*?

° Depends on ‘target capital’ and ‘probability level'.

0 RSITE|T
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Approximating Terminal Wealth

* Terminal wealth W (x):

n n

W, (1) = Z Q; eYit1(m)+Yz2(m)++Yn(m) _ Z X;
1=0 1=0

* The comonotonic upper bound for W, (x):

We(x)=> Fx(U)
1=0
* A comonotonic lower bound for W,, (x):

n i n 7—1 )
Wi(m) =) E|Xi| Y Yj(m)) apeH®
i=0 =1 k=0

* Convex ordering: W' (1) <co Wn(w) <cx W(r)
| |
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Optimal investment strategies

* Terminal wealth W, (x):

n

W, (1) = Z oy ¥+t (@ Y2 (@) ++Ya ()
1=0

e Utility Theory: Von Neumann & Morgenstern (1947).
max E [u (W, ())]

* Yaari’s dual theory of choice under risk: Yaari (1987).
max E/ [W,, (x)]

where
o E/ is determined with f (Pr (W, (x) > x)),
© convexity of f corresponds with ‘risk aversion’.
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Optimal investment strategies

* Reduced optimization problem:

° Foro(my) =0 (my) and p () < p(my), we have that
Wn (El) Sst Wn (E2) .

° Hence,

and
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The Target Capital

* Distorted expectations: for

f<x>={0 o

1 :x>p,

the distorted expection E/ [W,, (x)] reduces to
Qi—p [Wn ()] = sup{z | Pr [W, (x) > z] > p}.

* Problem: d.f. of W,, () too cumbersome to work with
© curse of dimensionality
° dependencies
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Maximizing the Target Capital, for a given p

* Optimal investment strategy: =* follows from

max Q1 (W ()

* Approximation:the approximation ! for * follows from

max Q1-p [Wﬂb (WJ)}
with

Ql—p [WTZL(EO)} — Zaie(n_i) [M(EU)—%T’?(EG)Jﬂ—\/n—i ri(77)o® ! (p)
1=0
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Numerical illustration

* Available assets:
° 1 riskfree asset with » = 0.03
o 2 risky assets with

U1 = 0.06, o1 = 0.10
o = 0.10, 09 — 0.20

and
Corr [V}, Y] = 0.5

* The tangency portfolio:
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Numerical illustration

* Yearly savings: ag = ... = g9 = 1

e Jerminal wealth:

39
Wao (E) — Z eYit1(m) Yo (m) 4 +Yao(m)
1=0

* Optimal investment strategy:

max Qo.05 [Wao (7)]
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Numerical illustration
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Qo.05 [W,, ()] as a function of the proportion invested in (")
dots: Qo.05 [W,3 (7?)], solid: Qo.o05 [WTZL (g“)], dashed: Qo .05 [WS (79)]
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Numerical illustration

* Minimizing the savings effort per unit of Target Capital:

The optimal investment strategy = Is defined as the one that
minimizes a () in

39
Qip |0 (m) ) @@+ +Yu@ | 1
1=0
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Numerical illustration

0.013 1

0.012 1

0.011 1

0.010 1

0.009 A1

minimal savings amount

0.008 1

0.007
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0.90

0.91

0.92

0.93

T T T T T 1 + 0_0
0.94 0.95 0.96 0.97 0.98 0.99 1.00

p

Solid line (left scale): minimal yearly savings amount as a function of p.

Dashed line (right scale): optimal proportion invested in the tangency portfolio.
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Other optimization criteria

* Maximizing the Target Capital for a given probability level p:

max CLTE;_, (W, (x)]

with
CLTE; | X]|=E[X | X < Q1-p|X]]

* Maximizing p for a given Target Capital K:

max Pr [W,, () > K]

gz
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Provisions for future liabilities

* Problem description:

©)

O

O

aq, ..., 0, positive payments, due at times 1, ..., n.
Ry = Initial provision established at time 0.
Investment strateqy: w (t) = (71, T2, ..., Tm).
Provision at time j:

R;i(Ry m)=R;i_1(Ro m) XD — 7]

with R (RO, ﬂ) = Rjy.

What is the optimal investment strategy «*?
Answer depends on ‘initial provision’ Ry and
‘probability level’ p.
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The stochastic provision

* Definition:

Z% T)+Ya (m)+++Yi(x)).

* Relation:
R, (Ry m) = (Ro — S (x)) e (Yi(z)+-+Yn(z))

* An investment strategy « is only acceptable if
Pr R, (Rp, ™) > 0] is "large enough”.

* Relation:
Pr (R, (Ro, m) > 0] =Pr[S (m) < Ro.

* PROBLEM: d.f. of S («) too cumbersome to work with.

|||||||||||||||||||||| I
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Comonotonic approximations for S ()

* The comonotonic upper bound for S ():

S(m) <ex S°(m).

* A comonotonic lower bound for S (x):

S0 Y (@) Yope; o e Fl@m—t @l

S =E|S (@)

o Sl S o (ﬂ)
o St(x) is a comonotonic sum.

| KATHOLIEKE UNIVERSITEIT I
LE UVE N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 79/278



Optimal investment strategies

* The Initial Provision:
o Definition:

Ro (z) = E7[S (z)]

where S (x) is the Stochastic Provision.
o E9[-] is a ‘distortion risk measure’.
° If g is concave, then E7[-] is a ‘coherent’ risk measure.

* The optimal investment strategy: (=*, Rj) follows from

Ry = mﬂin E9[S ()]
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Reduced optimization problem

°* Foro(m) =0 (my) and p () < p(m,), we have that
S (ma) <st S (m1)-

° Hence,
min EY [S ()] = min E7 [S (z7)].

7y o
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Minimizing the Initial Provision, for a given p

* The p - quantile provision principle:

If investment strategy = =, then

Ro(m) = Qp S (z)] = inf {z | Pr[Ry (z, m) > 0] = p}.

* Optimal strategy: (r*, R;) follows from

Ry = m;n Qp [S ()]
* Approximation: (z', RY) follows from

R, = main ar {Sl (ﬂa)} .
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Numerical illustration

* Available assets:
° 1 riskfree asset with » = 0.03
o 2 risky assets with

U1 = 0.06, o1 = 0.10
o = 0.10, 09 — 0.20

and
Corr [V}, Y] = 0.5

* The tangency portfolio:
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Numerical illustration

* Yearly consumptions: a1 = ... = ayg = 1.

* Stochastic provision:

40
S (E) — Z 6_(Y1(E)+Y2(E)+"'+Yi(ﬂ))_

1=1

* Optimal investment strategy :

Ry = mﬂin Qp [S ()]

* Approximation:

R = minQ, [S (z7)].

uv N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 84/278



Numerical illustration

minimal reserve

......

17 w
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Solid line (left scale): minimal initial provision R(l) as a function of p.
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Dashed line (right scale): optimal proportion invested in the tangency portfolio.
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Other optimization criteria

* Minimizing the Initial Provision, given p:

Ry = min CTE, |S (7)]

with
CTE,|[X] =E[X | X > Qp[X]].

* Maximizing p for a given Initial Provision Ry:

p" =maxPr[R, (Rg,m) > 0].
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Generalizations

* Investment restrictions: are taken into account by redefining
the set of efficient portfolios.

* Yaari’s dual theory: The ‘final wealth problem’ can be solved
for general distorted expectations.

* Distortion risk measures: The initial provision can be
defined in terms of general distortion risk measures.

* Stochastic sums: ‘How to avoid outliving your money?’

* Positive and negative payments: ‘The savings - retirement
problem’.

* QOther distributions: Lévy-type or Elliptical-type distributions

| |
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Some references (www.kuleuven.ac.be/insurance)

[1] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002a).
The concept of comonotonicity in actuarial science and finance:
Theory.
Insurance: Mathematics & Economics, vol. 31(1), 3—33.

[2] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002b).
The concept of comonotonicity in actuarial science and finance:
Applications.
Insurance: Mathematics & Economics, vol. 31(2), 133—161.

[3] Dhaene, Vanduffel, Goovaerts, Kaas, Vyncke (2004).
Comonotonic approximations for optimal portfolio selection
problems. (forthcoming)

[4] Dhaene, Vanduffel, Tang, Goovaerts, Kaas, Vyncke (2003).
Risk measures and comonotonicity. (submitted)
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Lecture No. 3
Elliptical Distributions - An Introduction

Emiliano A. Valdez
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Elliptical Distributions

* This family coincides with the family of symmetric
distributions in the univariate case (e.g. normal, Student-t)
and can be characterized using either:

© characteristic generator
© density generator

* References:

© Landsman and Valdez (2003) “Tail Conditional Expectations
for Elliptical Distributions”, North American Actuarial Journal.

© Valdez and Dhaene (2004) “Bounds for Sums of
Non-Independent Log-Elliptical Random Variables”, work in
progress.

© Valdez and Chernih (2003) “Wang’s Capital Allocation
Formula for Elliptically-Contoured Distributions”, Insurance:

Mathematics & Economics.
]
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Why Elliptical Distributions?

* Provides a rich class of multivariate distributions that share
several tractable properties of the multivariate normal.
° Student t, Laplace, Logistic, etc.

° Linear combinations of components of multivariate
elliptical is again elliptical (Important for modelling yearly
returns, and for constructing the conditioning variable.)

* Allows more flexibility to model multivariate extremes and
other forms of non-normal dependency structures.

° Fat extremes, tail dependence.

© Some studies show that light tailness of normal show its
Inadequacies to model extreme credit default events.

|
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Some Notation

®* Consider an n-dimensional random vector
X = (X1, Xo, ..., Xn)' .

o Distribution function:
Fx (x1,x2,....,xn) = P (X1 < x1,...., X, < xp)
° Density function:

8”FX (a;l,xg,...,xn)
fX (:El,ilig, ,aj‘n) S 85(31 - 8$n

© Characteristic function:
px (t) = E |exp (1X"t)| = Elexp (1 Y _j_; Xkty)]
°© Moment generating function:
Mx (t) = E [exp (X1t)] = px (—it)
° Covariance matrix: Cov (X) = (Cov (X;, X;)) for
1,7=1,...,n

|
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Multivariate Normal Family

* |t is well-known that the joint density of a multivariate normal
X is given by

() = 2 exp |2 (x— )T = (x— )

Vil 2

* The normalizing constant is given by ¢,, = (27r)_”/2.

* |ts characteristic function is
px (t) = exp (it' p—3t" =t)
= exp (itT,u) exp (—%tTEt)
* And its covariance is

Cov (X) = X.

|
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Multivariate Normal - continued

* Define the characteristic generator as

Yp(t)=e

and density generator as
gn (u) =€
* The density can then be written as

g |2 (x— )T = (x - )

In
VI3 2

and its characteristic function as

px (t) = exp (it p) ¢ (3t =t) .

fx (x) =

|
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Class of Elliptical Distributions

* X has multivariate elliptical distribution, X « E,, (1, 3,%), if
char. function can be expressed as

x (t) = exp(it’ )y (5t t)

for some column-vector u, n x n positive-definite matrix X.

* If density exists, it has the form

o oo |k = )T S (x— )

Gn
VIE[T L2

for some function g, (-) called the density generator.

fx (x) =

|
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Elliptical Distributions - continued

* The normalizing constant c,, can be explicitly determined by
transforming into polar coordinates and we have

B o ]

* Thus, we see the condition

/ 22 g (z)dr < 0o
0

guarantees g,, as density generator.

* Note that for a given characteristic generator ¢, the density
generator g and/or the normalizing constant ¢ may depend
on the dimension of the random vector X.

|
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Some Properties

* If mean exists, it will be
E(X) = pu.
* |f covariance exists, it will be
Cov (X) = —¢' (0) X.

* Let A be some m x n matrix of rank m < n and b some
m-~dimensional column-vector. Then

AX 4+ b~ Ep, (Au+b,AXA" g) .

* Definethesum S = X; + Xo+---+ X,, = e!' X, where e is
a column vector of ones with dimension n. Then

S~ E, (eT,u,eTEe,gl) :

|
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Multivariate Student-t Family

p
* Density generator: g, (u) = (1 + ,%) where parameter
p > n/2 and k, is some constant.

o DenS|ty fX (X) — _Cn |:1 4 (X—M)T;ipl(x_'u)]_p

. . r —n
* Normalizing constant: c,, = F(p_(%;)/Q) (2mk,) /2
° If p=(n+m) /2 where n, m are integers, and k, = m, we
get the traditional form of the multivariate Student f with
density:

|
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Generalized Student-t Distribution

° ity - _ 1 (z—p)> ] P
Density: fx () = B N ey [1 + 2@02} , Where

B (-,-) is the beta function.

* Forp > 3/2,usually &, = (2p — 3)/2 becaue it leads to the
important property that Var (X) = 2.
* For1/2 < p < 3/2, variance does not exist and £k, = 1/2.

* Note for example in the case where p = 1, we have
standard Cauchy distribution:

It is well-known that mean and variance for this distribution
does not exist.

|
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Density Functions of GST - Figure 1

0.5

0.0
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Multivariate Logistic Family

* Density generator: g (u) = (1j;_uu)
* Density:
o e |- x— T = - p)]

fx (x) = 2
T VR e L - ) = x— 0) )

* Normalizing constant:

(©.@)
—n/2 j 1 1 —n/2
cn, = (2m) /
I
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Multivariate Exponential Power Family

* Density generator: g (u) =e "™, forr,s > 0

* Density:

fx (%) = ;,%exp{—g (- =7 (x—p)| |

* Normalizing constant:

c, = sl (N/Q) rn/2s

(2m)™2 T (n/2s)

* When r = s = 1, this reduces to multivariate normal. When
s=1/2andr = V2, we have Double Exponential or
Laplace distributions.

|
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Normal

Bivariate Densities - Figure 2

Student ¢

Normal

=
e
S S SN SO S S S S
RS TS ST S OSSO S
RS
S ARAANSSSSSSSStse
N SSSSSSsSSs
SN
i
N
R
N
N

7
24

7%
i

N
N
R

7
7
Z

=

R

N

N
W

210 800 YO0 4

X
W
N
N

TR

\
N
N
\:‘\\

N

N

i\
i

TN
TR
TN
I
T
n

sty
us
N
3!
||\\\‘\‘
It
““‘\‘\\\
!

9

sl
i
!

98!

9!
e
o

8!

X

94!
5

e

RS
§ S

S
S,
SIS
SIS
SISO
SRSISS
RN
R
R
R
=
R
R
S

N
\
R

TVO 800 YO0 4

3
R
S
)
R
3
R
R
R
N
N
A
N
R
N
W
X
\

R

RO S

R

RV
\

Logistic

X
R
R
R
R
N
\

s

X
e

R
NN
R
R0
RIS
R
R
R

%%
%%,

7
e
i,
i

7
7%

SRR
R
R
AR
RRTTHTH
R
N
R
AR
AT
\
Y

3
R
R

~
7

N

3
N

RS
R

NN
AR
LI

R

W

V0 800 YOO 4

N
NN
N

N\
N
N
AN

%

N
N
N

N

N
AN
W
N\
"

N

\\
W
\
N
Y
3

:;\
N
\
N
T

\
R
A
3 AR

yusssans

Wy

AN
Y
TIY

Iy

Smssnitn
sttty

A

§ ““‘““\‘“\\‘\

Y
8%t

8¢

=

s
8

S e
e
S S S SSOSS,
SRS S SIS SIS
SRR
RIS

SO
S S
S

X
S

R
AR
S

X
R

45
il

N
D

7

DR

R
R
R

%
5

%,
%
7%
%

7
7
705

T

ol

7
7%

,//
V//
2,
724
7
%

N

i,

NN
R
N
R
N

7
)

\
R
W

210 800 W00 4

A
Y

s
SRR
53

R
SRR

R
e
QU
3
RN
QR

S

RN
R

R
i\
S

NN
R
R
R
Rk
R
r/—
N
R
X
X
\
N

Samos 2 i i
004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 103/278

CS

ies

Faculty of Commerce & Econom

School of Actuarial Stud

UNSW




Lecture No. 4
Tail Conditional Expectations for Elliptical
Distributions

Emiliano A. Valdez
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Introduction

* Developing a standard framework for risk measurement is
becoming increasingly important.

* This paper is about a risk measure called tail conditional
expectations and their explicit forms for the family of
elliptical distributions.

* This family coincides with the family of symmetric
distributions in the univariate case (e.g. normal, Student-t)
and can be characterized using either:

© characteristic generator
© density generator

|
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Introduction - continued

* We introduce the notion of a cumulative generator which
plays a key role in computing tail conditional expectations.

* We extended the ideas into the multivariate framework
allowing us to decompose the total of the tail conditional
expectations into its various constituents.

© decomposing the total into an allocation formula

* Landsman and Valdez (2003)

|
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Risk Measure

* A risk measure 9 Is a mapping from the space of random
variables £ to the set of real numbers: ¢ : X € £ — R.

* Some useful properties of a risk measure:

1. Monotonicity: X; < X, with probability

1 :>T9(X1) < ﬁ(Xg)
2. Homogeneity: ¢ (AX) = M\ (X) for any non-negative \.
3. Subadditivity: ¥ (X1 + X2) < 9 (X1) + 9 (X2).

4. Translation Invariance: ¥ (X + a) = ¢ (X) + « for any
constant a.

* Some consequences:

9(0)=0;a< X <b=a<d(X)<b9(X—9(X)) =0.

|
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The Tail Conditional Expectation

* Notation: X : loss random variable; F'x (x) : distribution
function; Fx (z) =1 — Fx (z): tail function; x, : ¢-th
quantile with Fx (z,) =1 — g

* The tail conditional expectation (TCE) is

TCEx (zq) = E(X|X > x,).
* Other names used: tail-VAR, conditional VAR
* Value-at-risk: z, = Q4 (X)
* Expected Shortfall: £ [(X — ), | = ESF, (X)
* Relationships:

1
TCEx (wq) = q+E (X =2 |X > ) = 27— F [(X = 2g), ]

|
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TCE for Univariate Elliptical

* Let X ~ E; (u, 07, g) so thatdensity fx (z) = <g [% (%)2}
where c is the normalizing constant.

* Since X is elliptical distribution, the standardized random
variable 7 = (X — ) /o wiII have a standard elliptical

distribution function F (z) = ¢ [~ __ g (3u?) du, with mean 0
and variance 02 = 2ch u?g (3u?) du = —¢'(0), if they
exist.

* Define the cumulative density generator:

and denote G (z) = G (00) — G (7).
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- continued

* The tail conditional expectation of X is

TCEx (zy) =+ \-0°

1_ 1_
e e —GG=)  G(=) g
where Ais A = S— -~ = S~ an o = 8 = 1)) | @

* Moreover, if the variance of X exists, then -G (52?) has

Z

the sense of a density of another spherical random variable
Z* and X has the form

1
;fZ* (2¢)

A 2.
Fz (Zq)

1
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Some Examples

* Normal Distribution:

~p (29)

A= 1 —®(z)

where ¢ () and @ (-) denote respectively the density and
distribution functions of a standard normal distribution.
Notice that Z* is simply the standard normal variable Z.

* Student-t:
2p 5 fy ( 2p— 5zq,p—1)
FZ (szp)

only for the case where p > 5/2. Here, Z* is simply a
scaled GST with parameter p — 1.

A =

UNS School of Actuarial Studies . Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 111/278
Faculty of Commerce & Economics



Examples - continued

* Logistic:

v (2¢)

z (#q)

L {1 1
2 (v2m) " + 0 (29)

which resembles that of a normal distribution, but with a
correction factor.

1
C
F

* Exponential Power:

N G VG, s | (5%) s179]

|
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GST - Figure

lambda

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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TCE for the Marginals

° Let X ~E, (i, 3,9,). Denote the (¢, j) element of X by o

so that ¥ = HO'UHZ] -

* Let F (2) = c1 [; g1 (52°) dz be the standard d.f.

correspondmg to this elliptical family and
G (z) = c1 [, g1 (u) du be its cumulative generator.

* The formula for computing TCEs for each component of X
IS expressed as

TCEx, (x4) = g + g - 07

1 1
O'—G< ,q) xq — O_—fZ* (Zq) .
where )\, = ]%Z<Zk,q) y Zkq = o ,Or A\, = %Z(zq) O,

If O'% < 0.
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Sums of Elliptical Risks

* The tail conditional expectation of the sum §

TCEg (zq) = pts + As - 0'%

where
n n
T 2 T
s =€ [ = E Ui, Og =€ Xe = E Tij,
k=1 i,j=1
and
1
—G (%23 q)
gs
Ag = =5
Fz(2s4)
: Us —
with zg , = L.
gs
| |
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Portfolio Risk Decomposition

* TCE allows for natural decomposition of the total loss:

TCEg (zq) ZE (Xk|S > xq).
k=1

* This is not in general equivalent to the sum of the tail
conditional expectations of the individual components since

TCFEYx, (aiq) #+ B (Xk ‘S > leq) :

* Instead, we denote this as TCEx, |5 (74) = E (X |[S > 4),
the contribution to the total risk attributable to risk k.

* |t can be interpreted as follows: in case of a disaster as
measured by an amount at least as large as the quantile of
the total loss distirbution, this refers to the average amount

that would be due to the presence of risk k. |
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Theorem on Risk Decomposition

° Let X = (X1, Xy, ..., X,)" ~ E, (11,3, g») such that
condition [, g1(z)dxz < oo holds and let S = X; 4 - - - + X,.

* Then the contribution of risk X, 1 < k < n, to the total TCE

TCEx, s (xq) = pr + As - 0kOspr,s,

1

_6 122
Ok, 275,
fork =1,2,...,n, where pr g = —= and \g = 25
’ 0LOg Fz(zs,q)

* Notice that if we take the sum of TCEx, s (z4), we have

n n
Y TCEx,s (zg) = ps + As Zgwspk,g = ps+ As - 0%

k=1 k=1 e
Ok,s

|
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Multivariate Normal Case

* Panjer (2002) demonstrated that in the case of a
multivariate normal random vectori.e. X ~ N,, (u, X), we

have
— 1 (xq_u) —_
Osgp 75 2 Ok
E(Xk\S>a:q):,uk+ I O (1‘|‘pk,kz )7
1_(1)((1_1“) O

Os

where they have used the negative subscript —k to refer to
the sum of all the risks excluding the kth risk, that is,
S =85-—X;.

* Therefore, according to this notation, we have

0 0_k Ok,—k O—k Ok, —k Cov (Xk,S — Xk) Ok,S 1
ky—k——— = = = - 2
’ Ok OLO_| Ok 02 0,% 0%

|
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Multivariate Normal - continued

* Thus, our formula for risk decomposition becomes

E(Xk\S>a:q):,uk+

1—<I>(M

1

gs

d

=) |
0s

0s

)

which gives the case of multivariate normal.

Ok0SPk,S

* This confirms the formula above for risk decomposition
which holds for multivariate elliptical distributions including
multivariate normal distributions.

|
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Lecture No. 5

Bounds for Sums of Non-Independent

Log-Elliptical K

Emiliano A. Valdez

\andom Variables

|
UNSW

School of Actuarial Studies
Faculty of Commerce & Economics
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Introduction

* This paper is about finding bounds for sums of
non-independent log-elliptical random variables.

* Extends the ideas developed in

° “The Concept of Comonotonicity in Actuarial Science
and Finance: Theory” IME, Dhaene, et al.

° “The Concept of Comonotonicity in Actuarial Science
and Finance: Applications” IME, Dhaene, et al.

* These papers considered bounds for the log-normal
random variables.

|
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Outline of Talk

* Comonotonicity

* Convex Upper and Lower Bounds

* Elliptical, Spherical, and Log-Elliptical Distributions
* Extension to Log-Elliptical Distributions

* The Results for Log-Normal Distributions

|
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Sums of Dependent Random Variables

* Consider an insurance portfolio X = (X, Xo, - - ,Xn)T
° X, : claim amount of policy ¢ at the end of the period.

° Assumption: all X; are i.i.d.

* Introduction of stochastic financial aspects in actuarial
models reveals the necessity of determining distributions of
sums of dependent random variables.

* Assumption that the X; are mutually independent

° |s often approximately,
° |eads to easier mathematics,
© but is sometimes violated.

|
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- continued

* Individual risks X; may be influenced by the same
economic/physical environment:

© catastrophes (storms, explosions, etc.) cause an
accumulation of claims;

© weather conditions in automobile;

° fire insurance;

° pension fund; and

° lifetimes of a couple.

* The independence assumption probably underestimates:

°© the deviation of the aggregate risk,
° the probability of large claims,
° the expected shortfall.

|
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Ordering of Random Variables

* Upper and lower tails

° E (X —d), = surface above the d.f., from d on.
° E(d— X), = surface below the d.f., from —co to d.

* Convexorder: X <., Y
° & the upper tails as well as the lower tails of Y eclipse
the respective tails of X.

* — Extreme values are more likely to occur for Y than
for X.

o FEFX)=FEY)and Elu(—X)] > Fu(-Y)] for all
non-decreasing concave functions w.

* — Common preferences of risk averse decision
makers between rv’'s with equal means.

|
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- continued

e Sufficient condition:

° F(X)=F(Y) andthe d.f’s only cross once, (finally,
Fy < Fx)

° = X <o Y.

* Convexity order and moments:
° X< Y=FEX)=E(Y)
°© X< Y =Var(X)<Var(Y).

° X < Vand Var(X)=Var (V)= X 2VY.

|
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Comonotonicity

* Suppose X has joint d.f. /. Well-known Frechet bounds:

max ZFk rp) —(n—1),0| < Fx(x)

VAN
=
-
s
5
—
5
)
g

* Hoeffding (1940) and Frechet (1951).

* X is comonotonic if its joint distribution is the Frechet upper

I
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Comonotonicity - continued

* Comonotonicity is very strong positive dependency
structure.

* Comonotonic rv’s are not able to compensate each other,
they cannot be used as "hedge” against each other.

* Quantiles, distribution functions, and tails of sums of
comonotonic random variables follow immediately from the
respective quantities of the marginals.

° Notation: (X{,---, X5).

|
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Bounds for Sums

* COMONOTONIC UPPER BOUND:

° Define the comonotonic vector corresponding to X by
X¢ = (X§,..., X¢)" where X¢ = F. ' (U).
°© Sum: §¢=X{+---+ X°.
* IMPROVED UPPER BOUND:
° Define the random vector corresponding to X by
X" = (X, ..., X3)" where Xp = F !\ (U).
°© Sum: S* = X{+---+ X"
* LOWER BOUND:
© Define the vector corresponding to X by
X! = (X!,..,X1)" where X! = E (X, |A).
°© Sum: S' =Xt 4+ ... 4 XL,

|
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Bounds for Sums - continued

* We have the following bounds:

[
S <cz S <cz S <cz 5S¢

* Proofs can be found in:

° Tchen (1980)

© Dhaene, Wang, Young & Goovaerts (1997)
o Mdller (1997); and

o Kaas, Dhaene, Goovaerts (2000).

|
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Class of Elliptical Distributions

°*Y - E,(u, X,0) if c.f. can be expressed as

oy (t) = exp(it’ p) - ¢ (¢ 3t)

for some scalar function ¢ and where X is given by
> = AA' for some matrix A(n x m).

° ity - — _Cn _ T $—1 _
Density: fx (v) = g | (v — )" 57! (y — )| . for some
function g, (-) called density generator.

* Normalizing constant: ¢,, = % [ OOO z”/z_lgn(z)dz]_l.
Condition [° 2"/271g,(2)dz < oo guarantees g,, as density

generator.

* Kelker (1970); Fang, et al. (1990).

|
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Some Properties

* Mean: E(Y) = pu.
* Covariance: Cov(Y) = —¢' (0) X.

°*'Y ~F, (u, X, 9), iff for any
b(n x 1),b7Y ~E; (bTu, b Eb,¢) .

* Marginals are also elliptical with the same characteristic
generator:,

Yy, ~ By (07, d) -

* For any matrix B (m x n), any vector c (m x 1) and any
random vector Y ~ E,, (4, 2, @), we have that

BY +c~ E,, (Bu+c¢,BEB",9).

|
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Independence and Elliptical

* Any multivariate elliptical distribution with mutually
iIndependent components must necessarily be multivariate
normal, see Kelker (1970).

°* LetY ~E, (i, X, ¢) with mutually independent components
Y:... Assume that the expectations and variances of the Y},
exist and that var (Yx) > 0. Then it follows that Y is
multivariate normal.

* Thus, it follows that the joint distribution of mutually
iIndependent elliptical random variables is not elliptical,
unless all the marginals are normal.

|
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Spherical Distributions

* Zis spherical withc.g. ¢ if Z ~F,, (0,,,1,,,0).
* Notation: S, (¢) for E, (0,1, ,0).
° Z ~S,(¢)iff E |exp (it'Z)] = ¢ (t't).

* Suppose m-dim vector Y is such that' Y 4 -+ AZ, for some
pu(n x 1), some matrix A(n x m) and some m-dim elliptical

vector Z ~S,, (¢). Then Y ~E,, (1, X,0) where ¥ = AA™.
* Z ~S, (¢) iff for any n-dim vector a,

alZ

ala

~51(9) -

* Any component Z; of Z has a Sy (¢) distribution.
* Density: fz(z) = cg (z' z).

|
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Conditional Distributions

* Conditional distributions of bivariate Normal is again
Normal.

°* GENERALIZATION OF RESULT TO ELLIPTICAL:

° LetY ~ E, (4, X, ¢) with d.g. g, (). Define Y and A to
be linear combinations of Y, i.e. Y = oY and
A = p1Y, for some o! = (aq, a0, ..., a,) and
ﬁT = (ﬁl, Bo,. .., ﬁn) Then,
(Y, A) ~ Ez (1v,a), Z(via): )

° Also, given A = )\, Y has a univariate elliptical
distribution:

py +1 (Y, A) 25 (A —pa)

<1 —7r (Y, A)z) 0%, dq
char. gen. ¢, (-) depending on a = (X — up)? /o3.

Y|A:>\~E1< ),forsome

|
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Log-Elliptical Distributions

* X is multivariate log-elliptical with parameters ; and X if
log X is elliptical:

log X ~ E, (u, %, ¢) .

* Notation: logX ~ E, (1, 3,¢) as X ~ LE, (u, X, ¢) .
°* When =0, and X =1,,, we write X ~ LS, (¢).
* IfY~E,(u32,¢)and X =exp(Y), then

X ~ LE, (1, %, ®).

|
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Some Properties

* If density of X ~ LFE, (u, 3, ¢) exists, then density of
Y =log X also exists with

n

fx (x) = — <H$k1>-9[(10gX—M)TE_1(1OgX—u)},

VIS

see Fang et al. (1990).

* Any marginal of a log-elliptical distribution is again
log-elliptical.

* MEANS:
E (Xg) = e ¢ (—o7) .

* COVARIANCES:

Cov (Xp, X;) = e(“““l)-{gb [— (o + 01)2} — ¢ (—0p) b (—0?)} .

|
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Some Risk Measures

* Let X ~ LE (u,0%, ¢) and Z ~ Sy (¢) with density fz(x).

° Quantile:
Fy'(p) =exp (p+0F,; (p), 0<p<1,

° Expected Shortfall:

BI(X ~d),] = e (~0?) Py (5 —ap (s

° Tail Conditional Expectation:
2

l1—p

E[X|X > Fx'(p)] = ¢ (—0?) Fz- (F;*(1 - p))

where the density of Z* is given by fz-(z) = f;((f);:.
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Non-Independent Log-Elliptical Risks

* Payments: aq, ..., ay,
* Ratesofreturn: Y, (i —1,4),i=1,2,...,n.

®* DefineY (i) =Y; + - - +Y;, the sum of the first : elements
of Y.

o X; = exp[-Y (i)].

* Present Value:
S=>inaexp-M+---+Y)]=>", X

* Assume return vector Y ~ E, (u, 3, ¢) with parameters
and X..

> Then X = (X1, ..., X" is log-elliptical.

|
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- continued

* We know Y (i) ~ E1 (p (i) ,0% (i) , ¢) with

Zﬂk and o* ZZO’M.

k=1 l=1

e Conditioning rv: A => " | 3;Y;

* Using the property of elliptical, A ~ E; (ua,0%, ¢) where

HA — Zﬁz,uz and UA — Z 625]0-23

1,.7=1
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The Bounds

* COMONOTONIC UPPER BOUND:
Se=>" ajexp |—p (i) + o (i) Fz_l(U)]
* IMPROVED UPPER BOUND:

Zozzexp[ )—1; 0 (i)Fz_l(U)—F\/l—r,?a(i) FZ_1(V)]

* LOWER BOUND:

= el HO= 0@ F2 O] g (52 (4) (1 = r2))
1=1

where U and |74 are mutually indep. U(0,1) rv’s, Z ~ 51 (¢),

d k —1 1 B0k
a n /’/’Z I [
(Z) oA
| |
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Sums of Log-Normal RV’s

In the case of log-Normal, we have the results from Dhaene, et
al. (2002):

n
[ —FE\Y(2)|—71; ov( o1 Uv—|—l 1—7”‘22 o2
St = Y oy e BW@I-r ave 07 @Atk
1=1
n
u . —FE\Y ()|—1r; oy o1 U)+ 1—r2 o 5 d-1(V
qu E:Oéie Y (4)] vy 27H(U) i oy V)
1=1

SC — Z QU e_E[Y(i)]+O-Y(i) q)_l(U)
1=1

|
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Lecture No. 6
Capital Allocation and Elliptical
Distributions

Emiliano A. Valdez

|
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Introduction

* Why do we need to allocate capital?

° Redistribute capital cost equitably

© Division of capital provides division of risks across
business units

o Allocation of expenses, prioritizing capital budgeting
projects

° Fair assessment of manager performance

* This paper examines what constitutes a fair allocation and
studies Wang'’s allocation within this fair allocation principle
and then extends to class of elliptical distributions.

|
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Fair Allocation

° Let X! = (X1, X5, ..., X,,) denote the vector of losses.

* Define an allocation A to be a mapping A : X — R" such
that A (X”) = (K1, K», ..., K,,)" where
doici Ki=K=p(2).

* Each component K; of allocation is viewed as the i-th line
of business contribution to total capital.

* Because allocation must also reflect the fact that each line
operates Iin the presence of other lines, the notation
A(X; | X, X)) = K;

Is well-suited for this purpose.

* Notice also that the requirement Y " | K; = p(Z) is
sometimes called the “full allocation” requirement.

|
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What constitutes a fair allocation?

°* Let N ={1,2,...,n} be the set of the first n positive integers.
An allocation A is said to be a fair allocation if:

°© No Undercut: For any subset M C N, we have

°© Symmetry: Let N* = N — {iy, 00} . If M C N* (strict
subset) with |M| = m, X1 = (X;,,..., X, ) and if
A(X;, XD, X, X5,) = A(X,, |XE, X, X;,) for every
M C N*,then we must have K;, = K,,.

° Consistency: For any subset M C N with |[M| = m, let
X} = (Xj,....,X;, ) forall j, € N — M where
k=1,..,n—m. Then we have

> A(Xi| Xy, ., X)) =A (Z X;

€M €M

ZXi,Xf;l;m> .

1eM

|
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Relative Allocation

* This gives the allocation to the ¢-th line of business as

p (Xi)

* Simple and appealing, but not a fair allocation.

* Consider 3 indep. risks X7, X5, and X3 with mean
E (X;) = 0 and variances Var (X;) = 0° (X;) fori = 1,2, 3.
Define the risk measure p (X;) = F. ' (1 —a) -0 (X;).

1

* Now suppose a life company has four lines each facing risks
X1, — X1, X9, and X3 so that total risk Is Z = X5 + X3.
Consider the subset M consisting of the risks
{X1,—X1, X2} and observe that

P (Zz’EM Xz’) = p(X2) = Fz_l (1 —0a)-o(X2).

|
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Relative Allocation - continued

e Because

Y A(X| X1, —X1, X2, X3)
ieM
p(X1) + p(—=X1) + p(X2)

= p(Xa+ X3) p(X1) + p(—=X1) + p(X2) + p(X3)’

the “no undercut” cannot be satisfied unless the risks have
symmetric distributions.

* The “consistency” property is also not satisfied because

A(in

1eM

> XZ-,X3> = A(X2|X, X3)
€M

p(X2)
(X2) + p(X3)

= p(Xa2+ Xs)p

|
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Relative Allocation - continued

* Hence

ZXi,Xg,).

1eM

> A(X| X1, —X1, X5, X3) # A (Z Xi

1eM €M

* However, it can be shown that the “symmetry” property is
satisfied for this allocation formula. Consider for example
the case where A (X1 ‘Xl, — X1, XQ) — A (X2 ’Xl, — X1, XQ)
and it is straightforward to show that in this case
p(X1) = p(X2) so that

A (Xl ‘Xh _X17X27X3) = A (XQ ‘Xla _X17X27X3)

and symmetry is satisfied.

|
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Covariance-Based Allocation

* The allocation formula is based on
A(X;| X1, -+, X)) = \p(Z) where AT = (A1, ..., \,,) denotes
a vector of weights that add up to one so that full allocation
IS satisfied.

* To determine these weights \;, we minimize the following
quadratic loss function

B (X =) = MZ — 12)" W (X = p) = A (Z = )]

where the weight-matrix W is assumed to be positive
definite. Differentiating with respect to A and equating to
zero yields

E[(Xi — pi) (Z — pz)] _ Cov (X4, Z)

Ai = B [(Z _ ,UZ)Q} Var (Z2)

,fori=1,2,...,n.

|
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Is the Covariance Principle Fair?

* The capital allocation formula based on the covariance
principle satisfies the three properties of a fair allocation:

© no undercut,
© symmetry, and

© consistency.

|
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Wang’s Capital Decomposition Formula

* Preserving the notation used by Wang (2002), denote the
expectation of X; o by

E[X - exp(\2)]
Elexp (AZ))]

H)\X;,Z| =FE(X;q) =

and the expectation of the aggregate loss Zg by

E|Z - exp (\Z)]
Elexp (AZ)]

H,)|Z,Z] = E(Zq) =

This exactly gives the Esscher transform of ~Z.

* Price of a random payment X; traded in the market is
H,|X;, Z] so that one can think of the difference
p(X:) =FE(X;q)— E(X;) =H)|X;,Z]| — E(X;) as the risk
premium.

|

|
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- continued

* For the aggregate payment Z, its risk premium is given by
p(Z)=p (i1 Xi) = H\[Z,Z] - E(Z).

* ltis rather straightforward to show p (X;) = “2ZeexpiiZ)

and p (Z) = Cog([iiz}(ci(zk)]zn

* Wang proposes computing the allocation of capital to
individual business unit ; based on the following formula:

K;=H)|X;,Z] - E(X;).

* Assuming an aggregate capital of K for the insurance
company as a whole, the parameter A can be computed
using

K=H,\[Z,Z]-E(2).

* Fori=1,2,...,n, it can readily be shown that K = )", K.

|
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Multivariate Normal

° If Xq,..., X, follow a multivariate normal, we have that
Wang’s allocation method reduces to the covariance
method.

* Some straightforward calculation yields the results:

)\20%
2

E (Ze)‘Z) = exp <)\,LLZ I ) (p+ Ao3y)

)\2 2
E (XieAZ) = exp ()\,LLZ + ;Z> (i + Aoiz)

* Then it follows that K = A\o%, and K; = A\o; z which is clearly
equivalent to the covariance method.

|
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Some Notation and Assumptions

* Suppose X ~E, (4, %,g9,) and e = (1,1, ...,1)".
* Assume density generator g,, exists.
* Define
Z=X1+ - +X,=) Xp=e'X
k=1
which is the sum of elliptical risks. We know that
Z ~ Eq (eT,u,eTEe,gl).
* Denote by iz = e’ u=3""_, i and
U% — eTEe — Zijl Ojj-
* Define the tail generator by

©.@)
T, (u) = cngn () dx.

1

2 W
| |
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Two Useful Lemmas

° Let X ~ FE, (1,3, 9,). Then for 1 < ¢ < n, the vector
X,z = (X;, Z)" has an elliptical distribution with the same
generator, i.e., X; 7 ~ 2 (ui,z, 2; 7,92) , where
- 0 o7  0Oiz
i, Z— (MZ) Zj:l :uj) 3 Ei,Z — ( ,2 ) ’ and

2 _ _ N\ 2 _ \n
O; = 043, 04,7 = 2]:1 Oij» 0z = Zj,k:l Ojk-

°* Let X ~FE, (u, 3,9,) and assume condition for existence of
density generator holds. Let 1" be the tail generator as
defined above and associated with Z. Then

exp (Apz) /OO

My () ) T, (w) exp (Aozw) dw

Hy [ X, Z] = pi+Aps zoi07

|
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Wang’s Allocation for Elliptical

°* Let X ~FE, (u, X,9,) and assume conditions for existence of
density generator and |¢’ (0)| < oo hold. Then Wang’s
capital allocation formula can be expressed as

Ki =—XY'(0) p;,z0i07
* The result immediately follows from the previous lemma:

K, = H),|X;, Z]-FE(X;)

1 >
— 1, 4040 7 Z Z n d
APi,Z0;i0 i ()\)/ exp (A (uz + ozw)| T, (w) dw

= Api,z0i0z le()\) [_W (0) Mz (A)]
= —\Y'(0) pizoioz.

|
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Panjer's Example

* Panjer (2002) example to illustrate the capital allocation.

* Insurer has 10 lines of business is faced with risks
represented by vector X7 = (X7, ..., X19) where each X;
represents the P.V. of losses over a specified time horizon.

* The estimated covariance structure, 3, (in millions-squared)
IS given by [see paper for variance matrix] and the

estimated mean vector 7! (in millions) is given by

(25.69, 37.84, 0.85, 12.70, 0.15, 24.05, 14.41, 4.49, 4.39, 9.56) .

* The resulting allocation K* is given by
(2.72,12.55,0.08,1.92, 0.37, 6.27, 2.51, —0.70, —0.30, 1.89) ,

expressed in millions, with total capital equal to 27.31 million.

|
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Lecture No. 7

Convex Bounds for Scalar Products of
Random Variables (With Applications to
Loss Reserving and Life Annuities)

Tom Hoedemakers
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Outline

Introduction to comonotonicity

Comonotonic bounds for dependent random variables
Generalization to scalar products of random variables
Discounting with Gaussian returns

Moments based approximations

Part | Applications: Life Annuities

Part || Applications: Loss Reserving
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Convex order and comonotonic risks

* Convex order: Consider two random variables X and Y.
Then X is said to precede Y in the convex order sense,
notation X <., Y, if and only if

E[X] = E[Y]and E[(X —d).] <E[(Y —d),.] Vd

* Property:| X <., Y = Var|X| < Var|Y]

* Comonotonicity: very strong positive dependence structure
— each two possible outcomes (x1,--- ,z,) and (yi, -+ ,yn)
of X = (X1,---,X,) are ordered componentwise

| |
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Comonotonicity

Characterizations: X is comonotonic if any of the following
conditions holds:

1. ForU ~ Uniform(0,1) we have

X £ (Fl(U), Fx(U), ..., FxH(U)),

n

2. 4 arandom variable Z and non-decreasing functions
fi, f2, ..., fn, (Or non-increasing functions) such that

X L (f1(2), f2(2), ..., fa(2)),

3. For the n-variate cdf we have

F)—(*(f) — min{FXl (:El), FXQ(ZUQ), . ,FXn(xn)}, V£ e R".

IIIIIIIIIIIIIIIIII

LEUVEN
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Quantiles and stop-loss premiums

* Notations:

¢ = cdfof N(0,1)

Fx(x) = Pr[X <z
FX (SC) = 1- FX (33)
(r —d)y = max(z—d,0)

* Quantiles:

Fy'(p) = inf{zx € R | Fx(x) > p}, p € (0,1).

* Stop-loss premiums:

E[(X —d)4] = /doo F x(z)dz, —00 < d < 0.

| KATHOLIEKE UNIVERSITEIT I
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Quantiles and stop-loss premiums

* Relations:
° gVar[X] = [T {E[(X - t)+] — (BIX] - )1} dt,
o if X <., Y,thus E[(Y —t),| > E[(X —t)4] for all ¢, then

1 e
5 {Var[Y] — Var[X]} = /_ {E[(Y —t)+] — E[(X —1)4]} dt.

E[(A=n),]

E[(Y=1)]

E[X] [ —

|||||||||||||||||||||| I
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Comonotonic bounds for sums of dependent r.v.'s

* General result: (Kaas et al., 2000)
Let U be a uniform(0,1) random variable. For any random

vector X = (X1, Xo,- -+, X,,) with marginal cdf’s
FX1,FX2,--° 7Fan we have

1=1 1=1 1=1

* Notations:
°© 8= X
o St =35"" E[X;|A] =lower bound.
o Se=>"" in (U') =comonotonic upper bound.

* If all E[X;|A] are  functions of A, then S! is a comonotonic

Sum.
|
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Comonotonic sums

* Kaas et al. (2000):
° The quantile function is additive for comonotonic risks

=) Fx!®, pe()

° In case of strictly increasing and continuous marginals,
the cdf Fs:(x) is uniquely determined by

Fl! (Fse (x ZF (Fs. (z)) = ,

(FS}(O) <z < Fg'(1))

|||||||||||||||||||||| I
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Comonotonic sums

* Dhaene et al. (2002):

° Let (X1,...,X,) denote a comonotonic vector with
strictly increasing marginal distributions and let
S5¢= X1+ -+ X,. Then the stop-loss premium of 5°¢
can be computed as follows:

B(5° —d)+] = Y E[(Xi - Fx! (Fs- (d))),]

(F5(0) < d < Fg'(1))

|||||||||||||||||||||| I
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Lower bound S = " | E[X;|A]: comonotonic

If A is such that all g;(A) = E[X;|A] are non-decreasing and
continuous functions of A

Fo'(p) = Z E[X\A Z g(A
- ZE[Xi\AZFA_l(p)], pe(0,1)

If the cdf’s of g;(A) are strictly increasing and continuous

E[(S' —d)4] = ZE ( (X3 | Al = Fyx (Fse(d)))J

= Y B[R A - B[ A =Fy (Fs(d)]), ]

|||||||||||||||||||||| I
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Lower bound S = > | E[X;|A]: not comonotonic

+00 "
too [ T !

B[(S'—d)4] = / (ZE Xi | A=A] - d) dFp (M)
o \i=l +

It 'y is strictly ~ and continuous: Define U as follows
U = Fy(A) ~ Unif(0,1),thenU =u < A = Fy ' (u),V0<u <1
Y EXi|Al <a|U=u

1
/ Pr
0 i=1

E[(S' —d);] = /0 (ZE[X”A:FKl(u)]—d) du
+

1=1

FSl (CE) du

|||||||||||||||||||||| I
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Moments based approximations

* Convex order relation: S' <., S <., S¢

4

E[(S' — d)+] < E[(S — d)+] < E[(S° — d)]

E[S' ElS] = B[S
Var(SY) < Var(S) < Var(S9).

* Define the random variable S™ by its stop-loss premiums
E[(S™—d)4] = 2E[(S'=d)1 ]+(1-2)E[(S°~=d)4], 0<z<1,

4
E[S™] = zE[S!] + (1 — 2)E[S¢] = E[S]
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Moments based approximations

* By taking the (right-nand) derivative we find

Fgm(z) = 2Fgi(x) + (1 — 2)Fge(x), 0<z<1

— the d.f. of the approximation can be calculated fairly
easily

* Determine z such that S is as close as possible to S. In
Vyncke et al. (2004) z is chosen as

~ Var(5¢) — Var(S)
~ Var(S¢) — Var(S!)

Z

This choice doesn’t depend on the retention d and it leads
to equal variances

Var[S™| = Var[5]
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Generalization to scalar products

* Consider sums of the form: S = X Y7 + XoY, +...+ X, Y,
with X = (X1, Xs,...,X,) and Y = (Y1, Ys,...,Y,)
assumed to be mutually independent

* One can take V; = X,Y; and apply the techniques for sums
of dependent random variables — not practical !
° It is not always easy to find the marginal distributions of
Vi
° 1t is usually very difficult to find a suitable conditioning

random variable A, which will be a good approximation
to the whole scalar product, taking into account the

riskiness of the random vector X and Y simultaneously.

IIIIIIIIIIIIIIIIIII
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Generalization to scalar products

Lemma1 Assume thatX = (X1,...,X,),Y = (Y1,...,Y,) and
7 = (Z1,...,Zy) are non-negative random vectors and that X is
mutually independent of the vectors Y and Z.

If for all possible outcomes x1, . .., z, of X:

n n
E TN e § xiZia

then the corresponding scalar products are ordered in the
convex order sense, |.e.

i XY <ex i XiZ;.
=l )

uv N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 174/278



Generalization to scalar products

Proof. Let ¢ be a convex function. By conditioning on X and
taking the assumptions into account, we find that

o3 x0)] = e [ofo( 5]

VAN
€3
<
e
-
VR
e
N
el
el
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Generalization to scalar products

* General result: Let U and V' be two uniform(0,1) r.v.s.
Assume that the vectors X = (X1, Xo, ..., X,,) and

—

Y =(Y1,Ys,...,Y,) are mutually independent. Then

STEXTENIA] <o Y XY < Y Fx (U)Fy (V)
1=1 1=1 1=1

with J T @r.v. independent of Y and A
A ar.v. independent of X and T

* Notations:
°© S = Z?:l X;Y;.
o St =35"" E[X;|T|E[Y;|A] =lower bound.
o §¢=3"", Fx (U)F,' (V) =comonotonic upper bound.

| i
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Generalization to scalar products: (Proof.)

1130 XY <o Yooy Fx (U)Fy (V)

* For all possible outcomes (z1, za, .. ., 2, ) of X:
D i1 TiYi Zex Y i Fx_%/ (V) =22 wngl(‘U
Le:W>m D i1 XiYi Sew Do XiFy_;l(V>

* The same reasoning can be applied to show that
D i1 XiFy_;l(V) <ew D i1 F)?}(U)Fij-l(v)

(2

2. [S0 EIXGITENYIIA] <o Spy KoY,
o Y7 BIX[TIEY|A] <o S0, XE[Vi]A
* S XGEVIA] S S0, XiYi

IIIIIIIIIIIIIIIIII
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How to deal with two-dimensionality?

e Assume that| X = " £i(©)g:(V)

( vV~ Unif(0,1) and independent of 6
fi; non-decreasing
| 9; hon-negative and non-decreasing

/"

* Distribution function: 3-step calculation:
1. FX|1@ o(p) = 2121 fi(6)g:(p)

2. Obtain Fyjg—g from 3" | fi(0)g: (FX|@:9 (y)) = v;
3. CompUte FX f FX|@ g( )dF@((g)

|||||||||||||||||||||| I
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How to deal with two-dimensionality?

e Convex bounds:

° In the case of the upper bound one can always use the
described procedure Indeed, notice that © = U,

fi(u) = Fx'(u) and g;(p) = F;."(p) for which the

condltlons ere naturally satisfied.
° |n the case of the lower bound one takes © = A,

fi(y) =E[X; | T =+] and g;(p) = E[Y; | A = F ' (p)]

* In general:
The conditions of the previous slide are not always satisfied!
However, in our applications they are satisfied.

||||||||||||||||||||||
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Stop-loss premia for scalar products of r.v.'s

Upper bound: E[(S¢ — d)4]:

1. Consider the comonotonic sum
Su—u = Y Fy(u)Fy (V)
=1

2. Apply the basic theorem for stop-loss premia
3. Condition on U: = E[(S° — d)4+] = E|E[(S° — d)+|U]| =

/01 z”: FR WE | (Y - B! (Fsu=u(d))) , | du
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Stop-loss premia for scalar products of r.v.'s

Lower bound: E[(S' — d)]:

1. Assume that I and A can be chosen in such a way that for
any fixed v € supp(I') all components
E[X;|I' = v|E[Y;|A = \] are non-decreasing (or equivalently
non-increasing) in \.

2. The vector (E[Xl\l“ — A|E[Yi|Al, ..., E[X,|T = W]E[Yn]A]) s
comonotonic

3. Apply the basic theorem for stop-loss premia

4. Condition onT" = E[(S' — d)4+] = E[E[(S' — d){|T]] =
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Gaussian returns

* Suppose that one invests the value 1 at time 0. Then at time

¢ it accumulates to the random value ¥ ). The collection of
r.v.'s {Y(t) }+>0 is called a stochastic return process.

* We assume that the return process Y (¢) is Gaussian, i.e.
such that (Y (¢1),Y (t2),...,Y (t,)) is normally distributed
Vo<t <ty <... <ty

* Note that any Gaussian process is determined
unequivocally by its mean and covariance functions:
m(t) = E[Y (t)] and ¢(s,t) = Cov(Y (s),Y (1)).
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Two examples

* The Black & Scholes model:

Y(t) — ,ut i O'Bt

with B;: Brownian motion process.

Cov(Y(s),Y(t) = o

BY ()] = pt

2

min(s, t)

IIIIIIIIIIIIIIIIIIIIII
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Two examples

* The Ornstein-Uhlenbeck process:

Y(t) = put + X(t)

with dX (t) = —aX (t)dt + od B,

ENV ()] = ut
Cov(Y(s),Y(t) = o-(exp(—alt - s|) - exp(—a(t + 5)))

— in both cases: Cov(Y (s),Y(t)) > 0 for any t, s > 0.
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Two examples

a) The Ornstein-Uhlenbeck process: a=0 b) The Ornstein-Uhlenbeck process: a=0.02
g c 7 ;’: =}
T
0 2 4 6 8 10 0 2 4 6 8 10
t t
c¢) The Ornstein-Uhlenbeck process: a=0.1 d) The Ornstein-Uhlenbeck process: a=0.5

0.8
0.8

0.6
0.6

Y(t)
0.4

1

Y(t)
04

1

0.2
0.2

0.0
0.0

Figure1: Typical paths for the Ornstein-Uhlenbeck process with the mean parameter
1 = 0.05, volatility parameter o = 0.07 and different values of parameter a.
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Two examples

Remark:

* For a = 0 the Ornstein-Uhlenbeck process degenerates to
an ordinary Brownian motion with drift and is equivalent to
the Black & Scholes setting.

* When a > 0, the process Y (¢) has no independent
Increments any more. Moreover, it becomes mean reverting.

* = g measures how strong the process Y (%) is attracted by
its mean function.
(a = 0: no attraction = increments are independent)

|
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Discounting with Gaussian returns

DS =3 X VO
1=1

i = (p,--,p00) = EYQ)LEY(Q2),...,E[Y(n)])
. = [Uij]lgz',jgn — [COV(Y(i)aY(j»ng‘,jgn
(o4 Will be denoted by ¢?)

—

* X = (X1, Xo,...,X,): avector of non-negative r.v.s

— DS: discounted value of future benefits X; with return
process described by one of the well-known Gaussian models
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Discounting with Gaussian returns: convex bounds

DS*

DS

Y FLHU)E o (V)

1=1

> Fxl@)etto®”®),
=1

> E[X|TIE[e™Y V4],
1=1

-U and V' are independent Unif(0, 1) r.v.s
-T is independent of A and Y
-A is independent of I and X

Remark: the quality of the lower bound heavily depends on the

choice of the conditioning random variables!

IIIIIIIIIIIIIIIIIIIIII
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Discounting with Gaussian returns: CDF DS¢

1. Suppose that U = u is fixed = conditional quantiles:
Fl;éﬂUzu(p) — Z F)zzl (u)e—ﬂi—f—%q’_ (p);
1=1

2. Fpgeiy—,(p) is continuous and strictly ,” V u = Fpgejy=u(y)

can be computed as a solution of
n
S Pyl (w)e o Foseio—)
1=1

3. The cumulative distribution function of D.S¢ can be now
derived as

1
Fpse(y) = / Fpgelt—u()du.
0
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Discounting with Gaussian returns: stop-loss premia

Lemma 2 Let X be a lognormal random variable of the form
Z with Z ~ N(E[Z],0z) and o € R. Then the stop-loss
premium with retention d equals for ad > 0

E[(X —d)4] = sign (« )e“+ 2 ®(sign (a) by) — dP(sign () ba),
where

= In|a| + E|Z] o=o0gy

p+o? —In|d|
o

blz bQZbl—O'

The cases ad < 0 are trivial.
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Discounting with Gaussian returns: SL D S¢

E[(e™™ — dy;)4] = T E (bfiz) Qi (b( )) ’

with

! —pi+0; P (Fpscju=u
duz — Fexp( Y(Z)) (FDSC|U:u(d)) — pit o (F | (d))
b(l)_ _ —pitoi—In(du.i) 5(2) _ b(l)

— ZG—MZ—FQUZ /01 F)zil(u)q)(ai — (ID_l(FDSc‘U:u(d)))du

—d(1 — Fps-(d)).

|||||||||||||||||||||| I
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A comonotonic approximation for cumulative returns

* The exact random variable

S = z”: ozz-e_y(i)
i=1

* Approximation: replace

by

where the
° marginals are the same,
© copula is replaced by the comonotonic copula.
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The best comonotonic approximation

* The exact random variable
E[S|S] = Z c;E[e™Y 9]

* Approximation: replace S by

E[S|A] = Zaz “YOA]

where the marginals are replaced and the copula is

replaced by the comonotonic copula.
|
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Choice of the conditioning variable: return component

a) = choose A such that A ~ S ( Var(S) ~ Var(S!))

1=1

* Taylor based (Kaas et al., 2000): 3; = a;e™#
— A: linear transformation of a first order approximation to S

S = Z&e_ﬂ‘l‘(y(z—l-ﬂ Nzaz C(1+ Y (3) + i)

C + Z ae MY (1),
i=1

Q
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Choice of the conditioning variable: return component

* Maximal variance (Vanduffel et al., 2004): §3; = a;e #1327
— the first order approximation of Var(S*) is maximized

n n
it L (02402
E E aiaje I (ryrs0,05)

Var(S') =
i=1 j=1
- i i Oéi()éje_ui_“j—i-%(o?—i—a?) (COV[Y(Z'), A|Cov|Y (j), A])
== Var(A)
(Cov(iLy ase 27 Y (i), A))’

Var(A)

= (Corr(D>_ a; et Fa7iY (i), A)2Var(D | aze MY (i),

: |
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Choice of the conditioning variable: return component

b) = based on the standardized logarithm of the geometric

n

average G = ([, aue=Y@)1/7 (Nielsen and Sandman,
2002)

A — InG — E|In G| _ D i (i — Y (7))
v/ Var[ln G] VAZTOE 40)
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Discounting with Gaussian returns: lower bound DS!

* A=3" Y ()= Y(O)|A =X~ N, 02,)

ov(Y (7 Cov(Y (7),A)?
Hi, X — Mg + S V(ar(< ))A> <)‘ E[ ]) and O-z'2,)\ — Oi2 o \(/zr([/z] :

= DS' = ) E[X;TE[e " ?|A]

— ZE[XZ-]F]e

— ZE[XZ.‘F]e—MiJr%U?(l—"“?)—UiTi‘D_l(U)’
1=1

with U ~ Unif(0, 1)
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Discounting with Gaussian returns: lower bound DS!

and correlations given by

_ Cov(Y (i), A) |
v/ Var[Y (i)]4/ Var[A]

* Note that when the ;s and X;’s are non-negative, also the

r;'s are non-negative and the r.v. DS' is (given a value
I' = ~) the sum of the components of a comonotonic vector.

r; = Corr(Y (), A)
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Discounting with Gaussian returns: CDF D.S"

1. The conditional quantiles (given I' = ~) can be computed as

Flgéz|P:7(p) — ZE[XZH‘ — fy]e_:ui_i_EO'i (1—7’1-)4—0'@-7’1-(1)— (p)

)
1=1

2. The conditional distribution function is computed as the
solution of

n
Y E[XG|T = Ale it aot0orDome Fosies, W) — o
1=1

3. Finally, the cumulative distribution function of DS’ can be
derived as

1
FDSZ (y) — /0 FDSZ|I‘:FF_1(u) (y)du

IIIIIIIIIIIIIIIIII
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Discounting with Gaussian returns: SL D S"

B[(EeY O]~ dy), | = e e (o) - a0 (52),

with
_ —u;+Lie?(1—r)toir; ® 1 B
Ay :FE[i—Y(iHA] (Fpsijr=y(d)) = e #itzoidmritoir®{Fpsir_, (4))
3 —0'-2 —7“.2 o'.27~.2_ n .
bfy1z _ —mit30i(d ;.): Jri—1 (dw)’ bnyz B b,(yl,)b- .

E[S' —d,. = /0 ZE[XZ-H“ — F Y (w)]E [(E[e—m)m] - dw;)J du

1
= Ze—WaJ?/O E[X;|T = Frt(u)]

=1l

x®(rio; — @7 (Fpsir—y(d)) )du — d(1 = Fpgi(d))
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Discounting with Gaussian returns

Model Variable Formula
B-SM | E[Y(®)] =pu; | ip
Var[Y (i)] = 0? | io?
Var[A] = 0% | Y01 3850° + 2 1<jcnen 256i8k0°
Cov[Y (i), A] | > 54 min (7, j)3;0°
O-UM | EY(Q)| =pu; | ip
Var[Y (i)] = 02 | £(1 — e~2)
Var[A] = 02 g(ggﬂﬁay—a%%+

+ 2 1<j<k<n 28;i8k(€” b=j)a
5 21 Bile <Z+«7>a>

—Ji=jla _ o

@%MD

IIIIIIIIIIIIIIIIIIIIII
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Moments based approximations

How to calculate the variances of DS¢ and DS'?

In general: X =Y fi()guV)
1=1

— f; and g; : non-negative functions
—U and V : independent standard uniform r.v.s

* D5 fi(U)

FHU) and gi(V)=F \ (V)
e DS f;(U)=E

X;|I'| and gi(V):E[e_Y(i)U\]
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Moments based approximations

Var[ X]

= E|Var[X|U]] + Var|E| X |U]]

— /OVarV[Zgi(u)fi(V)]du

N /01 (Ev[izn;gi(“)fi(v)]fdu_ (AlEv[izn;gz‘(u)fi(Vﬂd“)Q'
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Moments based approximations

S => i1 2igi(V)
for any vector of non-negative numbers (aq, as, ..., ay)

* The upper bound: g;(V) = e #itoi® (V)

= Var|S“] —ZZaza]e Hi—Hgt

1=1 7=1

2—|—cr

e -

* The lower bound: g;(V) = e #itzoil-rdten@™i(V)

o +02

= Var Sl ZZO@O@@ pi— byt =5 ( Tirjoi0; 1).

1=1 7=1

E[S] = E[S9] = E[S'] = 27, asem* 5
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Part | Applications

Life Annuities
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Stochastic returns in life insurance

Traditionally actuaries have used deterministic interest rates
In life insurance;

However the investment risk, unlike the insurance risk,
cannot be diversified with an increase in the number of
policies;

In this approach conservative assumptions for the technical
interest rate aim to protect against poor investments results
In some periods;

A risk-based approach however requires to take the random
nature of returns into account;

However, then there are no closed-form expressions for
traditional actuarial functions;

We show how to apply the comonotonicity theory to get very
accurate approximations of typical present value functions
In life annuity business.
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Decrements

* Life annuity: a series of periodic payments where each

payment will actually be made only if a designated life is
alive at the time the payment is due

* Notation:

o T total lifetime with limiting age w

o T,: future lifetime of (z) (a person aged x years)
* Gu(t) = Pr[T; <t] = g, t 2 0(G;(1) = w —2)
* Gy(t) =Pr[Ty > t] = 4py, t >0

° K, = |T,]: curtate future lifetime of (x)
* Pr(K, =k)=Pr(k<T, <k+1) =110 — ks =

k|qx, k:O,l,...

o T): future lifetime of the j-th insured (assumed to be
mutually independent)

IIIIIIIIIIIIIIIIIII
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Three types of life annuities

* The present value of a single whole life annuity
immediate paying «; at the end of year i:

|w—z]

K,
Sggolicy _ Z ()éie_Y(i) _ Z O‘il(Tx>z')e_Y(i)
1=1 1=1

* The present value of a homogeneous portfolio of V
whole life annuity contracts paying at the end of year < a
fixed amount «;: (IV;: # survivals in year 1)

|w—2]

Sgortfolz’o — o (Lo + oo+ Lpivg) e~ Y ()
1=1

|w—z]

— Z OziNie_Y(i),
1=1

| |
| |
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Three types of life annuities

* Consider a portfolio of Ny homogeneous life annuity

contracts. From the Law of Large Numbers for sufficiently
large Ny:

|w—x| . lw—z| N . |w—zx| L
—~Y (i Vi vy () | Y (G
;_1 o; Ve = Ny ;Zl ozz—NOe ~ Ny ;:1 Q iPz€

—> In the case of large portfolios of life annuities it suffices
to compute risk measures of an ‘average’ portfolio:

lw—z]

nguerage _ E : o ipxe—Y(z)
1=1

= E[SEUY (1), - ,Y(lw—z])]

IIIIIIIIIIIIIIIIIIIIII
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The Gompertz-Makeham law

* Force of mortality at age &:

pe = a + B¢t

- > 0: constant component — capturing accident hazard

-Bcs: variable component — capturing the hazard of aging
(6>0,c>1)

* Survival probability:

T+t

tpe = Pr(T, > t) = exp (—/ ,ngd€> — stgcx+t_cx,
a5

where s = exp(—a) and g = exp ( — 1o§;c)
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The Gompertz-Makeham law

* Denote by T, the future lifetime of (z) from the Gompertz
family with force of mortality ; = G

¢ T, < min(7,, F/a) and E ~ exp(1)

Pr(min(7T.,E/a) >t) = Pr(T, >t)Pr(FE > at)

TE 16

— exp (—/ ,uédf) e«
1 o1

— (— / usd€>

= Pr(T, >1).

Simulation from Makeham’s law :
(a) Generate G from the Gompertz’s law by the inversion method

(b) Generate E from the exp(1) distribution
(c) Retain T' = min(G, E/«) |
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Personal finance problem

* Suppose that (z) disposes a lump sum L.
What is the amount that (=) can yearly consume to be
almost sure (i.e. sure with a sufficiently high probability e.g.
p = 99%) that the money will not be run out before death?
A solution to the latter problem is crucial to determine the
fair value of future liabilities and the solvency margin.

* Notice that the presented methodology is appropriate not
only in the case of large portfolios when the limiting
distribution can be used on the basis of the law of large
numbers but also for portfolios of average size (e.g.
1000-5000) which are typical for the life annuity business.
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Single life annuity: CDF upper bound S LA

* X; =I5~y ~ Bern(ip,) = Fx ' (p)

) 1 forp>q,
0 forpSiQx-

SLAC

FSLA; (y)

Y FMUEL (V)
=1

lw—z]

> k@Fspacix, =)
k=1

| Fr (V) |

— Z Faé—w) (V)

-conditional quantiles: F'5 !

k
-conditional df: » " a; exp (

SLAS|K, (P

=1

k
— g &ie—ui+sign(ai)0i¢_1(p)

— i + sign(a;)o; @ (FSLAc|K (1)) =y

IIIIIIIIIIIIIIIIIIIIII
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Single life annuity: SL upper bound SLA¢

B[(SLAS —d)4] = Ex, [E[(SLAS —d), |Ky]]

|w—zx| k

= > k|qx(ZE[(ozz‘€_Y(i)—dk,i)Jr])a
k=1 1=1

k

with dy, ; = a; exp (—m + Sign(&i)Oi@_l(Fgc(d)))

E[(SLA; — d)4] =
|lw—x] k

Z k|G Zaz e~Hit 3 <I> [:ﬂgn(az) — & (Fa. (d))} —d (1 — H&o (d))

k k

(SLAS|k,—p "2 52)

|||||||||||||||||||||| I
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Single life annuity: CV lower bound SLA'

* I'=T, = Ell(1,5)|T:] = I1,>4)
* A?

a) Al@) = ZLW z] o ipg;e_“i+%0?Y(i) — first order
approximation to the PV of the limiting portfolio

b) AM) .= A, with

jo = argmax{Var(SLAY), i =1,..., |w—z]|}
j

-SLAY = S %= Ela;e Y D|A,]

Ay =0 cie P TRoY (i)

SLA:B‘K —— Za e ,uz—l- (1—7°i2)—0iric1>—1(V)

1=1

|||||||||||||||||||||| I
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Single life annuity: CDF lower bound SLA!

K,
SLAL = ) Elae YV|A]
1=1

[w—z]
Fspa(y) = Z K Fspa k=1 (Y)
k=1
b 1 2 2 =1
-conditional quantiles: F',' ,, () = Y qerit3oii-rdtoire ™ ()
=1

k

. 1

-conditional df: > " a; exp (_,Uz' + 503(1 —r2) + OmCI)_l(FSLAgKm:k(y))) =y
=1
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Single life annuity: SL lower bound SLA!

E[(SLAL —d),] = Eg. [E [(SLA; —d)+ |K$”

lw—z]

- Z e (ZE [( —Y(i)yA]—dk,iLD

VWﬂ1dhi::a%exp(—1%-+ (1——T )+—0ﬂ%¢“4(FbLAMA;=kQD))

E[(SLA, —d)4] =
|lw—x]| k

Z k|q$2aze pit S @[mz O (Fgé(d))} —d(l—Fgé(d))

(SLAL | 2 8L)
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Single life annuity: an alternative approximation

* Take as conditioning variable:
K,
1 2 .
Ak, =) ae 3%y (i)
1=1

* The lower bound is then given by

|lw—zx| k

E k|G E e i3t (118 )—0mi @ (Us)

with
o correlations: r; , = ——cV(():Ar)
Tk \/Var[y(i)]\/var[/\k]
© {Uk}k=1,.. |w—z ~ Unif(0,1) = multidimensional lower

bound
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Single life annuity: an alternative approximation

A new approximation based upon this lower bound:

|w—zx| k
o Acl ,LL,L—|—102 1—r? )—oiri xr @1 (U)
SLA, = E k|qw§ Qe i, ’
k=1

* The “comonotonic upper bound of the lower bound”
o SLAY £.. SLA,
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A numerical illustration: Quantiles

-Return process: Black & Scholes model 1 = 0.05,0 = 0.1
-Mortality process: Makeham’s model, 65 years, males with
coefficients Belgian analytical life table MR:

(m :a = 1000266.63, s = 0.999441703848, g = 0.999733441115,c = 1.101077536030)
-Monte-Carlo (MC) simulation: 500 x 100 000 paths

-Payments: o; = 1W:

p SLAL.  SLAYL SLAS MC (s.e. x 10%)
0.995 27.5124 27.6700 30.2983 27.6933 (6.324)
0.975 22.2495 22.2875 23.6574 22.2839 (2.816)
0.95 19.9565 19.9713 20.8754 19.9731 (1.896)
0.90 17.5905 17.5972 18.0797 17.5969 (1.420)
0.75 14.1741 14.1887 14.1867 14.1887 (0.978)

IIIIIIIIIIIIIIIIIIIIII
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A numerical illustration: QQ-plot

QQ-plot of the quantiles of SLAL. (o), SLAS (A) and SLAS (D)
versus those of ‘SLAgs" (MC).
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A numerical illustration: Stop-loss premia

d SLAL,. SLAL SLAS, MG (s.e. x 10%)
0 11.0944 11.0944 11.0944 11.0937 (9.43)
5 6.3715  6.3756  6.3792  6.3748 (8.67)
10 2.5956 2.6071 2.6900 2.6068 (5.89)
15 0.7151 0.7201  0.8629  0.7201 (0.34)
20 0.1628 0.1664 0.2536 0.1668 (0.21)
25 0.0357 0.0379  0.0758  0.0382 (0.10)
30 0.0080 0.0091 0.0239  0.0093 (0.02)
35 0.0019 0.0023 0.0081  0.0024 (0.004)
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Homogeneous portfolio of life annuities

|w—a]
PLA, = Z % ([(T£1)>z‘) T o6 s T [(T£N0)>i)) e~ Y ()
=l
|w—] |
= Z a; Nye Y @
1=1
No
— ZSLAZ(Bj)
j=1
Ny |w—=x] |
= > > il (T954)® —Y ()
1=1 =1

difficult to deal with !

— Normal Power Approximation (NPA)
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Homogeneous portfolio of life annuities: NPA

Approximate the distribution of V; by the NPA N;

3 9 6(x — up,
F~.($):(I)<——|—\/2‘|‘ (CU MNZ>—|—1>
’ nyz nyZ nyiO-Ni

with
pn, = E[N;] = Noips
ox, = Var[N;] = No ipwida
E[N; — ,UNi]g 1 —2ipy
N, = =
o, VN iPzis

The p-th quantile of N;:

Fl(p) = pn, +on, @ (p) + W}?N”' ((‘P_l(p))2 - 1)

IIIIIIIIIIIIIIIIII
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homogeneous portfolio of life annuities: convex bounds

* The upper bound is straightforward, from

(w—z]

1=1

* Conditioning variables of the lower bound
° I' = N,;, — the number of policies-in-force in the year i

E[N;|N;, = no] — i—ioPatioMo  fori > 1o
No
: (Bayes) Pr(NiO = n0|NZ = k)Pr(Nz = k)
E[N;|N; — i k
=no
No k—no  No—k
No — to—t9g44 1 :BO . .
= > ’“( ¢ n0>ip e T fori <
k:’no B nO 'L()qw
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homogeneous portfolio of life annuities: convex bounds

* Conditioning variables of the lower bound
o I': take for SlmpllClty I'=N| = E[NZ|N1] = ;—1Pz+1V1

° A= ZLw g pre ity (4)
* The lower bound is then straightforward, from
|w—z]

_ o 21 2y - . H—1
PLA?B’UWZ E o7} z‘—1px+1FN11(“)€ pityoi(l1-ri)—oir: @7 (V)
1=1

* Moments based approximation PLA"

Var[PLA,] = E[Var[PLA,|Y]] + Var[E[PLA,|Y]]
—  NoE[Var[SLA,|V]] + N2Var[E[SLA,|Y]
= NyVar[SLA,] + (NG — No)VaI'[E[SLAH?H
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A numerical illustration: Quantiles

-Return process: Black & Scholes model 1 = 0.05,0 = 0.1
-Mortality process: Makeham’s model MR, 65 years, males

-Portfolio: 1000 policies

-Payments: o; = 1W:

p PLAL. PLAZ PLAS: MC (s.e.)

0.995 20209 20250 22620 20242 (22.09)
0.975 17252 17272 18722 17276 (8.80)
0.95 15937 15951 17029 15947 (8.15)
0.90 14565 14574 15290 14568 (5.08)
0.75 12574 12577 12821 12577 (3.90)

IIIIIIIIIIIIIIIIIIIIII

LEUVEN

Samos 2004 Workshop, Risk Measures

and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 227/278



A numerical illustration: QQ-plot

15000 20000

10000

5000

T T T T T T T T
6000 8000 10000 12000 14000 16000 18000 20000

QQ-plot of the quantiles of PLAL, (o), PLAT (») and PLAS, (D)
versus those of ‘PLAgs" (MC).
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A numerical illustration: Stop-loss premia

d PLAL. PLAZ PLAS: MC (s.e.)

0 11094 11094 11094 11098 (2.11)
5000 6094 6094 6095 6098 (2.10)
10000 1608 1610 1793 1611 (1.95)
15000 153.7  155.3 2784  155.3 (1.78)
20000 10.23  10.57  36.02  10.67 (1.26)
25000 0.680 0.734  4.816  0.743 (0.09)
30000 0.051  0.059  0.711  0.036 (0.02)
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Part |l Applications

Loss Reserving
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Loss Reserving: general framework

* Stochastic liability payments: L; > 0 attimes:=1,2,...,n
(modified by certain forces that influence the liability over time)
o [l = L\'Ry,, t=1,...,1
o L!:amount of liability expressed in money values of
time t
° Rpy =1+ rp
° rrs @ inflation of claim costs over interval (¢t — 1, ¢]
P At — At_lRAt
o Al : holding of assets of value A! at time ¢
°© Rar=1+ra
°* Assume Rx: (X = A, L) follows CAPM:

rxt = Trt + Bx A + ext
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Loss Reserving: general framework

° |rxt =rF + Bx A + exy
° Ay = rye — rye (distribution independent of ¢)
° rpq: risk-free rate in period ¢

° rue. periodic increase in value of the economy wide
portfolio of assets

o Bx: CAPM beta associated with X
° ext ~i.i.d. and E[ex;] = 0 and Var(ex;) := w%
° €A, €1t, At Independent

* Assume Rx; ~ i.i.d logN(ux,0%) and LY ~ logN(vgs, 75,)
e LY and Rx; independent Vs, t, X

* p = Corr(log Ray,log Rr;) and (") = Corr(log L2, log L?)
* Rx = E[Rx:] = exp(ux + 50%)
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Discounted loss reserve

Discounted loss reserve:
Vo= ) Vi=) LR
=1 =1

= > LYRL(t)R,'(t)

— V; ~ logN(a(®, §2())

o §2(8) = ng- + i(a% + 0124 — 2p01,04)
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Loss Reserving: general framework

Three relevant values of the loss reserve:
o 3" | E[LY] : CAPM-based economic value of the liability
* E[V] : expected value of the discounted liability cash-flows

* [ '(p) : 100p% confidence loss reserve
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Convex bounds discounted loss reserve

n

n
not .
V = E Vi = E e
1=1 1=1

Vii=) EVilAl S V e VO i= ) F, N (U)
1=1 1=1

O

it
~
|

n
S POk Aron 2 p e (0,1)
1=1

Qp[v(:] _ Z eE[Zi]—l—UziCI>—1(p)7 . (07 1)
1=1

B[] = BE[V!|=E[V] =) P
1=1
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Convex bounds discounted loss reserve

A =", BiZ with 8, = exp(B[Z,] +

\kar(ZZ)

E|Z;)

2

Voi + log <

\
2

(

Oy = TOZ + 10

30%,)
Ry (1 + (840 +wi)/ R
Ra \1+ (Bfoy, +wi)/R]

2

The variability of the discounting structure

~9 not

O

log {

= 0% + 04 — 2poro4 is given by

1+ Py + AL + G+
[1 4+ BafBroi;/RaRL)?

2>1/2>73\

/

IIIIIIIIIIIIIIIIIIIIII

LEUVEN

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 236/278



Convex bounds discounted loss reserve

The correlation between Z; and A is given by

Cov(Z;,A) > r_1 Bk (62 min(s, k) + nl&M)
TR 0Z, \/ZZ:1 2?21 ﬁkﬁl ((3'2 min(k, l) + n(k’l))

Ty —

with
n(k’s) — Cov (log L%, log Lg) — m(kS)TOkTOS

Note that if the liability cash-flows are independent
nF$) = 72 I,_, and I the indicator function.
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Moment matching vs. convex bounds

Security margin for confidence level p (Taylor, 2004):

SM,[V] 2 (Q,[V]/E[V]) — 1

not SMp[V'] — SMyp[VMC] «100% and LN ™ SMp[VEN] — SMp[VMC]

LB
SMy,[VMC] SM,[VMC]

x100%,

(MC: Monte Carlo simulation - LN: lognormal moment matching)

Stochastic liability cash-flow structure: (n = 30)
-vy; = —4.46 for ¢ = 1,...,30

5% s <b5; 10% 5<i<15; 15% 15<i<25
20% 25 <1 <28; 256% 28<1<30

Toi —

- 329 E[L;] = 100% and E[L?] = 35.51%
| 'CUT,:l()% and w 4 — 5%

KATHOLIEKE UNIVERSITEIT

0 R
E UVE N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 238/278



Moment matching vs. convex bounds

p=0.975 | oy =0.05 | 0py =0.10 | oy =0.15 | opr =0.20 | oy = 0.25 | 057 = 0.30
LB —0.19% —0.15% —0.23% —0.16% —0.11% —0.17%

LN —4.94% —3.92% —3.17% —2.49% —1.95% —1.56%

MC 0.4390 0.5250 0.6528 0.8103 0.9924 1.1970
s.e.(x10°) | (0.15) (0.29) (0.41) (0.69) (1.22) (3.78)

oy =025 | p=0995 | p=0975 | p=0.95 | p=0.90 | p=080 | p=0.70 | p=0.60
LB -0.93% | —0.04% | —0.02% | —0.18% | —0.03% | —0.6% | +0.86%
LN ~3.94% | +3.78% | +7.22% | +11.29% | +19.68% | +53.46% | —15.50%
MC 4.4521 2.2264 1.4998 | 0.8814 0.3508 0.0761 —0.1069
s.e.(x10%) | (37.63) (2.99) (7.44) (2.79) (0.78) (0.27) (0.08)
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Loss Reserving: overview

3 categories of reserves in non-life:

1.

Reserves with respect to unexpired or unearned exposure
- Unearned Premium Reserve (UPR)

- Additional Unexpired Risk Reserve (AURR): correction on
UPR if loss ratio higher than expected

Catastrophe Reserves

(Also ‘claims equalisation reserves’; ‘adverse deviation
reserves’, ‘fluctuation reserves’, ...)

— To smooth the influence of perils such as hurricanes,
floods, earthquakes, ... on the result

Reserves with respect to earned exposures (loss reserves)
- Qutstanding claims reserves (‘also case reserves’): for
reported losses that are not yet settled

- IBNR: Incurred But Not Reported
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IBNR reserves

The settlement of claims is always subject to delay: as well in
claim settlement as in claim reporting.

* Qutstanding Claims Reserves (delay in settlement)
- lengths of delays vary according to the class of business
(short / long tail)
- regulation in general demands the use of individual
estimates with respect to all known outstanding claims at
the accounting date and hardly tolerates the use of over-all
statistical methods
- a ‘case reserve’ reflects the expected ultimate settlement
value of a claim as established by the claims handling staff

* IBNR (delay in reporting)
- requires a statistical treatment based on past experience
and expected trends
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IBNR reserves

For an insurance company, the ability to estimate its loss
reserves correctly is of great importance:

- a correct view of the liabilities on the balance sheet
- premium calculation
- solvency

—> Actuarial loss reserving methods (also ‘IBNR techniques’):
to estimate the loss reserves statistically on aggregated data
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IBNR reserves

Traditionally: claims are aggregated and displayed in a
run-off triangle

Using a triangle simply avoids us having to introduce
complicated notation to cope with all possible situations

We assume that we have the following set of incremental
claimsdata{Y;; :i=1,....;5=1,...,s —i+ 1}

Most claims reserving methods usually assume that ¢t = s
We consider annual development and assume that the time

It takes for the claims to be completely paid is fixed and
Known
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Run-off triangle

Accident
year

Development year
2 . j A | ¢

1
2
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Three directions

Fundamental influences (exogenous factors) in the direction of:

* Accident Year
- changes in underwriting conditions (premium / coverage)
- changes in the size of the portfolio

* Development Year
- development pattern characteristics for short tail / long tail
business
- changes in the claim handling procedures changes in the
finalization of the claims

* Calendar Year
- monetary inflation
- changes in jurisprudence

Remark: Accident years and development years mostly
assumed to be independent; calendar year trends operate on

both development years and accident years
| |
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Lognormal models

Zi; = logYi; = ni; + € Nij = (Xﬁ)ij
e;; ~ i.4.d N(0,07)

1. Transform the incremental claims by taking their logarithm

2. Fit a model to the transformed values using ordinary
LS-regression analysis

3. Obtain estimates for the parameters in the linear predictor
and the process variance

4. Fitted values (on a log scale) are obtained by forming the
appropriate sum of estimates

5. Fitted values (on an untransformed scale) are NOT given by

§z] — eXp( o) )

— This gives an estimate of the median!
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Lognormal models

Zi; = logYi; = ni; + € Nij = (Xﬁ)ij
e;; ~ i.4.d N(0,07)

. Transform the incremental claims by taking their logarithm

Fit a model to the transformed values using ordinary
LS-regression analysis

Obtain estimates for the parameters in the linear predictor
and the process variance

Fitted values (on a log scale) are obtained by forming the
appropriate sum of estimates

Fitted values (on an untransformed scale) are given by
Y;J — eXP(% ‘|‘ ) with 0'2 = (3'2 (R(X’X) lR/) 2

X /R: design matrlx correspondmg to the upper
triangle/square

IIIIIIIIIIIIIIIIIIIIII
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Linear predictors

Examples
* Chain-ladder model

nij = o; + Bj, i+ <t+1

* PTF

O =gl
Uzg—OéerZﬁkJrZ%, 1+ <t+1

* Hoerl curve

77%]_0‘%+ﬁzlog()+%]> (4 >0) 1+ <t+1
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Statistical analysis

* Check the model assumptions!
- Gauss-Markov conditions of a regression model
- Normality for inference

* Goodness-of-Fit
- (Adjusted) coefficient of determination and AIC/BIC
- Residual plots
- Plot of the observed values vs. the fitted values

* Estimation of the parameters by maximum likelihood
methods A
-6% = L(Z - XB)(Z - XB)

-3 =(X'X)"'X'Z
Remark: 6° =

A

A
—

(Z — XB3)(Z — X3) — unbiased

(R4

1
n—p
estimator of o2
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Lognormal models

®* The mean of the IBNR reserve equals

t t
W:Z Z cRB)ij+30° (1+(R(X'X)'R) ;)

i=2 j=t+2—i

® The unique UMVUE of the mean of the IBNR reserve is given by

Wy — oFl(n D SS)S‘ S‘ e(Ré)ij,

1=2 j=t+2—1

where (I} («; z) denotes the hypergeometric function.

® The MLE of the mean of the IBNR reserve:

t t -
=3 3 Bt (HREX)TR),)
i=2 j=t+2—i
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Lognormal models

* Verrall (1991) has considered an estimator similar to W,,, but with
62 replaced with 62:

t t -~
Wy =3 37 ROyt (1HREKX)TIR);)

i=2 j=t+2—i

® Doray (1996) has considered the following simple estimator

estimator
t t R

=3 3 e®Di+io’

i=2 j=t+2—i

= Now we have the order relation
WU < WD < Wv,

which implies that W = E[Wy] < E[Wp] < E[Wy/]
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Generalized Linear Models

1. Random component

f (Yijs 05, ¢) = exp{[yi;0i; — 0(0i5)] /a(@) + c(yij, &)}
* f(.) belongs to the exponential family

° a(.), b(.) enc(.,.) are known functions: a(¢) = ¢/w;;

* E|Yi;] = piy = b'(0;5) and Var|Y;;| = b"(0:5)a(9) = V(wij)a(e)
2. Systematic Component

—

Nij = (Xﬁ)w — 61Rij,1 + -+ ﬁpRij,p, 1,7 =1,...,1

3. Link function

Nij = 9(Hij)

g iIs a monotone, differentiable function
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Generalized Linear Models: link function

* Canonical link — when g(,uz-j) — Hij
— sufficient statistic in 77 (when 77 = ) given by R'Y

* Logarithmic link — multiplicative parametric structure +
positive fitted values

Distribution Density ¢  Canonical Mean Variance
link 6(x)  function wn(0) function V(u)
2
N(w, o?) m}%exp (—%) o o 0 1
Poisson () e‘“Z—?!J 1 log( 1) e? L
Gamma(u,v) (Vuy) exp( Vﬂy) L1 1/ ~1/6 12
—3/2 N2 B
IG (1, 02) \y/mexp( Q;ya2z)2 ) o? 1/:u2 (—26) 1/2 3
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Generalized Linear Models

* Estimation of the parameters by maximum likelihood
methods (using iteratively reweighted least squares)

* Suppose:
response is always positive
data are invariably skew to the right ; = no particular distr.
variance increases with mean

/

* Quasi-likelihood (Wedderburn, 1974) estimation allows us
to model the response variable in a regression context
without specifying its distribution. We need only to specify
the link and variance functions to estimate the regression
coefficients.

* |f all the data are positive (greater than 0), identical
parameter estimates are obtained using full or
quasi-likelihood.
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Generalized Linear Models

1. Over-dispersed Poisson model:
The incremental claims Y;; are distributed as independent
over-dispersed Poisson random variables, with

Var|Yi;| = ¢E[Y]
— not only suitable for data consisting exclusively of

positive integers

4

quasi-likelihood approach
2. Gamma model:

Var[Yi;] = ¢ (E[Yi;])°
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Generalized Linear Models

Log-normal model:

U — |Og( ’L]) ~ N(,uzya 2)

Mij
— limitation: incremental claim amounts must be positive

Y
— Wi and¢20'2

A

Y;; = exp(nij + =

1 52

2

70

WZQ(M) > A — 1/~
) S Y = g = g7 ()
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Quasi-likelihood equations

When using a logarithmic link function, the quasi-likelinood
equations are given by

t+1—1 t+1—1
S en= Y ¥ 1sics
J=1 J=1
t+1—j t+1—j
S em= Y vy 15t

— The sum of the incremental claims in every row and column
has to be non-negative = problems when modelling incurred
data with a large number of negative incremental claims in the
later stages of development, which is the result of overestimates
of case reserves in the first development years.

— Work without GLM-software and without the log-link

KATHOLIEKE UNIVERSITEIT
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Distribution of fj

e R ~ MN(RJ. S(Rj)) (asymptotically) with

A
—

- B(RA) =2 = {0¢} = RX'WX) 'R/
- W = diag{wll, e ,wﬂ} with Wij = Var[Y;Lj]_l(Cl,LLfL"]'/d777ZJ')2

* The function g_1(7711, .-, ) has a nonzero differential

— —

Y = (Y11, ,¢u) at (RB), where ¢y = dp;/dnij
* Delta method:

-] SN (0,2(h)

where () = ¢/2%)
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Distribution of fj

The n~! bias of i: Cordeiro and McCullagh (1991)

A
-

B(§) = -3 E"X'E5F 1,

-3 = B(5) = {0} = (X'WX)~!

- 3¢ = B(Up) = {0;} = X=X/ (2] = diag{of,,--- , 07 })

-Fy = diag{ /i1, -, fu} with f;; = Var[y;;] ' s ks

-1:¢(t+1)/2 x 1 vector of ones

4

B(Rf) = —iRX'X/SSF,1
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Distribution of fj

Because /i;; = 9~ (7i;) = g~ ((R);;) and the link function is
monotone and twice differentiable, we can apply a Taylor series
expansion of f;; around 7;;:

R dpt; 1d?p;
Wij = 5 T+ d77i:77' (777,] 77zy) T3 2 dn '22.(7 (772] nij)2
i
. dpj . 1 d2uij 9
I o ) 4 = )
Mis — Hij d7773j (7729 777,]) 5 d777,23 (772] 777,])
dt; ; 1 d2,uz'
Eli:: — (1 ~ ]E . . 4 — ]Var’\
[:u'l] /%J] dni; [(7723 77@])] 9 dmg] (77@7)
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Distribution of ﬁ'

In matrix notation
S SO 2,
Eli—g = GiE[(n-7)] + §G2[Var(77)]
1 _ 1 .
= _iGlebx’ Fal + 2 Gy X1
- Gy =diag{Y11, -, Yut and Yi; = dpi;/dn;;
- Go = diag{11,- -+, @i} and o5 = dpqj/dn;;

- 3% =diag{c{y, - ,08%}
-1 :¢2 x 1 vector of ones

B(ji) = 5 {G22%1 — G REYX'SSF 1}

— the corrected adjusted values are [TC — ﬁ — ]3([7)
(B(.) = the value of B(.) at (¢, /1))
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Discounted IBNR reserve: lognormal framework

IBNR reserve

67;]'

A

(RB);;

REY Y

Y

=20t 21

Rﬁ zg +€zg

i.i.d. N(0,02)

N((RE)Z], 0‘2

(ROXX)'R),)

Y

Discounted IBNR reserve

Y (k)

def

Y

>y

1=2 j=t+2—1
2

(RB

N((n+ 5 k. 8%K)

€i;—Y (i+j—t—1)

IIIIIIIIIIIIIIIIIIIIII
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Convex bounds discounted IBNR reserve (lognormal)

1. Upperbound

5° = Y S: Fexpw.,) (U Fexpie,;) (V)

1=2 j=t+2—1

— S‘ Y exp ]—|—0W o (U)+0€ij(1)_1(v))

1=2 j=t+2—1
with Wy, = (R3);; —Y(i4+j—t—1)

2. Lower bound

S' = ) )  Elexp(Wy;)|Z]E[exp(e;;)]  (Z normal distributed)

i=2 j=t+2—i

— Z Z exp ( zg] =+ ngaW o (U) + ;(1 o ng)OW + 5 : )

2 Teis
1=2 3=1t4+2—1

with Pij = COIT(Z, WZJ)

KATHOLIEKE UNIVERSITEIT I
uv N Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers — p. 263/278




Convex bounds discounted IBNR reserve (lognormal)

* Choice of normal random variable Z?

t t
Z=> Y yY(i+j-t—1)

i=2 j=t+2—i

with
Vij = exp ((Rg)ij —(i+j—1t- 1)#)

* To compute the cdf’'s one can use the following result

e = [ ()i [ o (5 ) o
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Convex bounds discounted IBNR reserve (lognormal)

Upper bound

Fse(z) = /01 Fn <1og(z) — 1()g(FSjC1 (u))) du

with Fy (z) the cdf of N(0,0?) and

oc 1
> Y Y P (F )Y(z‘+jt1>(U>>

1=2 j=t+2—1 (RS

Y Y exp (E[Wi;] + ow, &1 (U))

1=2 j=t+2—1
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Convex bounds discounted IBNR reserve (lognormal)

Lower bound

/ /
F ' (p) = S: S: FE_[%/iﬂZ]E[eeij](p)’ pe(0,1)

i=2 j=t+2—i

= Y N EViylZ = F;1(1 - p)E[e]

i=2 j=t+2—i

— S‘ S‘ exp( ] PijOW,, o ()—F;(l—[)Z])UW +; 613)

1=2 j=t+2—1

(E[e"#|Z]: non-increasing function in Z since p;; < 0)
Fgi (x) — solving the equation:

S Y oxp (E[Wis] — piow, &7 (P (a) + (1= )i, + 507, ) ==

1=2 j=t+2—1
| |
1
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Discounted IBNR reserve: GLM framework

IBNR reserve

i-d S N )
ﬁc — /j_ B(ﬁ)

Discounted IBNR reserve

g def zt: zt: ﬂije—Y(i+j—t—1)

i=2 j=t+2—i

()~ Nt Dko
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Convex bounds discounted IBNR reserve (GLM)

1. Upperbound

5 = 7 7 Frs O Fexpv;,) (V)

1=2 j=t+2—1
> (Mw+B i+ VE(@i0 7 (V) ) exp(EIV ] + 0w, 0 ()
1=2 j=t+2—1

2. Lower bound

St = S‘ S‘ Elii;]E[exp(Vi;)|Z]  (Z normal distributed)

= ]
:, 1
= 2j t—|—2 1

with p;; = Corr(Z,V;;)
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Convex bounds discounted IBNR reserve (GLM)

* Choice of normal random variable Z?

t t
Z=> Y yY(i+j-t—1)

i=2 j=t+2—i

with
vig = (ig + B(fD)ig ) &xp (—(i + j — t = 1)9)

* The computation of the cdf’s is analogous to the lognormal
case
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A numerical illustration: dataset

292686
423113
344386
308603
338073
322270
387598
385603
388795
308586

683476
991584
936335
830615
884174
927791
1084439
1143038
951100

701376
1032142
971651
864751
895252
980275
1126376
1209301

747034
945156
1104206
981609
927435
952298
1035701

504265
500205
575666
504837
647289
577483

312468
413863
416179
372329
391208

284954
434622
359195
353145

170814
206319
246463

249348 69752
342383
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A numerical illustration

e Statistical model:

E[ zy] = Hij,
Var| zg] — Qbﬂzgja
log(ij) = mij

Nij = QG+ ﬁj-

* Return process: Black & Scholes model ;1 = 0.08,0 = 0.11
* Simulation: 100 000 generated paths
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A numerical illustration: Quantiles

p

Fg'(p)

F5'(p)

Fs'(p)

0.95
0.975
0.99
YESIS
OLeee

17888702
18749885
19809569
20569107
22239104

18033971
18923975
19986346
20799492
22410022

18926155
20077389
21511663
22551353
24870374
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A numerical illustration: QQ-plot

1.8*10"7 2.2*10"7

1.4*10°7

1077

T T T T T T
107 1.2*10"7 1.4*10"7 1.6*10"7 1.8*10"7 21077

QQ-plot of the quantiles of S’ (o) and S¢ (O) versus those of S
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A numerical illustration

Fg Fs

year 95% mean st. dev. 95% mean st. dev.
2 102356 85934 9481 103187 85934 9747
3 462847 387251 43602 466609 387251 44775
4 619090 503187 66173 624112 503187 68014
5 1042181 842092 113871 1050345 842092 117188
6 1432744 1142369 164543 1444486 1142369 169224
7 2286615 1815836 266221 2305985 1815836 273721
8 3590200 2864235 410836 3619252 2864235 422643
9 4197088 3312169 499465 4231171 3312169 513473
10 4197710 3264577 524580 4231798 3264577 539321

total | 17888702 | 14217631 | 2076583 | 18033971 | 14217631 | 2135185
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A numerical illustration

e Estimation error — from the estimation of the vector
parameters 5 from the data

e Statistical error — from the stochastic nature of the
underlying model

— Use bootstrapping to construct statistical confidence
intervals for the bounds incorporating the estimation error !

4

1. Bootstrap an upper triangle: this involves resampling, with
replacement, from the original residuals and then creating a
new triangle of past claims payments using the resampled
residuals together with the fitted values

2. Calculate for each bootstrap sample the desired percentile
of the distribution of S"

| |
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A numerical illustration

Q) s:(0.95)-distribution based on 5000 bootstrapped run-off

triangles

Distribution of bootstrapped

95th percentiles of S*

Simulated distribution
of F5*(0.95)

1 st percentile
2.5 th percentile
5 th percentile
10 th percentile
25 th percentile
50 th percentile
75 th percentile
90 th percentile
95 th percentile
97.5 th percentile
99 th percentile

16661827
16861353
17048933
17233865
17551891
17913169
18284619
18641949
18850593
18999178
19187288

16333152
16576586
16759301
17101271
17450048
17904390
18380651
18832716
19117307
19264184
19481477
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