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Abstract

In this paper we examine and summarize properties of several well-known risk mea-
sures, with special attention given to the class of distortion risk measures. We in-
vestigate the relationship between these risk measures and theories of choice under
risk. We also consider the problem of evaluating risk measures for sums of non-
independent random variables and propose approximations based on the concept of
comonotonicity.

1 Introduction

Insurance company risks can be classified in a number of ways, see for instance the “Re-

port of the IAA’s Working Party on Solvency”1. One possible way of classification is to

distinguish between financial risks (asset risks and liability risks) and operational risks,

see e.g. Nakada, Shah, Koyluogo & Collignon (1999).

Insurance operations are liability driven. In exchange for a fixed premium, the in-

surance company engages itself to pay the claim amounts related to the insured events.

Liability risks (also called technical risks) focus on the nature of the risk that the insur-

ance company is assuming by selling insurance contracts. They can be subdivided into

non-catastrophic risks (like claims volatility) and catastrophic risks (like September 11)

The insurance company will hold assets to meet its future liabilities. Asset risks

(or investment risks) are associated with insurers’ asset management. They are often

subdivided in credit risks (like the issuer of a bond gets ruined) and market risks (like

depreciation risk).

1“Report of the IAA’s Working Party on Solvency”, 2002, available at www.actuaries.org under “IAA
Documents”, “Papers”.
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Risks that cannot be classified as either asset or liability risks are called operational

risks and are subdivided in business risks (like lower production than expected) and event

risks (like system failure).

A risk measure is defined as a mapping from the set of random variables representing

the risks at hand to the real numbers. We will always consider random variables as losses,

or payments that have to be made. A negative outcome for the loss variable means that

a gain has occurred. The real number denoting a general risk measure associated with

the loss random variable Y will be denoted by ρ [Y ]. Common risk measures in actuarial

science are premium principles, see for instance Goovaerts, De Vijlder & Haezendonck

(1984), or also chapter 5 in Kaas, Goovaerts, Dhaene & Denuit (2001). Other risk mea-

sures are used for determining provisions and capital requirements of an insurer, in order

to avoid insolvency. Then they measure the upper tails of distribution functions. Such

measures of risk are considered in Artzner, Delbaen, Eber & Heath (1999), Wirch & Hardy

(2000), Panjer (2002), Dhaene, Goovaerts & Kaas (2003), Tsanakas & Desli (2003), among

others. In this paper, we will concentrate on risk measures that can be used for reserving

and solvency purposes.

Let X be the random variable representing the insurance company’s risks related to

a particular policy, a particular line-of-business or to the entire insurance portfolio over a

specified time horizon. We do not specify what kind of risk X is. It could be one specific

risk type, such as credit risk for all assets. Or it could be a sum of dependent risks

X1 + · · · + Xn, where the Xi represent the different risk types such as market risk, event

risk and so on, or where the Xi represent the claims related to the different policies of the

portfolio.

Ensuring that insurers have the financial means to meet their obligations to pay the

present and future claims related to policyholders is the purpose of solvency2. In order to

avoid insolvency over the specified time horizon at some given level of risk tolerance, the

insurer should hold assets of value ρ [X] or more. Essentially, ρ [X] should be such that

Pr [X > ρ [X]] is ‘small enough’. Note that ρ [X] is a risk measure expressed in monetary

terms. It could be defined for instance as the 99-th percentile of the distribution function

of X.

A portion of these assets finds its counterpart on the right hand side of the balance

sheet as liabilities (technical provisions or actuarial reserves). The value of these liabilities

will be denoted by P [X]. The ’required capital’ will be denoted by K [X]. It is defined

as the excess of the insurer’s required assets over its liabilities: K [X] = ρ [X] − P [X].

In order to determine the required capital K [X], the value of the liabilities P [X] has

2“On Solvency, Solvency Assessments and Actuarial Issues, An IAIS Issues Paper”, 2000, available at
www.iaisweb.org under “Publications”.
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to be determined. Since liabilities of insurance companies can in general not be traded

efficiently in open markets, they cannot be ‘marked to market’, but have to be determined

by a ‘mark to model’ approach. Hence, P [X] could be defined as a ‘fair value’ of the

liabilities. The liabilities P [X] could be defined as the 75-th percentile of the distribution

of X, or they could be defined as the expected value E [X] increased by some additional

prudency margin, or they could be evaluated using a ’replicating portfolio’ approach .

The definition of ’required capital’ is general in the sense that it can be used to define

’regulatory capital’, ’rating agency capital’ as well as ’economic capital’, depending on

the risk measure that is used and the way how the liabilities are evaluated. Regulatory

and rating agency capital requirements are often determined using aggregate industry

averages. In this case, they may not sufficiently reflect the risks of the particular company

under consideration. On the other hand, if they are based on customized internal models,

which is an emerging trend, they will reflect the individual company’s risk more accurately.

The reference period over which insolvency has to be avoided has to be chosen carefully,

taking into account the long-term commitments inherent in insurance products. It might

be the time needed to run-off the whole portfolio, or it may be a fixed time period such as

one year, in which case X also includes provisions to be set up at the end of the period.

The optimal level of risk tolerance will depend on several considerations such as the

length of the reference period, as well as policyholders’ concerns and owners’ interests. A

longer reference period will allow a lower level of risk tolerance. Regulatory authorities

and rating agencies want sufficiently high levels of capital because holding more capital

increases the capacity of the company to meet its obligations. Tax authorities, on the

other hand, will not allow insurance companies to avoid taxes on profits by using these

profits to increase the level of the capital. Furthermore, the more capital held, the lower

the return on equity. Therefore, the shareholders of the company will only be willing to

provide a sufficiently large capital K [X] if they are sufficiently rewarded for it. This ‘cost

of capital’ is covered by the policyholders who will have to pay an extra premium for it,

see e.g. Bühlmann (1985).

In order to verify if the actual capital is in accordance with the desired risk tolerance

level, the insurer has to compare the computed monetary value ρ [X] with the value of

the assets. It seems obvious to valuate the assets by their market value.

Our definition of ’required capital’ is related to one of the definitions of economic

capital in the “SOA Specialty Guide on Economic Capital”3: Economic capital is ‘the

excess of the market value of the assets over the fair value of the liabilities required to

ensure that obligations can be satisfied at a given level of risk tolerance, over a specified

3“Specialty Guide on Economic Capital”, SOA 2003, available at www.soa.org under “Sections,
RMTF, Subgroups, Economic Capital and Allocation”.
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time horizon’.

As pointed out in the ”Issues paper on solvency, solvency assessments and actuarial

issues”4 an insurance company’s solvency position is not fully determined by its solvency

margin alone. In general an insurer’s solvency relies on a prudent evaluation of the techni-

cal provisions, on the investment of the assets corresponding to these technical provisions

in accordance with quantitative and qualitative rules and finally also on the existence of

an adequate solvency margin.

In this paper, we will concentrate on risk measures ρ [X] that can be used in deter-

mining the ’total balance sheet capital requirement’ which is the sum of both liabilities

and solvency capital requirement: ρ [X] = P [X] + K [X].

As mentioned above, the risk X will often be a sum of non-independent risks. Hence, we

will consider the general problem of determining approximations for risk measures of sums

of random variables of which the dependency structure is unknown or too cumbersome

to work with.

In Section 2 we introduce several well-known risk measures and the relations that

hold between them. Characterizations for ordering concepts in terms of risk measures are

explored in Section 3. The concept of comonotonicity is introduced in Section 4. The

class of distortion risk measures is examined in Section 5. Approximations for distortion

risk measures of sums of non-independent random variables are considered. Section 6

concludes the paper.

2 Some well-known risk measures

As a first example of a risk measure, consider the p-quantile risk measure, often called

the ‘VaR’ (Value-at-Risk) at level p in the financial and actuarial literature. For any p

in (0, 1), the p-quantile risk measure for a random variable X, which will be denoted by

Qp(X), is defined by

Qp [X] = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1) , (1)

where FX(x) = Pr [X ≤ x]. We also introduce the risk measure Q+
p [X] which is defined

by

Q+
p [X] = sup {x ∈ R | FX(x) ≤ p} , p ∈ (0, 1) . (2)

Note that only values of p corresponding to a horizontal segment of FX lead to different

values of Qp [X] and Q+
p [X].

4“Issues Paper on Solvency, Solvency Assessment and Actuarial Issues”, IAIS 2000, available at
www.iaisweb.org under “Publications”.
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Let X denote the aggregate claims of an insurance portfolio. The liabilities (provisions)

for this portfolio are given by P . Assume the insurer establishes a solvency capital K =

Qp [X] − P with p sufficiently large, e.g. p = 0.99. In this case, the capital can be

interpreted as the ’smallest’ capital such that the insurer becomes technically insolvent,

i.e.claims exceed provisons and capital, with a (small) probability of at most 1 − p:

K = inf {L | Pr [X > P + L] ≤ 1 − p} (3)

Using the p-quantile risk measure for determining a solvency capital is meaningful in

situations where the default event should be avoided, but the size of the shortfall is less

important. For shareholders or management e.g., the quantile risk measure gives useful

information since avoiding default is the primary concern, whereas the size of the shortfall

is only secondary.

Expression (1) can also be used to define Q0 [X] and Q1 [X]. For the latter quantile,

we take the convention inf ∅ = +∞. We find that Q0(X) = −∞. For a bounded random

variable X, we have that Q1 [X] = max (X). Note that Qp [X] is often denoted by F−1
X (p).

The quantile function Qp [X] is a non-decreasing and left-continuous function of p. In the

sequel, we will often use the following equivalence relation which holds for all x ∈ R and

p ∈ [0, 1]:

Qp [X] ≤ x ⇔ p ≤ FX(x). (4)

Note that the equivalence relation (4) holds with equalities if FX is continuous at this

particular x.

A single quantile risk measure of a predetermined level p does not give any information

about the thickness of the upper tail of the distribution function from Qp [X] on. A

regulator for instance is not only concerned with the frequency of default, but also about

the severity of default. Also shareholders and management should be concerned with the

question “how bad is bad?” when they want to evaluate the risks at hand in a consistent

way. Therefore, one often uses another risk measure which is called the Tail Value-at-Risk

(TVaR) at level p. It is denoted by TVaRp [X], and defined by

TVaRp [X] =
1

1 − p

∫ 1

p

Qq [X] dq, p ∈ (0, 1) . (5)

It is the arithmetic average of the quantiles of X, from p on. Note that the TVaR is

always larger than the corresponding quantile. From (5) it follows immediately that the

Tail Value-at-Risk is a non-decreasing function of p.

Let X again denote the aggregate claims of an insurance portfolio over a given reference

period and P the provision for this portfolio. Setting the capital equal to TVaRp [X]−P ,
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we could define ’bad times’ as those where X takes a value in the interval [Qp [X] , TVaRp [X]].

Hence, ’bad times’ are those where the aggregate claims exceed the threshold Qp [X], but

not using up all available capital. The width of the interval is a ’cushion’ that is used in

case of ’bad times’. For more details, see Overbeck (2000).

The Conditional Tail Expectation (CTE) at level p will be denoted by CTEp [X]. It

is defined as

CTEp [X] = E [X | X > Qp [X]] , p ∈ (0, 1) . (6)

Loosely speaking, the conditional tail expectation at level p is equal to the mean of the

top (1 − p)% losses. It can also been interpreted as the VaR at level p augmented by the

average exceedance of the claims X over that quantile, given that such exceedance occurs.

The Expected Shortfall (ESF) at level p will be denoted by ESFp [X] , and is defined

as

ESFp [X] = E
[
(X −Qp [X])+

]
, p ∈ (0, 1) . (7)

This risk measure can be interpreted as the expected value of the shortfall in case the

capital is set equal to Qp [X] − P .

The following relations hold between the four risk measures defined above.

Theorem 1 (Relation between Quantiles, TVaR, CTE and ESF). For p ∈ (0, 1),

we have that

TVaRp [X] = Qp [X] +
1

1 − p
ESFp [X] , (8)

CTEp [X] = Qp [X] +
1

1 − FX(Qp [X])
ESFp [X] , (9)

CTEp [X] = TVaRFX(Qp[X]) [X] . (10)

About the Tail Value-at-Risk, from Definition (5) we have the following elementary

result, which will be applied later: if X has a finite expectation E[X], then

lim
p↘0

TVaRp [X] = E[X]. (11)

Note that if FX is continuous then

CTEp [X] = TVaRp [X] , p ∈ (0, 1) . (12)

In the sequel, we will often use the following lemma, which expresses the quantiles of a

function of a random variable in terms of the quantiles of the random variable.
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Lemma 1 (Quantiles of transformed random variables). Let X be a real-valued

random variable, and 0 < p < 1. For any non-decreasing and left continuous function g,

it holds that

Qp [g(X)] = g (Qp [X]) . (13)

On the other hand, for any non-increasing and right continuous function g, one has

Qp [g(X)] = g(Q+
1−p [X]). (14)

A proof of this result can be found e.g. in Dhaene, Denuit, Goovaerts, Kaas & Vyncke

(2002a). As an application of Lemma 1, we immediately find that

E
[
X | X < Q+

p [X]
]
) = −CTE1−p [−X] (15)

holds for any p ∈ (0, 1).

3 Risk measures and ordering of risks

Comparing random variables is the essence of the actuarial profession. Several ordering

concepts, such as stochastic dominance and stop-loss order, have been introduced for

that purpose in the actuarial literature, see e.g. Goovaerts, Kaas, Van Heerwaarden &

Bauwelinckx (1990). Other applications of stochastic orders can be found in Shaked &

Shanthikumar (1994).

Definition 1 (Stochastic dominance, stop-loss and convex order). Consider two

loss random variables X and Y . X is said to precede Y in the stochastic dominance sense,

notation X ≤st Y , if and only if the distribution function of X always exceeds that of Y :

FX(x) ≥ FY (x), −∞ < x < +∞; (16)

X is said to precede Y in the stop-loss order sense, notation X ≤sl Y , if and only if X

has lower stop-loss premiums than Y :

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞; (17)

X is said to precede Y in the convex order sense, notation X ≤cx Y , if and only if X ≤sl Y

and in addition E[X] =E[Y ].

In the definitions of stop-loss order and convex order above, we tacitly assume that

the expectations exist. In the following theorem it is stated that stochastic dominance

can be characterized in terms of ordered quantiles. The proof is straightforward.
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Theorem 2 (Stochastic dominance vs. ordered quantiles). For any random pair

(X, Y ) we have that X is smaller than Y in stochastic dominance sense if and only if

their respective quantiles are ordered:

X ≤st Y ⇔ Qp [X] ≤ Qp [X] for all p ∈ (0, 1) . (18)

In the following theorem, we prove that stop-loss order can be characterized in terms

of ordered TVaR’s.

Theorem 3 (Stop-loss order vs. ordered TVaR’s). For any random pair (X, Y ) we

have that X ≤sl Y if and only if their respective TVaR’s are ordered:

X ≤sl Y ⇔ TVaRp [X] ≤ TVaRp [X] for all p ∈ (0, 1) . (19)

Remark 1 (CTE does not preserve convex order).

Recall the third item of Theorem 1. The identity TVaRFX(d) [X] =CTEFX (d) [X] holds for

any d such that 0 < FX(d) < 1. Hence along the same line as the proof of (b) above, we

can obtain the implication that

X ≤sl Y ⇐ CTEp [X] ≤ CTEp [Y ] for all p ∈ (0, 1) .

However, the other implication is not true, in general. Actually, we make a somewhat

stronger statement below:

X ≤cx Y � CTEp [X] ≤ CTEp [Y ] for all p ∈ (0, 1) . (20)

A simple illustration for (20) is as follows: Let X and Y be two random variables where

FY is uniform over [0, 1], and FX is given by

FX(x) =




x if 0 ≤ x < 0.85,
0.85 if 0.85 ≤ x < 0.9,
0.95 if 0.9 ≤ x < 0.95,
x if 0.95 ≤ x ≤ 1.

(21)

Clearly, FX(x) ≤ FY (x) for x < 0.9, and FX(x) ≥ FY (x) for x ≥ 0.9. We have that

E[X] =E[Y ] = 0.5 and X ≤sl Y , hence that X ≤cx Y . However, we easily check that

CTE0.9 [X] >CTE0.9 [Y ] since CTE0.9 [X] = 0.975 and CTE0.9 [Y ] = 0.95. ∇

4 Comonotonicity

4.1 Comonotonic bounds for sums of dependent random vari-
ables

A set S in Rn is said to be comonotonic, if, for all (y1, y2, . . . , yn) and (z1, z2, . . . , zn) in

this set, yi < zi for some i implies yj ≤ zj for all j. Notice that a comonotonic set is a
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‘thin’ set, in the sense that it is contained in a one-dimensional subset of Rn. When the

support of a random vector is a comonotonic set, the random vector itself and its joint

distribution are called comonotonic.

It can be proven that an n-dimensional random vector Y = (Y1, Y2, . . . , Yn) is comono-

tonic if and only if

Y
d
= (F−1

Y1
(U), F−1

Y2
(U), . . . , F−1

Yn
(U)), (22)

where
d
= stands for ‘equality in distribution’, and U is a random variable that is uniformly

distributed over the unit interval (0,1). In the remainder of this paper, the notation U

will only be used to denote such a uniformly distributed random variable.

For any random vector X = (X1, X2, . . . , Xn), not necessarily comonotonic, we will

call its comonotonic counterpart any random vector with the same marginal distributions

and with the comonotonic dependency structure. The comonotonic counterpart of X =

(X1, X2, . . . , Xn) will be denoted by Xc = (Xc
1, X

c
2, . . . , X

c
n). Note that

(Xc
1, X

c
2, . . . , X

c
n)

d
= (F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)).

It can be proven that a random vector is comonotonic if and only if all its marginal

distribution functions are non-decreasing functions (or all are non-increasing functions)

of the same random variable. For other characterizations and more details about the

concept of comonotonicity and its applications in actuarial science and finance, we refer

to the overview papers by Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b).

A proof for the following theorem concerning convex order bounds for sums of depen-

dent random variables is presented in Kaas, Dhaene & Goovaerts (2000).

Theorem 4 (Convex bounds for sums of random variables). For any random

vector (X1, X2, . . . , Xn) and any random variable Λ, we have that

n∑
i=1

E [Xi | Λ] ≤cx

n∑
i=1

Xi ≤cx

n∑
i=1

F−1
Xi

(U). (23)

The theorem above states that the least attractive random vector (X1, . . . , Xn) with

given marginal distribution functions FXi
, in the sense that the sum of its components

is largest in the convex order, has the comonotonic joint distribution, which means that

it has the joint distribution of
(
F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)
)
. The components of this

random vector are maximally dependent, all components being non-decreasing functions

of the same random variable. Several proofs have been given for this result, see e.g.

Denneberg (1994), Dhaene & Goovaerts (1996), Müller (1997) or Dhaene, Wang, Young

& Goovaerts (2000).
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The random vector (E [X1 | Λ] ,E [X2 | Λ] , . . . ,E [Xn | Λ]) will in general not have the

same marginal distributions as (X1, X2, . . . , Xn). If one can find a conditioning random

variable Λ with the property that all random variables E[Xi | Λ] are non-increasing func-

tions of Λ (or all are non-decreasing functions of Λ), the lower bound Sl =
∑n

i=1E[Xi | Λ]

is a sum of n comonotonic random variables.

4.2 Risk measures and comonotonicity

In the following theorem, we prove that the quantile risk measure, the Tail Value-at-Risk

and the expected shortfall are additive for a sum of comonotonic random variables.

Theorem 5 (Additivity of risk measures for sums of comonotonic risks). Con-

sider a comonotonic random vector (Xc
1, X

c
2, . . . , X

c
n), and let Sc = Xc

1 + Xc
2 + · · · + Xc

n.

Then we have for all p ∈ (0, 1) that

Qp [Sc] =

n∑
i=1

Qp [Xi] , (24)

TVaRp [Sc] =
n∑

i=1

TVaRp [Xi] , (25)

ESFp [Sc] =

n∑
i=1

ESFp [Xi] . (26)

From the theorem above, we can conclude that the quantile risk measure, TVaR

and ESF risk measure for a comonotonic sum can easily be obtained by summing the

corresponding risk measures of the marginal distributions involved. Specifically, if all the

random variables Xi above have the same distribution as that of X, then we find Qp [nX] =

n Qp [X] , TVaRp [nX] = n TVaRp [X] and E
[
(nX −Qp [nX])+

]
= n E

[
(X −Qp [X])+

]
.

As we will see, the CTE risk measure is in general not additive for sums of comonotonic

risks. Nevertheless, we immediately find that CTEp [nX] = n CTEp [X] . Another case

where the additivity property does hold for CTE is given in the following remark.

Remark 2 (Additivity of CTE for sums of comonotonic continuous risks).

Consider a comonotonic random vector (Xc
1, X

c
2, . . . , X

c
n) with continuous marginal distri-

butions. For any random variable X, we have that FX(x) is continuous in x ∈ (−∞,∞)

if and only if Qp [X] is strictly increasing in p ∈ (0, 1). This implies that the sum Sc is

continuously distributed. Furthermore, the continuity of the distribution function of Sc

implies that CTEp [Sc] =TVaRp [Sc] for each p ∈ (0, 1). Therefore it follows from (25)

that

CTEp [Sc] = TVaRp [Sc] =
n∑

i=1

TVaRp [Xi] =
n∑

i=1

CTEp [Xi] .
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∇
For the case where the marginal distributions are not continuous and not the same,

however, the CTE is, in general, not additive for comonotonic risks. Here we propose an

illustration for this case.

Remark 3 (CTE is not additive for sums of comonotonic risks).

Consider the comonotonic random vector (Xc, Y c), where X has a distribution FX given

by (21) and Y is uniformly distributed in (0, 1). We find

CTE0.9 [Sc] = CTE0.9 [Xc] + CTE0.9 [Y c] −
(

1

1 − 0.95
− 1

1 − 0.9

)
ESF0.9 [Xc]

< CTE0.9 [Xc] + CTE0.9 [Y c] .

∇

A risk measure ρ is said to be sub-additive if for any random variables X and Y , one

has ρ(X + Y ) ≤ ρ(X) + ρ(Y ). Sub-additivity of a risk measure ρ immediately implies

ρ

(
n∑

i=1

Xi

)
≤

n∑
i=1

ρ (Xi) .

A risk measure is said to preserve stop-loss order if for any X and Y, one has that X ≤sl Y

implies ρ [X] ≤ ρ [Y ].

Theorem 6 (Sub-additivity of risk measures). Any risk measure that preserves stop-

loss order and that is additive for comonotonic risks is sub-additive.

As a special case of Theorem 6, we find that TVaR is sub-additive:

TVaRp [X + Y ] ≤ TVaRp [X] + TVaRp [Y ] , p ∈ (0, 1) . (27)

In the following remark we show that CTE is not sub-additive.

Remark 4 (CTE is not sub-additive).

Let X be uniformly distributed in (0, 1), and let Y be defined by

Y = (0.95 −X)I(0<X≤0.95) + (1.95 −X)I(0.95<X<1),

where IA denotes the indicator function which equals 1 if condition A holds and 0 other-

wise. It is easy to see that Y is also uniformly distributed on (0, 1) and

X + Y = 0.95 I(0<X≤0.95) + 1.95 I(0.95<X<1). (28)
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Eq. (28) indicates that X + Y follows a discrete law with only two jumps:

Pr(X + Y = 0.95) = 1 − Pr(X + Y = 1.95) = 0.95.

For p = 0.90, by formula (9) one easily checks that CTEp [X + Y ] = 1.95, CTEp [X] =

CTEp [Y ] = 0.95, and hence CTEp [X + Y ] > CTEp [X] + CTEp [Y ]. ∇

In the following remarks we show that both the quantile risk measure and ESF are

not sub-additive.

Remark 5 (VaR is not sub-additive).

Let X and Y be i.i.d. random variables which are Bernoulli (0.02) distributed. We immedi-

ately find that Q0.975 [X] = Q0.975 [Y ] = 0. On the other hand, Pr (X + Y = 0) = 0.9604,

which implies that Q0.975 [X + Y ] > 0. As another illustration of the fact that the quantile

risk measure is not sub-additive, consider a bivariate normal random vector (X, Y ). One

can easily prove that the distribution functions of X + Y and Xc + Y c only cross once,

in (µX + µY , 0.5). This implies that Qp [X + Y ] > Qp [X] + Qp [Y ] if p < 0.5, whereas

Qp [X + Y ] < Qp [X] + Qp [Y ] if p > 0.5. ∇

Remark 6 (ESF is not sub-additve).

Let X and Y be i.i.d. random variables which are Bernoulli (0.02) distributed. It is

straightforward to prove that ESF0.99 [X] = 0, while ESF0.99 [X + Y ] > 0. ∇

Remark 7 (Translation-scale invariant distributions).

The distribution functions of the risks X1, X2, . . . , Xn are said to belong to the same

translation-scale invariant family of distributions if there exist a random variable Y , pos-

itive real constants ai and real constants bi such that Xi has the same distribution as

aiY + bi for each i = 1, 2, . . . , n. Examples of translation-scale invariant families of distri-

butions are normal distributions, or more generally, elliptical distributions with the same

characteristic generator, see e.g. Valdez, Dhaene & Goovaerts (2003). Now assume that

the risk measure ρ preserves stop-loss order and that ρ [aX + b] = a ρ [X] + b for any

positive real number a and any real number b. It is easy to prove that if the set of risks is

restricted to a translation-scale invariant family, then the risk measure ρ is sub-additive

in this family. ∇
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5 Distortion risk measures

5.1 Definition, examples and properties

In this section we will consider the class of distortion risk measures, introduced by Wang

(1996). The quantile risk measure and TVaR belong to this class. A number of the

properties of these risk measures can be generalized to the class of distortion risk measures.

The expectation of X, if it exists, can be written as

E [X] = −
∫ 0

−∞

[
1 − FX(x)

]
dx +

∫ ∞

0

FX(x)dx. (29)

Wang (1996) defines a family of risk measures by using the concept of distortion function

as introduced in Yaari’s dual theory of choice under risk, see also Wang & Young (1998).

A distortion function is defined as a non-decreasing function g : [0, 1] → [0, 1] such that

g(0) = 0 and g(1) = 1. The distortion risk measure associated with distortion function g

is denoted by ρg [·] and is defined by

ρg [X] = −
∫ 0

−∞

[
1 − g

(
FX(x)

)]
dx +

∫ ∞

0

g
(
FX(x)

)
dx, (30)

for any random variable X. Note that the distortion function g is assumed to be inde-

pendent of the distribution function of the random variable X. The distortion function

g(q) = q corresponds to E[X]. Note that if g(q) ≥ q for all q ∈ [0, 1], then ρg [X] ≥E[X] .

In particular this result holds in case g is a concave distortion function. Also note that

g1(q) ≤ g2(q) for all q ∈ [0, 1] implies that ρg1
[X] ≤ ρg2

[X].

One immediately finds that g
(
FX(x)

)
is a non-increasing function of x with values in

the interval [0, 1]. However ρg [X] cannot always be considered as the expectation of X un-

der a new probability measure, because g
(
FX(x)

)
will not necessarily be right-continuous.

For a general distortion function g, the risk measure ρg [X] can be interpreted as a “dis-

torted expectation” of X, evaluated with a “distorted probability measure” in the sense

of a Choquet-integral, see Denneberg (1994). Substituting g
(
FX(x)

)
by
∫ FX(x)

0
dg(q) in

(30) and reverting the order of the integrations, one finds that any distortion risk measure

ρg [X] can be written as

ρg [X] =

∫ 1

0

Q1−q[X]dg(q). (31)

From (30), one can easily verify that the quantile Qp [X], p ∈ (0, 1) corresponds to the

distortion function

g(x) = I(x>1−p), 0 ≤ x ≤ 1. (32)

13



The risk measure TVaRp [X], p ∈ (0, 1), corresponds to the distortion function

g(x) = min

(
x

1 − p
, 1

)
, 0 ≤ x ≤ 1. (33)

On the other hand, the risk measure ESFp[X] is not a distortion risk measure. From (10)

and the fact that TVaRp[X], p ∈ (0, 1), corresponds to the distortion function given in

(33), we find that CTEp [X], p ∈ (0, 1) can be written in the form ρg [X] with g given by

g(x) = min

(
x

1 − FX(Qp[X])
, 1

)
, 0 ≤ x ≤ 1. (34)

This function g, however, depends on the distribution function of X; hence we can not

infer that CTEp [·] is a distortion risk measure. Actually, it can be shown that CTE is

not a distortion risk measure.

It is easy to prove that any distortion risk measure ρg obeys the following properties,

see also Wang (1996):

• Additivity for comonotonic risks: For any distortion function g and all random

variables Xi,

ρg [Xc
1 + Xc

2 + · · · + Xc
n] =

n∑
i=1

ρg [Xi] . (35)

• Positive homogeneity: For any distortion function g, any random variable X and

any non-negative constant a, we have

ρg [aX] = aρg [X] . (36)

• Translation invariance: For any distortion function g, any random variable X

and any constant b, we have

ρg [X + b] = ρg [X] + b. (37)

• Monotonicity: For any distortion function g and any two random variables’s X

and Y where X ≤ Y with probability 1, we have

ρg [ X] ≤ ρg [Y ] (38)

The first property follows immediately from (31) and the additivity property of quantiles

for comonotonic risks. The second and the third properties follow from (31) and Lemma

1. The fourth property follows from (31) and the fact that X ≤ Y with probability 1
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implies that each quantile of Y exceeds the corresponding quantile of X. Note that in

the literature is often confused with currency independence, see Remark 3.5 in Goovaerts,

Kaas, Dhaene & Tang (2003).

In the following theorem, stochastic dominance is characterized in terms of ordered

distortion risk measures.

Theorem 7 (Stochastic dominance vs. ordered distortion risk measures). For

any random pair (X, Y ) we have that X is smaller than Y in stochastic dominance sense

if and only if their respective distortion risk measures are ordered:

X ≤st Y ⇔ ρg [X] ≤ ρg [Y ] for all distortion functions g. (39)

Proof. This follows immediately from (31) and Theorem 2.

5.2 Concave distortion risk measures

A subclass of distortion functions that is often considered in the literature is the class of

concave distortion functions. A distortion function g is said to be concave if for each q in

(0, 1], there exist real numbers ay and by and a line l(x) = ayx + by, such that l(q) = g(q)

and l(q) ≥ g(q) for all q in (0, 1]. A concave distortion function is necessarily continuous

in (0, 1]. For convenience, we will always tacitly assume that a concave distortion function

is also continuous at 0. A risk measure with a concave distortion function is then called

a ‘concave distortion risk measure’.

For any concave distortion function g, we have that g
(
FX(x)

)
is right-continuous, so

that in this case the risk measure ρg [X] can be interpreted as the expectation of X under

a ‘distorted probability measure’. Note that the quantile risk measure is not a concave

distortion risk measure whereas TVaR is a concave distortion risk measure.

In the following theorem, we show that stop-loss order can be characterized in terms

of ordered concave distortion risk measures.

Theorem 8 (SL-order vs. ordered concave distortion risk measures). For any

random pair (X, Y ) we have that X ≤sl Y if and only if their respective concave distortion

risk measures are ordered:

X ≤sl Y ⇔ ρg [X] ≤ ρg [Y ] for all concave distortion functions g. (40)

Proofs for the theorem above can be found in Yaari (1987), Wang & Young (1998) or

Dhaene, Wang, Young & Goovaerts (2000).

Concave distortion risk measures are subadditive, which mean that the risk measure

for a sum of random variables is smaller than or equivalent to the sum of the risk measures.
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• Subadditivity: For any concave distortion functions g, and any two random vari-

ables’s X and Y, we have

ρg [X + Y ] ≤ ρg [X] + ρg [Y ] . (41)

The proof follows immediately from Theorem 6, see also Wang & Dhaene (1998).

In Artzner (1999) and Artzner, Delbaen, Eber & Heath (1999) a risk measure satisfy-

ing the four axioms of subadditivity, monotonicity, positive homogeneity and translation

invariance is called “coherent”. As we have proven, any concave distortion risk measure

is coherent. As the quantile risk measure is not subadditive, it is not a “coherent” risk

measure.

Note that the class of concave distortion risk measures is only a subset of the class of

“coherent” risk measures, as is shown by the following example.

Example 1 (The Dutch risk measure).

For any random variable X, consider the risk measure

ρ [X] = E [X] + θ E
[
(X − α E [X])+

]
, α ≥ 1, 0 ≤ θ ≤ 1. (42)

We will call this risk measure the “Dutch risk measure”, because for non-negative random

variables, it is called the “Dutch premium principle”, see Kaas, van Heerwaarden &

Goovaerts (1994).

In the sequel of this example we assume that the parameters α and θ are both equal to 1.

In this case the Dutch risk measure is coherent. Indeed, the verifications of the properties

of positive homogeneity, translation invariance and subadditivity are immediate. Finally,

if X ≤ Y with probability 1, then E[X] ≤E[Y ], so that the property of monotonicity

follows from

ρ [X] = E [max (E [X] , X)] ≤ E [max (E [Y ] , Y )] = ρ [Y ] .

Next, we will prove that the Dutch risk measure ρ(·) is in general not additive for comono-

tonic risks. Let (Xc
1, X

c
2) be a comonotonic random couple with Bernoulli marginal distri-

butions: Pr [Xi = 1] = qi with 0 < q1 < q2 < 1 and q1+q2 > 1. After some straightforward

computations, we find

ρ [Xi] = qi (2 − qi) , i = 1, 2,

and

ρ [Xc
1 + Xc

2] = 2 q1 + (1 − q1) (q1 + q2) ,
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from which we can conclude that the Dutch premium principle is in general not additive

for comonotonic risks. Hence, the Dutch risk measure (with parameters equal to 1) is an

example of a risk measure that is coherent, although it is not a distortion risk measure.

The example also illustrates the fact that coherent risk measures are not necessarily

additive for comonotonic risks. ∇

As we have seen, the quantile risk measure Qp is not a concave distortion risk measure.

The following theorem states that in the class of concave distortion risk measures, the

one that leads to the minimal extra-capital compared to the quantile risk measure at

probability level p is the TVaR risk measure at the same level p.

Theorem 9 (Characterization of TVaR). For any 0 < p < 1 and for any random

variable X one has

TVaRp [X] = min
{
ρg [X] | g is concave and ρg ≥ Qp

}
. (43)

A result with a taste similar to our Theorem 9 is Proposition 5.2 in Artzner, Delbaen,

Eber & Heath (1999), which says that

VaRα [X] = inf {ρ [X] | ρ coherent and ρ ≥ VaRα}

holds for each risk variable X, see also Proposition 3.3 in Artzner (1999).

5.3 Risk measures for sums of dependent random variables

In this subsection, we will consider the problem of finding approximations for distorted

expectations (such as quantiles and TVaR’s) of a sum S =
∑n

i=1 Xi of which the marginal

distributions of the random variables Xi are given, but the dependency structure between

the Xi is unknown or too cumbersome to work with. In view of Theorem 4, we propose

to approximate (the d.f.) of S by (the d.f. of) Sc =
∑n

i=1 F
−1
Xi

(U) or (the d.f.) of

Sl =
∑n

i=1E[Xi | Λ], and approximate ρg [S] by ρg [Sc] or by ρg

[
Sl
]
. Note that Sc is a

comonotonic sum, hence from the additivity property for comonotonic risks we find

ρg [Sc] =

n∑
i=1

ρg [Xi] . (44)

On the other hand, if the conditioning random variable Λ is such that all E[Xi | Λ] are

non-decreasing functions of Λ (or all are non-increasing functions of Λ), then Sl is a

comonotonic sum too. Hence, in this case

ρg

[
Sl
]

=
n∑

i=1

ρg [E [Xi | Λ]] . (45)

17



In case of a concave distortion function g, we find from Theorem 4 that ρg

[
Sl
]

is a lower

bound whereas ρg [Sc] is an upper bound for ρg [S]:

ρg

[
Sl
] ≤ ρg [S] ≤ ρg [Sc] . (46)

In particular, we have that

TVaRp

[
Sl
] ≤ TVaRp [S] ≤ TVaRp [Sc] . (47)

Note that the quantiles of Sl, S and Sc are not necessarily ordered in the same way.

6 Final remarks

In this paper we examined and summarized properties of several well-known risk measures

that can be used in the framework of setting capital requirements for a risky business.

Special attention was given to the class of (concave) distortion risk measures. We consid-

ered the problem of how to evaluate risk measures for sums of non-independent random

variables. Approximations for such sums, based on the concept of comonotonicity, were

proposed. Several examples were provided to illustrate properties or to prove that cer-

tain properties do not hold. A problem that we did not consider in this paper is how to

determine the optimal threshold for determining the required capital. This problem is

considered in Examples 9 and 10 of Dhaene, Goovaerts & Kaas (2003).
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[3] Bühlmann, H. (1985). ”Premium calculation from top down”, ASTIN Bulletin, 15,
89-101.

18



[4] Denneberg, D. (1994). “Non-additive measure and integral”, Kluwer Academic Pub-
lishers, Boston.

[5] Dhaene, J.; Denuit, M.; Goovaerts, M.J.; Kaas, R.; Vyncke, D. (2002a). “The concept
of comonotonicity in actuarial science and finance: Theory”, Insurance: Mathematics
& Economics, vol. 31(1), 3–33.

[6] Dhaene, J.; Denuit, M.; Goovaerts, M.J.; Kaas, R.; Vyncke, D. (2002b). “The con-
cept of comonotonicity in actuarial science and finance: Applications”, Insurance:
Mathematics & Economics, vol. 31(2), 133–161.

[7] Dhaene, J.; Goovaerts, M.J. (1996). “Dependency of risks and stop-loss order”,
ASTIN Bulletin, vol. 26(2), 201–212.

[8] Dhaene, J.; Goovaerts, M.J.; Kaas, R. (2003). “Economic capital allocation derived
from risk measures”, NAAJ, vol. 7(2), 44–59.

[9] Dhaene, J.; Wang, S.; Young, V; Goovaerts, M. (2000). “Comonotonicity and max-
imal stop-loss premiums”, Mitteilungen der Schweiz. Aktuarvereinigung, 2000(2),
99–113.

[10] Goovaerts, M.J.; De Vijlder, F.; Haezendonck, J. (1984). “Insurance Premiums”,
North-Holland, Amsterdam.

[11] Goovaerts, M.J.; Kaas, R.; Dhaene, J.; Tang Q. (2003). ”A unified approach to
generate risk measures”. Submitted.

[12] Goovaerts, M.J.; Kaas, R.; Van Heerwaarden, A.E. & Bauwelinkx, T. (1990). “Ef-
fective Actuarial Methods”, North-Holland, Amsterdam.

[13] Kaas, R.; Dhaene, J.; Goovaerts; M.J. (2000). “Upper and lower bounds for sums of
random variables”, Insurance: Mathematics & Economics, 23, 151–168.

[14] Kaas, R.; Goovaerts, M.J., Dhaene, J.; Denuit, M. (2001). “Modern Actuarial Risk
Theory”, Kluwer Academic Publishers, pp. 328.

[15] Kaas, R.; Van Heerwaarden, A.E.; Goovaerts, M.J. (1994). “Ordering of Actuarial
Risks”, Caire Education Series, Amsterdam.

[16] Nakada, P.; Shah, H.; Koyluogo, H.U. & Collignon, O. (1999). ”P&C RAROC: A
catalyst for improved capital management in the property and casualty insurance
industry, The Journal of Risk Finance, Fall 1999, 1-18.

[17] Overbeck, L. (2000). “Allocation of economic capital in loan portfolios”, Measuring
risk in complex systems, Franke, J.; Haerdle, W.; Stahl, G. (eds), Springer.

[18] Panjer, H.H. (2002). “Measurement of risk, solvency requirements and allocation of
capital within financial conglomerates”, Institute of Insurance and Pension Research,
University of Waterloo, Research Report 01–15.

19



[19] Shaked, M.; Shanthikumar, J.G. (1994). “Stochastic orders and their applications”,
Academic Press, pp. 545.

[20] Tsanakas, A.; Desli E. (2003). ”Risk measures and theories of choice”, to be pub-
lished.

[21] Valdez, E.; Dhaene, J. (2003). ”Bounds for sums of non-independent log-elliptical
random variables”, forthcoming.

[22] Wang, S. (1996). “Premium calculation by transforming the layer premium density”,
ASTIN Bulletin 26, 71–92.

[23] Wang, S. and Dhaene, J. (1998). “Comonotonicity, correlation order and premium
principles”, Insurance: Mathematics & Economics 22, 235–242.

[24] Wang, S. and Young, V.R. (1998). “Ordering risks: expected utility theory versus
Yaari’s dual theory of risk”, Insurance: Mathematics & Economics 22, 235–242.

[25] Wirch, J.L.; Hardy, M.R. (2000). “Ordering of risk measures for capital adequacy”,
Institute of Insurance and Pension Research, University of Waterloo, Research Report
00-03.

[26] Yaari, M.E. (1987). “The dual theory of choice under risk”, Econometrica 55, 95–115.

20


