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Abstract

In the individual risk model, the total claims on a portfolio of insurance
contracts is the random variable of interest. The total claims is modelled as
the sum of all claims on the individual policies, which are assumed independent.
We present several techniques, such as convolution and recursions, to obtain
results in this model.
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1 Introduction

In the individual risk model, the total claims on a portfolio of insurance contracts is
the random variable of interest. We want to compute, for instance, the probability
that a certain capital will be sufficient to pay these claims, or the value-at-risk at
level 95% associated with the portfolio, being the 95% quantile of its cumulative
distribution function (cdf). The total claims is modelled as the sum of all claims on
the individual policies, which are assumed independent. We study other techniques
than convolution to obtain results in this model. Using transforms like the moment
generating function helps in some special cases. Also, we present approximations
based on fitting moments of the distribution. The Central Limit Theorem, which
involves fitting two moments, is not sufficiently accurate in the important right-hand
tail of the distribution. Hence, we also present two more refined methods using three
moments: the translated gamma approximation and the normal power approximation.

2 Convolution

In the individual risk model we are interested in the distribution of the total amount
S of claims on a fixed number of n policies:

S=X,+Xy4 -+ X, (1)
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where X;, i =1,2,...,n, denotes the claim payments on policy 7. Assuming that the
risks X; are mutually independent random variables, the distribution of their sum
can be calculated by making use of convolution.

The operation ‘convolution’ calculates the distribution function of X + Y from
those of two independent random variables X and Y, as follows:

Fxiy(s) =Pr[ X +Y <5

o0 2
:/ Fy(s —x)dFx(x) =: Fx % Fy(s). @)
The cdf Fx * Fy(-) is called the convolution of the cdf’s Fix(-) and Fy(-). For the cdf
of X +Y + Z, it does not matter in which order we perform the convolutions, hence
we have

(FX*Fy)*FzEFx*(Fy*Fz)EFX*Fy*Fz. (3)

For the sum of n independent and identically distributed random variables with
marginal cdf F', the cdf is the n-fold convolution of F', which we write as

FxFx. - xF = F" (4)

3 Transforms

Determining the distribution of the sum of independent random variables can often
be made easier by using transforms of the cdf. The moment generating function (mgf)
is defined as

mx(t) =E [e”]. (5)

If X and Y are independent, the convolution of cdf’s corresponds to simply multi-
plying the mgf’s. Sometimes it is possible to recognize the mgf of a convolution and
consequently identify the distribution function.

For random variables with a heavy tail, such as the Cauchy distribution, the mgf
does not exist. The characteristic function, however, always exists. It is defined as
follows:

ox(t) =E [e"tx} , —oo <t< . (6)

Note that the characteristic function is one-to-one, so every characteristic function
corresponds to exactly one cdf.
As their name indicates, moment generating functions can be used to generate
moments of random variables. The k-th moment of X equals
dk

E[X*] = —mx(t)

Atk (7)

t=0

A similar technique can be used for the characteristic function.
The probability generating function (pgf) is used exclusively for random variables
with natural numbers as values:

gx(t) =E[tX] =) " Pr[X = k]. (8)
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So, the probabilities Pr[X = k| in (8) serve as coefficients in the series expansion of
the pgf.

The cumulant generating function (cgf) is convenient for calculating the third
central moment; it is defined as:

rx(t) = logmx(t). (9)

The coefficients of tk—k, for k = 1,2,3 are E[X], Var[X] and E[(X — E[X])?]. The
quantities generated this way are the cumulants of X, and they are denoted by kg, k =
1,2,.... The skewness of a random variable X is defined as the following dimension-
free quantity: ,

K3 E|[(X —

Tx = o3 %, (10)
with ¢ = E[X] and ¢? = Var[X]. If yx > 0, large values of X — u are likely to
occur, hence the probability density function (pdf) is skewed to the right. A negative
skewness vx < 0 indicates skewness to the left. If X is symmetrical then vx = 0, but
having zero skewness is not sufficient for symmetry. For some counterexamples, see
[17].

The cumulant generating function, the probability generating function, the char-
acteristic function and the moment generating function are related to each other
through the formal relationships

rx(t) =logmx(t); gx(t) =mx(logt); ¢x(t) =mx(it). (11)

4 Approximations

A totally different approach is to approximate the distribution of S. If we consider
S as the sum of a ‘large’ number of random variables, we could, by virtue of the
Central Limit Theorem, approximate its distribution by a normal distribution with
the same mean and variance as S. It is difficult however to define ‘large’ formally and
moreover this approximation is usually not satisfactory for the insurance practice,
where especially in the tails, there is a need for more refined approximations which
explicitly recognize the substantial probability of large claims. More technically, the
third central moment of S is usually greater than 0, while for the normal distribution
it equals 0.

As an alternative for the CLT, we give two more refined approximations: the
translated gamma approximation and the normal power approximation (NP). In nu-
merical examples, these approximations turn out to be much more accurate than the
CLT approximation, while their respective inaccuracies are comparable, and are mi-
nor compared with the errors that result from the lack of precision in the estimates
of the first three moments that are involved.

Translated gamma approximation
Most total claim distributions have roughly the same shape as the gamma distribu-
tion: skewed to the right (v > 0), a non-negative range and unimodal. Besides the
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usual parameters « and (3, we add a third degree of freedom by allowing a shift over
a distance zy. Hence, we approximate the cdf of S by the cdf of Z + xy, where Z ~
gamma(a, 3). We choose «, 5 and z( in such a way that the approximating random
variable has the same first three moments as S.

The translated gamma approximation can then be formulated as follows:

Fs(s) = G(s — xo; , 3), where

1 xT
G(x’avﬁ) = —/ ya—lﬁae—ﬂydy7 x = 0.
I'(a) Jo
Here G(z;a, 3) is the gamma cdf. To ensure that «,  and z( are chosen such that
the first three moments agree, hence u = zy + %, o? = % and v = %, they must
satisfy

(12)

4 2 2
a= f=— and xoz,u——a. (13)

G o Y

For this approximation to work, the skewness v has to be strictly positive. In the
limit v | 0, the normal approximation appears. Note that if the first three moments
of the cdf F(-) are the same as those of G(-), by partial integration it can be shown
that the same holds for [;*27[1 — F(x)]dz, j = 0,1,2. This leaves little room for
these cdf’s to be very different from each other.

Note that if ¥ ~ gamma(a, §) with o > %, then roughly /43Y — 4o —1 ~
N(0,1). For the translated gamma approximation for S, this yields

S_ 2
Pr “§y+1(2—1)—y<1— 1—l>
g

2 G ~ O(y). (14)

The right hand side of the inequality is written as y plus a correction to compensate
for the skewness of S. If the skewness tends to zero, both correction terms in (14)
vanish.

NP approximation
The following approximation is very similar to (14). The correction term has a simpler
form, and it is slightly larger. It can be obtained by the use of certain expansions for
the cdf, but we will not reproduce that derivation here.

If E[S] = p, Var[S] = 02 and g = v, then, for s > 1,

Pr {S - Pest %(52 - 1)] ~ O(s) (15)

or, equivalently, for x > 1,

Pr[s_ugg;}zq)(,/%jtfi—xjtl—é). (16)
o Py v

The latter formula can be used to approximate the cdf of S, the former produces
approximate quantiles. If s < 1 (or z < 1), the correction term is negative, which
implies that the CLT gives more conservative results.
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5 Recursions

Another alternative to the technique of convolution are recursions. Consider a port-
folio of n policies. Let X; be the claim amount of policy 7, ¢ = 1,...,n and let the
claim probability of policy i be given by Pr[X; > 0] = ¢; = 1 — p;. It is assumed
that for each 7, 0 < ¢; < 1 and that the claim amounts of the individual policies are
integral multiples of some convenient monetary unit, so that for each i, the severity
distribution g;(z) = Pr[X; = x| X; > 0] is defined for x = 1,2, .. ..

The probability that the aggregate claims S equal s, i.e. Pr[S = s], is denoted by
p(s). We assume that the claim amounts of the policies are mutually independent.
An exact recursion for the individual risk model is derived in [12]:

p(s) = EZUZ-(S), s=1,2,... (17)

with initial value given by p(0) = [[\_, p; and where the coefficients v;(s) are deter-
mined by

v;(9) :]%Zgl(x) [zp(s — x) — vi(s — x)], s=1,2,... (18)

and v;(s) = 0 otherwise. In case the individual claim amounts have a two-point
distribution, this recursion reduces to the recursion in [22].

Other exact and approximate recursions have been derived for the individual risk
model, see [8], or [ENCYCLOPEDIA: ”De Pril recursions and approximations”].

A common approximation for the individual risk model is to replace the distribu-
tion of the claim amounts of each policy by a compound Poisson distribution with
parameter \; and severity distribution h;. From the independence assumption, it
follows that the aggregate claims S is then approximated by a compound Poisson
distribution with parameter

n
A=) "N (19)
i=1

and severity distribution h given by

h(y)zw, y=12,..., (20)

see e.g. [5, 14, 16]. Denoting the approximation for f(z) by ¢°7(x) in this particular
case, we find from Panjer’s [21] formula that the approximated probabilities can be
computed from the recursion

1 x n
g (@) == ) Ahi(y)g™(w —y) forz =12, (21)
y=1 =1

with starting value g°'(0) = e=.

The most common choice for the parameters is A\; = ¢; which guarantees that the
exact and the approximate distribution have the same expectation. This approxima-
tion is often referred to as the compound Poisson approximation.



6 Errors

Kaas [19] states that several kinds of error have to be considered when computing the
aggregate claims distribution. A first type of error results when the possible claim
amounts of the policies are rounded to some monetary unit, e.g. 1000 euro. Computing
the aggregate claims distribution of this portfolio generates a second type of error
if this computation is done approximately (e.g. moment matching approximation,
compound Poisson approximation, De Pril’s r-th order approximation, ...). Both
types of errors can be reduced at the cost of extra computing time. It is of course
useless to apply an algorithm that computes the distribution function exactly if the
monetary unit is large.

Bounds for the different types of errors are helpful in fixing the monetary unit and
choosing between the algorithms for the rounded model. Bounds for the first type
of error can be found e.g. in [13] and [18]. Bounds for the second type of error are
considered e.g. in [4, 5, 8, 11, 14].

A third type of error that may arise when computing aggregate claims follows
from the fact that the assumption of mutual independency of the individual claim
amounts may be violated in practice. Papers considering the individual risk model
in case the aggregate claims are a sum of non-independent random variables are
[1,2,3,9,10, 15, 20]. Approximations for sums of non-independent random variables
based on the concept of comonotonicity are considered in [6, 7].
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