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Abstract

Many types of insurance premium principles and/or risk measures can be charac-
terized by means of a set of axioms, which in many cases are rather arbitrarily chosen
and not always in accordance with economic reality. In the present paper we gener-
alize Yaari’s risk measure by relaxing his axioms. In addition, we derive translation
invariant minimal Orlicz risk measures, which we call Haezendonck risk measures, and
obtain sufficient conditions on the risk measure of Bernoulli risks to fulfill additivity
and superadditivity properties for Orlicz premium principles.

Keywords: Consistent risk measures, Haezendonck risk measure, Monotone conver-
gence theorem, Yaari’s dual theory of choice under risks

1 Introduction

Recently, in Goovaerts et al. (2003a) it was argued that risk measures should be selected in

an appropriate way in order to reflect the basic economic underlying reality. Indeed several

examples can be given, which are relevant to real life insurance problems where evidently the

properties that the risk measures should have are determined by the realities of the actuarial

applications.[1]

Example 1.1 (Insurance – reinsurance). Suppose that a risk X is split into two parts as

X = [X − (X − d)+] + (X − d)+.

∗Corresponding author. Tel.: +31-20-5254107; fax: +31-20-5254349.
†E-mails: Marc.Goovaerts@econ.kuleuven.ac.be, R.Kaas@uva.nl, Jan.Dhaene@econ.kuleuven.ac.be,

Q.Tang@uva.nl.
1The importance of choosing the right set of desirable properties that actuarial risk measures should

have for actuarial practice is discussed in the report of the Economic Capital Calculation and Allocation
Subgroup of the Risk Management Task Force of the Society of Actuaries, ‘Specialty Guide on Economic
Capital’ (version 1.4, dated June 2003, available from the SOA).
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Clearly, both parts are comonotonic (see Dhaene et al. (2002a,b)) because they are increasing

functions of X. A principle, say π[·], that is additive for comonotonic risks has

π [X] = π [X − (X − d)+] + π [(X − d)+] .

This has some advantages for allocating the premium between the two parts involved. It

provides for instance a tool to compare the part of the premiums charged for the risk (X−d)+

with the reinsurance premium πR [(X − d)+] that is actually charged by the reinsurer. The

same also holds for the case

X = aX + (1 − a)X, 0 ≤ a ≤ 1,

which leads to

π [X] = π [aX] + π [(1 − a)X]

since the principle π[·] is additive for comonotonic risks. In both situations comonotonic ad-

ditive risk measures are consistent with the practical problems at hand. Related discussions

can be found for instance in Wang (1996).

Example 1.2 (Premium calculation). For practical reasons, in the case of premium calcu-

lation, splitting of the risk into two parts aX and (1 − a)X for some 0 < a < 1 should not

lead to a decrease in premiums. Hence,

π [X] ≤ π [aX] + π [(1 − a)X] .

In this case subadditive risk measures for comonotonic risks are consistent with this particular

situation. This property has been called the subdecomposability of a risk in Goovaerts et

al. (1984).

Example 1.3 (Premium calculation from top-down). As in Bühlmann (1970) (see also

Gerber (1979, 1985) and Kaas et al. (2001)), suppose that one approaches a premium

calculation from top-down, for instance by considering a ruin probability model for the

determination of the portfolio premium on the top level. In case of automobile insurance

the risks constituting the portfolio can generally be considered to be independent. Then, in

order to distribute the premium income at the top level among the risks at the down level,

the use of an additive risk measure for independent risks,

π [X1 + X2] = π [X1] + π [X2] for independent X1 and X2,

is consistent with the situation at hand.

Example 1.4 (Capital allocation). In order to keep the residual risk of the conglomerate,

after the capital has been allocated, under control in the sense that the risk of the conglom-

erate benefits from the diversification, a superadditive risk measure is consistent. This is

because

π [X1 + X2] ≥ π [X1] + π [X2]
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results in the residual capital to be asked to the shareholders satisfying

(X1 + X2 − π [X1 + X2])+ ≤st (X1 − π [X1])+ + (X2 − π [X2])+ ,

where ≤st denotes “stochastically not greater than”.

Example 1.5 (Solvency margin). Consider the Bernoulli risk Bq with q ∈ [0, 1]. For any

a > 0 the risk measure π [aBq] should be increasing in q ∈ [0, 1] if this risk measure π[·]

is used as a premium rule. However, when one aims at calculating a “solvency margin” (a

provision for an adverse outcome that is much larger than the expected one) π [aBq] for this

Bernoulli risk, it is clear that π [aB0] = π [aB1] = 0 because in both situations there is no

uncertainty involved. One could think about π [aBq] = π [aB1−q] to express the equality of

uncertainty between the two risky situations aBq and aB1−q. One could also consider the

financial picture in the following sense by means of an actuarial safety loading λ > 0:

E [Bq] (1 + λ) = q (1 + α(1 − q)) = q + αq(1 − q),

where α is a proportional part of the excess amount 1 − q above the expected claim size q.

For another Bernoulli risk Bq′ with q′ = 1− q, one gets (1− q)(1+αq) = (1− q)+α(1− q)q.

Consequently, π [Bq] = π [B1−q] = αq(1 − q) is an example of a consistent risk measure for

calculating solvency margins.

The previous examples indicate that each realistic situation needs a specific set S of

axioms. We introduce the following definition:

Definition 1.1. Let S be a set of axioms for risk measures and α, 0 < α < 1, be a level. A

risk measure π[·] = π(S,α)[·] = πα[·] is called (S, α)–consistent if π[·] is a rule that assigns a

value to each risk X satisfying the axioms S and such that π [X] ≥ F−1
X (α), where F−1

X (α)

is the αth quantile of the risk X and is defined, as usual, by F−1
X (α) = inf{x : F (x) ≥ α}.

In the present paper we first generalize some of the consistent risk measures for the

following choice S1 of axioms:

A1. Monotonicity: X ≤st Y =⇒ π [X] ≤ π [Y ];

A2. Exchangeability: π [Xc + Y c] = π [X∗c + Y c] provided that π [X] = π [X∗];

A3. Continuity: π [Xn] converges to π [X] if Xn is nondecreasing and converges weakly to

X.

Here and throughout, for a random vector (Y1, . . . , Yn) we write by (Y c
1 , . . . , Y c

n ) a comono-

tonic random vector such that Y c
i and Yi have the same distribution for i = 1, 2, . . . , n.

Clearly, S1 is less restrictive than the axioms of Yaari’s (1987) dual theory of choice under

risks because, according to Yaari’s axioms,

π [Xc + Y c] = π [Xc] + π [Y c] = π [X∗c + Y c]
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must hold and hence A2 follows immediately. We notice that the first axiom is not always

valid in case one uses a risk measure as a solvency measure as was explained in Example 1.5.

Then, we consider another choice S2 of axioms as follows:

B1. Monotonicity: X ≤st Y =⇒ π [X] ≤ π [Y ];

B2. Positive homogeneity: π [aX] = aπ [X] for a > 0;

B3. Subadditivity: π [X1 + X2] ≤ π [X1] + π [X2].

This is the set of axioms satisfied by an Orlicz premium principle; see Goovaerts et al. (1984,

2003b). By considering Orlicz distances for the risk (X − u)+ and determining u optimally,

one obtains in addition a translation invariance property for this risk measure; see Section

3, where we will introduce the Haezendonck risk measure.

2 Generalized Yaari risk measure

For simplicity, in this section when we mention a risk we mean that it is a nonnegative

random variable. The result below can easily be extended to the more general case where

the risk takes values on the whole real line.

Let π[·] be a risk measure such that for a risk X, the value π [X] is uniquely determined

by its distribution function FX . We write X ∼ Y if π [X] = π [Y ] and denote by Bq with

0 ≤ q ≤ 1 a Bernoulli variable satisfying

Bq =

{

1 with probability q,
0 with probability 1 − q.

(2.1)

In terms of the risk measure π[·] and the Bernoulli variable Bq, we introduce two functions

v(·, ·) and f(·) by

v(x, q) = π [xBq] , f(x) = v(x, 1), (2.2)

where x ≥ 0 and 0 ≤ q ≤ 1.

Theorem 2.1. Let the risk measure π[·], the functions f(·) and v(·, ·) given above be such

that

w(q) =
∂

∂x
v(x, q)|x=0

exists and is nondecreasing in q ∈ [0, 1] with w(0) = 0 and w(1) = f ′(0) > 0. Then π[·]

satisfies the monotonicity axiom A1, the exchangeability axiom A2 and the continuity axiom

A3 if and only if the function f(·) is continuous and nondecreasing on [0, +∞) and

π [X] = f

(

1

w(1)

∫ +∞

0

w (1 − FX(x)) dx

)

. (2.3)
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Proof. 1. First we prove the “if” part.

Assume that (2.3) holds with the function f(·) continuous and nondecreasing on [0, +∞).

The proof of the monotonicity axiom A1 is trivial, and the continuity axiom A3 follows

directly from the monotone convergence theorem. So we only need to prove the exchange-

ability axiom A2. For any risk X, in case
∫ +∞

0
w (1 − FX(x)) dx = +∞, by (2.3) it holds

that π [X] = π [X∗] = f (+∞). Hence by axiom A1, we can conclude that π [Xc + Y c] =

π [X∗c + Y c] = f (+∞), which indicates A2. Symmetrically, the same discussion can be

given for the case where
∫ +∞

0
w (1 − FX∗(x)) dx = +∞. Thus it remains to prove A2 for the

case where
∫ +∞

0

w (1 − FX(x)) dx < +∞ and

∫ +∞

0

w (1 − FX∗(x)) dx < +∞. (2.4)

We apply an approximation device to prove the result. Write Yn = min{Y, n}, n = 1, 2, . . ..

The first relation in (2.4) indicates that

∫ +∞

0

w
(

1 − FXc+Y c
n
(x)
)

dx ≤

∫ +∞

0

w (1 − FX(x − n)) dx

= nw(1) +

∫ +∞

0

w (1 − FX(x)) dx

< +∞.

Thus, for each n = 1, 2, . . ., applying integration by parts we have

π [Xc + Y c
n ] = f

(

1

w(1)

∫ 1

0

F−1
Xc+Y c

n

(1 − y)dw (y)

)

= f

(

1

w(1)

∫ 1

0

(

F−1
X (1 − y) + F−1

Yn
(1 − y)

)

dw (y)

)

.

Define the inverse function of f(·), as usual, by f−1(y) = inf{x : f(x) ≥ y}. It follows

immediately from (2.3) that

π [Xc + Y c
n ] = f

(

f−1 (π [X]) +
1

w(1)

∫ 1

0

F−1
Yn

(1 − y)dw (y)

)

.

Symmetrically, it holds that

π [X∗c + Y c
n ] = f

(

f−1 (π [X∗]) +
1

w(1)

∫ 1

0

F−1
Yn

(1 − y)dw (y)

)

.

This proves that the relation

π [Xc + Y c
n ] = π [X∗c + Y c

n ] (2.5)

holds for each n = 1, 2, . . .. Finally, by axiom A3, letting n → +∞ on both sides of (2.5)

yields that π [Xc + Y c] = π [X∗c + Y c].
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2. Next we prove the “only if” part.

Clearly, by the monotonicity axiom A1 and the continuity axiom A3, the function f(x)

is nondecreasing and continuous in x ∈ [0, +∞) and the bivariate function v(x, q) is also

nondecreasing and continuous both in x ∈ [0, +∞) and in q ∈ [0, 1]. It follows immediately

from (2.2) that

xBq ∼ f−1 (v(x, q)) . (2.6)

Now we formulate the remaining proof into three steps.

2.1. First we only consider a special case where the risk X has a discrete distribution

function with finitely many supporting points x0 < x1 < . . . < xn, satisfying







Pr [X = xi] = pi ≥ 0, i = 0, 1, . . . , n,
n
∑

i=0

pi = 1.
(2.7)

Without loss of generality we assume x0 = 0. We define

∆i =

{

xi − xi−1 with probability pi + . . . + pn,
0 with probability p0 + . . . + pi−1,

i = 1, . . . , n.

So ∆i satisfies

∆i =d (xi − xi−1)Bpi+...+pn
, i = 1, . . . , n,

where =d denotes “has the same distribution as”. It is easy to see that

X =d F−1
X (U) =

n
∑

i=1

F−1
∆i

(U) =d

n
∑

i=1

(xi − xi−1)B
c
pi+...+pn

. (2.8)

Hence,

π [X] = π

[

n
∑

i=1

(xi − xi−1)B
c
pi+...+pn

]

. (2.9)

Recall (2.6) and the exchangeability axiom A2. For any integer m ≥ 1 we have that

π [X] = π

[

n
∑

i=1

m

(

xi − xi−1

m
Bc

pi+...+pn

)

]

= f

(

n
∑

i=1

mf−1

(

v

(

xi − xi−1

m
, 1 − F (xi−1)

))

)

.

By the assumption on the function v(·, ·), one easily sees that

lim
x↘0

f−1 (v(x, q))

x
= lim

v↘0

f−1(v)

v
· lim

x↘0

v(x, q)

x
=

w(q)

f ′(0)
=

w(q)

w(1)
. (2.10)
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Therefore, by the continuity of the function f(·) and (2.10) we derive

π [X] = lim
m→+∞

f

(

n
∑

i=1

mf−1

(

v

(

xi − xi−1

m
, 1 − F (xi−1)

))

)

= f

(

n
∑

i=1

(xi − xi−1) lim
m→+∞

f−1 (v ((xi − xi−1)/m, 1 − F (xi−1)))

(xi − xi−1)/m

)

= f

(

n
∑

i=1

(xi − xi−1)
w(1 − F (xi−1))

w(1)

)

= f

(

1

w(1)

∫ +∞

0

w (1 − FX(x)) dx

)

.

This indicates that formula (2.3) holds for the case where X has only finite supporting points.

2.2. Now we consider the general case where the risk X has a distribution function

FX that is supported on the half line [0, +∞). It is standard in measure theory that the

distribution function FX can be approximated by a sequence of nonincreasing distribution

functions FXn
of the discrete type given in (2.7). Then, applying the continuity axiom A3,

the result obtained in step 2.1 and the continuity of the function f(·), respectively, we have

π [X] = lim
n→+∞

π [Xn]

= lim
n→+∞

f

(

1

w(1)

∫ +∞

0

w (1 − FXn
(x)) dx

)

= f

(

1

w(1)
lim

n→+∞

∫ +∞

0

w (1 − FXn
(x)) dx

)

= f

(

1

w(1)

∫ +∞

0

w (1 − FX(x)) dx

)

, (2.11)

where at the last step we applied the monotone convergence theorem. Thus, we obtain the

announced result (2.3) for the general case.

This ends the proof of Theorem 2.1.

3 The Haezendonck risk measure

Let X be a random variable with range −∞ ≤ min[X] ≤ max[X] ≤ +∞. In this section

we aim at deriving a new risk measure. For this purpose we introduce a nonnegative,

strictly increasing and continuous function φ(·) on [0, +∞) with φ(0) = 0, φ(1) = 1 and

φ(+∞) = +∞. Then, for any x ∈ (−∞, +∞) and π > x, applying the method of Goovaerts

et al. (2003b) we obtain that

Pr [X > π] = Pr [X − x > π − x] ≤ E

[

φ

(

(X − x)+

π − x

)]

. (3.1)
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For inequality (3.1) to make sense, the function φ(·) and the random variable X have to

satisfy

E [φ(X/c)] < +∞ for any c > 0. (3.2)

Hence, by assuming (3.2) the random variables considered are restricted to the class

Xφ = {X : E [φ(X/c)] < +∞ for any c > 0} . (3.3)

This will be assumed tacitly in this section. For any given value 0 < α < 1, consider the

equation

E

[

φ

(

(X − x)+

π − x

)]

= 1 − α. (3.4)

It has no solution if x ≥ max[X] and in this case we simply assume by convention that the

solution is +∞. So we only consider the case −∞ < x < max[X]. Recall the restrictions

made on the function φ(·). By the monotone convergence theorem we easily see that

lim
π↘x

E

[

φ

(

(X − x)+

π − x

)]

= φ (+∞) Pr [X > x] = +∞

and that

lim
π↗+∞

E

[

φ

(

(X − x)+

π − x

)]

= φ (0) Pr [X > x] = 0.

Hence for any −∞ < x < max[X] and 0 < α < 1, equation (3.4) has a unique solution, say

πα [X, x], which lies in the interval (x, +∞). By (3.1), we also see that the solution πα [X, x]

gives an upper bound for the quantile F−1
X (α).

We summarize this into a lemma as follows:

Lemma 3.1. Let X be a risk and let φ(·) be a nonnegative, strictly increasing and continuous

function on [0, +∞) with φ(0) = 0, φ(1) = 1 and φ(+∞) = +∞. Then for any −∞ < x <

max[X] and 0 < α < 1, equation (3.4) has a unique solution πα [X, x] satisfying

πα [X, x] ≥ F−1
X (α) and πα [X, x] > x. (3.5)

For the reader who wants some mathematical sophistication, Lemma 3.1 can be expressed

in terms of Young functions and Orlicz norms. That is the reason why we called it Orlicz risk

measure in Haezendonck and Goovaerts (1982). The idea originates from the Swiss premium

calculation principle due to Bühlmann et al. (1977).

We prove another property of the solution of equation (3.4) below:

Lemma 3.2. Let X and φ(·) be as in Lemma 3.1 and let {Xn, n = 1, 2, . . .} be a sequence

of random variables. If Xn ≤ Y for some Y ∈ Xφ and all n = 1, 2, . . . and Xn converges

weakly to X, then X ∈ Xφ and for any −∞ < x < max[X] and 0 < α < 1,

lim
n→∞

πα [Xn, x] = πα [X, x] . (3.6)
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Proof. The assertion X ∈ Xφ is an immediate consequence of the dominated convergence

theorem guaranteed by Xn ≤ Y for all n = 1, 2, . . .. In order to verify (3.6), it suffices to

prove that any limit point of the sequence {πα [Xn, x] , n = 1, 2, . . .}, say

l = lim
n′→∞

πα [Xn′, x] (3.7)

for a subsequence {Xn′ , n′ = 1, 2, . . .}, should satisfy

l = πα [X, x] . (3.8)

From Lemma 3.1 it is obvious that the limit l of (3.7) lies in the region [x, +∞]. But in case

l = x, applying the dominated convergence theorem it holds for any ε > 0 that

1 − α = lim inf
n′→∞

E

[

φ

(

(Xn′ − x)+

πα [Xn′, x] − x

)]

≥ lim inf
n′→∞

E

[

φ

(

(Xn′ − x)+

ε

)]

= E

[

φ

(

(X − x)+

ε

)]

→ +∞ as ε → 0,

which is a self-contradiction. Hence l > x. We apply the dominated convergence theorem

once again and obtain that

1 − α = lim
n′→∞

E

[

φ

(

(Xn′ − x)+

πα [Xn′, x] − x

)]

= E

[

φ

(

(X − x)+

l − x

)]

.

Hence,

E

[

φ

(

(X − x)+

l − x

)]

= E

[

φ

(

(X − x)+

πα [X, x] − x

)]

,

which indicates (3.8) since φ(·) is nonnegative and strictly increasing and max[X] > x. This

ends the proof of Lemma 3.2.

Now we introduce an important notion in this section:

Definition 3.1. Let φ(·) be as in Lemma 3.1 and let 0 < α < 1 be arbitrarily fixed. We

consider

πα [X] = inf
−∞<x<max[X]

πα [X, x] (3.9)

as the risk measure of a risk X, where πα [X, x] is the unique solution of equation (3.4).

In honor of the late J. Haezendonck we call it the Haezendonck risk measure, which is a

minimal Orlicz norm risk measure.

Recall our convention that πα [X, x] = ∞ for x ≥ max[X]. Definition (3.9) can also be

rewritten as

πα [X] = inf
−∞<x<∞

πα [X, x] .
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Theorem 3.1. Let φ(·) be as in Lemma 3.1. The Haezendonck risk measure πα [X] satisfies

F−1
X (α) ≤ πα [X] ≤ max[X]. (3.10)

Proof. The left-hand side of (3.10) is a direct consequence of Lemma 3.1. To prove the

right-hand side of (3.10), we choose x = F−1
X (α′) for some α < α′ < 1 and observe that

E

[

φ

(

(X − x)+

max[X] − x

)]

≤ Pr [X > x] ≤ 1 − α′ < 1 − α.

Comparing this with equation (3.4) gives πα [X, x] ≤ max[X]. Hence πα [X] ≤ max[X]. This

ends the proof of Theorem 3.1.

Example 3.1. Now we specify the risk in Definition 3.1 as Bq, a Bernoulli variable with

Pr [Bq = 1] = 1 − Pr [Bq = 0] = q ∈ [0, 1].

Let φ(y) = y for y ≥ 0 and let −∞ < x < 1 and 0 < α < 1 be arbitrarily given. In case

−∞ < x < 0 equation (3.4) leads to

(1 − q)
−x

π − x
+ q

1 − x

π − x
= 1 − α, (3.11)

whereas in case 0 ≤ x < 1 it leads to

q
1 − x

π − x
= 1 − α. (3.12)

Clearly, equation (3.11) has a unique solution

πα [Bq, x] =
q − αx

1 − α
, −∞ < x < 0,

whereas equation (3.12) has a unique solution

πα [Bq, x] =
q

1 − α
+

1 − α − q

1 − α
x, 0 ≤ x < 1.

Simple analysis gives that

πα [Bq] = inf
−∞<x<max[X]

πα [Bq, x] = min

{

q

1 − α
, 1

}

.

Theorem 3.2. Let πα [·] be the Haezendonck risk measure with φ(·) given in Lemma 3.1 and

let 0 < α < 1 be arbitrarily given. Then we have

B1. Monotonicity: If X ≤st Y then πα [X] ≤ πα [Y ];

B2. Positive homogeneity: πα [cX] = cπα [X] for any c > 0;
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B3. Subadditivity: If φ(·) is convex, then πα [X + Y ] ≤ πα [X]+πα [Y ] holds for any (X, Y )

such that

max[X + Y ] = max[X] + max[Y ]; (3.13)

B4. Translation invariance: πα [X + a] = πα [X] + a for any a;

B5. Preservation of convex ordering: If φ(·) is convex, then X ≤cx Y =⇒ πα(X) ≤ πα(Y ),

where X ≤cx Y means that Eϕ(X) ≤ Eϕ(Y ) holds for all convex functions ϕ(·) for

which the expectations involved exist.

Proof. B1. Trivially, X ≤st Y indicates that max[X] ≤ max[Y ] and that the inequality

πα [X, x] ≤ πα [Y, x] holds for any −∞ < x < max[X] ≤ max[Y ]. Hence by (3.5) and (3.10),

πα [Y ] = min

{

inf
−∞<x<max[X]

πα [Y, x] , inf
max[X]≤x<max[Y ]

πα [Y, x]

}

≥ min

{

inf
−∞<x<max[X]

πα [X, x] , max[X]

}

= min {πα [X] , max[X]}

= πα [X] .

B2. For any c > 0 and any −∞ < x < max[cX], by equation (3.4) we easily see that

πα [cX, x] = cπα [X, x/c]. Hence,

πα [cX] = inf
−∞<x<max[cX]

πα [cX, x]

= c inf
−∞<x<max[cX]

πα [X, x/c]

= c inf
−∞<x<max[X]

πα [X, x]

= cπα [X] .

B3. Let (X, Y ) be any pair of random variables such that (3.13) holds and let −∞ <

x < max[X] and −∞ < y < max[Y ], hence −∞ < x + y < max[X + Y ]. We derive

E

[

φ

(

(X + Y − x − y)+

πα [X, x] + πα [Y, y] − x − y

)]

≤ E

[

φ

(

(X − x)+ + (Y − y)+
(πα [X, x] − x) + (πα [Y, y] − y)

)]

≤
πα [X, x] − x

(πα [X, x] − x) + (πα [Y, y] − y)
E

[

φ

(

(X − x)+

πα [X, x] − x

)]

+
πα [Y, y] − y

(πα [X, x] − x) + (πα [Y, y] − y)
E

[

φ

(

(Y − y)+

πα [Y, y] − y

)]

= 1 − α,
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where we have used the convexity of the function φ and inequality (3.5). This proves that

for any −∞ < x < max[X] and −∞ < y < max[Y ],

πα [X + Y, x + y] ≤ πα [X, x] + πα [Y, y] . (3.14)

Recall our convention that πα [X, x] = +∞ for x ≥ max[X]. Hence, inequality (3.14) holds

for any −∞ < x < +∞ and −∞ < y < +∞. Therefore by (3.14) and the definition in (3.9),

πα [X + Y ] = inf
−∞<x+y<∞

πα [X + Y, x + y]

≤ inf
−∞<x+y<∞

(πα [X, x] + πα [Y, y])

= inf
−∞<x<∞

πα [X, x] + inf
−∞<y<∞

πα [Y, y]

= πα [X] + πα [Y ] .

B4. Analogously to the proof of B2, for any −∞ < a < +∞ and −∞ < x < max[X +a],

by equation (3.4) we easily see that πα [X + a, x] = πα [X, x − a] + a. It follows that

πα [X + a] = inf
−∞<x<max[X+a]

πα [X + a, x]

= inf
−∞<x<max[X+a]

πα [X, x − a] + a

= inf
−∞<y<max[X]

πα [X, y] + a

= πα [X] + a.

B5. For any π > x we write

ϕ(t) = ϕx,π(t) = φ

(

(t − x)+

π − x

)

for −∞ < t < +∞.

Since the function φ(·) is assumed to be convex, the function ϕ(t) is also convex in t. It

follows that Eϕ(X) ≤ Eϕ(Y ), that is

Eφ

(

(X − x)+

π − x

)

≤ Eφ

(

(Y − x)+

π − x

)

for any π > x.

This indicates that πα [X, x] ≤ πα [Y, x] holds for all x ∈ (−∞, +∞). Hence, πα(X) ≤ πα(Y ).

This ends the proof of Theorem 3.2.

Remark 3.1. Clearly, for any pair (X, Y ) of random variables it holds that max[X + Y ] ≤

max[X] + max[Y ]. But in the proof of Property B3 we crucially applied assumption (3.13)

because in case max[X +Y ] < max[X]+max[Y ] inequality (3.14) doesn’t hold for those pairs

(x, y) from a nonempty region

A = {(x, y) : x < max[X], y < max[Y ], x + y > max[X + Y ]}.

However, (3.13) is a very mild restriction in view that it holds for each of the following cases:

12



1. X and Y are independent;

2. X and Y are comonotonic;

3. X and Y are such that max[X + Y ] = ∞;

4. X and Y are weakly associated in the sense that the relation

Pr [X + Y > x + y | X > x, Y > y] > 0

holds for any choice of (x, y) such that Pr [X > x, Y > y] > 0.

The Orlicz and Haezendonck insurance premium principles and/or risk measures have

some interesting ordering consequences. Now we consider the following definition.

Definition 3.2. Let φ1(·) and φ2(·) be two real functions on (0, +∞). We say φ2(·) is convex

(concave) in φ1(·) if and only if φ2φ
−1
1 (·) is convex (concave).

We have the following result:

Theorem 3.3. Let φi(·), i = 1, 2, be two continuous and strictly increasing functions with

φi(x) = x for x ∈ [0, 1] and φi(+∞) = +∞, let π
(i)
α [X, x], i = 1, 2, be the solutions of (3.4)

with φi(·) and let the corresponding Haezendonck risk measures be

π(i)
α [X] = inf

−∞<x<max[X]
π(i)

α [X, x] , i = 1, 2.

1). If φ2(·) is convex in φ1(·) then π
(1)
α [X, x] ≤ π

(2)
α [X, x], hence π

(1)
α [X] ≤ π

(2)
α [X];

2). If φ2(·) is concave in φ1(·) then π
(1)
α [X, x] ≥ π

(2)
α [X, x], hence π

(1)
α [X] ≥ π

(2)
α [X].

Proof. We only give the proof of the first result since the proof for the second one can be

given similarly. By the definition of π
(2)
α [X, x], we have

E

[

φ2

(

(X − x)+

π
(2)
α [X, x] − x

)]

= 1 − α. (3.15)

Since the compound function φ2φ
−1
1 (·) is convex on (0, +∞), by Jensen’s inequality we obtain

E

[

φ2

(

(X − x)+

π
(1)
α [X, x] − x

)]

= E

[

φ2φ
−1
1 φ1

(

(X − x)+

π
(1)
α [X, x] − x

)]

≥ φ2φ
−1
1

(

E

[

φ1

(

(X − x)+

π
(1)
α [X, x] − x

)])

= φ2φ
−1
1 (1 − α)

= 1 − α. (3.16)

Comparing (3.16) with (3.15) yields that π
(2)
α [X, x] ≥ π

(1)
α [X, x]. This ends the proof of

Theorem 3.3.
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The following is an immediate consequence of Theorem 3.3, indicating that the Tail-VaR

characterizes the intermediate case among the Haezendonck risk measures based on convex

or concave functions φ(·) on (0, +∞):

Corollary 3.1. The Tail-VaR, which is defined by

TV aRα [X] = F−1
X (α) +

1

1 − α
E
[

(

X − F−1
X (α)

)

+

]

, α ∈ (0, 1) ,

is the smallest one among those Haezendonck risk measures πα [X] that correspond to strictly

increasing and convex functions φ(·) satisfying φ(x) = x for 0 < x < 1, and is the largest

one among those Haezendonck risk measures πα [X] that correspond to strictly increasing

and concave functions φ(·) satisfying φ(x) = x for 0 < x < 1 and φ(+∞) = +∞.

Proof. In the notation of Theorem 3.3, choose φ1(x) = x for x ∈ (0,∞), then by equation

(3.4) we derive that

π(1)
α [X, x] = x +

1

1 − α
E
[

(X − x)+

]

for all −∞ < x < max[X].

Taking infimum over the range x ∈ (−∞, max[X]) yields that π
(1)
α [X] = TV aRα [X]. Hence,

the corollary can be proved by Theorem 3.3.
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