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Abstract

Many types of insurance premium principles and/or risk measures can be charac-
terized by means of a set of axioms, which in many cases are rather arbitrarily chosen
and not always in accordance with economic reality. In the present paper we gener-
alize Yaari’s risk measure by relaxing his axioms. In addition, we derive translation
invariant minimal Orlicz risk measures, which we call Haezendonck risk measures, and
obtain sufficient conditions on the risk measure of Bernoulli risks to fulfill additivity
and superadditivity properties for Orlicz premium principles.

Keywords: Consistent risk measures, Haezendonck risk measure, Monotone conver-
gence theorem, Yaari’s dual theory of choice under risks

1 Introduction

Recently, in Goovaerts et al. (2003a) it was argued that risk measures should be selected in
an appropriate way in order to reflect the basic economic underlying reality. Indeed several
examples can be given, which are relevant to real life insurance problems where evidently the
properties that the risk measures should have are determined by the realities of the actuarial
applications.!

Example 1.1 (Insurance — reinsurance). Suppose that a risk X is split into two parts as

X =[X— (X —d)]+ (X —d),.
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Clearly, both parts are comonotonic (see Dhaene et al. (2002a,b)) because they are increasing
functions of X. A principle, say =[], that is additive for comonotonic risks has

T X]=7[X = (X =d); ]+ 7 [(X —d)4].

This has some advantages for allocating the premium between the two parts involved. It
provides for instance a tool to compare the part of the premiums charged for the risk (X —d)
with the reinsurance premium 7 [(X — d)] that is actually charged by the reinsurer. The
same also holds for the case

X=aX+(1-0a)X, 0<a<l,

which leads to
[ X] =7n[aX]+7[(1-a)X]

since the principle 7[-] is additive for comonotonic risks. In both situations comonotonic ad-
ditive risk measures are consistent with the practical problems at hand. Related discussions
can be found for instance in Wang (1996).

Example 1.2 (Premium calculation). For practical reasons, in the case of premium calcu-
lation, splitting of the risk into two parts aX and (1 — a)X for some 0 < a < 1 should not
lead to a decrease in premiums. Hence,

m[X] <7aX]|+7[(1—a)X].

In this case subadditive risk measures for comonotonic risks are consistent with this particular
situation. This property has been called the subdecomposability of a risk in Goovaerts et
al. (1984).

Example 1.3 (Premium calculation from top-down). As in Biihlmann (1970) (see also
Gerber (1979, 1985) and Kaas et al. (2001)), suppose that one approaches a premium
calculation from top-down, for instance by considering a ruin probability model for the
determination of the portfolio premium on the top level. In case of automobile insurance
the risks constituting the portfolio can generally be considered to be independent. Then, in
order to distribute the premium income at the top level among the risks at the down level,
the use of an additive risk measure for independent risks,

[ X1+ Xo] = 7 [Xq] + 7 [X3] for independent X; and Xo,

is consistent with the situation at hand.

Example 1.4 (Capital allocation). In order to keep the residual risk of the conglomerate,
after the capital has been allocated, under control in the sense that the risk of the conglom-
erate benefits from the diversification, a superadditive risk measure is consistent. This is

because
™ [Xl + XQ] Z ™ [Xl] + [XQ]

2



results in the residual capital to be asked to the shareholders satisfying
(X1 +Xo =7 [Xi 4+ Xo]), <o (X1 —7[Xa]), + (X2 —7[Xa]),

where <,; denotes “stochastically not greater than”.

Example 1.5 (Solvency margin). Consider the Bernoulli risk B, with ¢ € [0,1]. For any
a > 0 the risk measure 7 [aB,] should be increasing in ¢ € [0, 1] if this risk measure ||
is used as a premium rule. However, when one aims at calculating a “solvency margin” (a
provision for an adverse outcome that is much larger than the expected one) 7 [aB,] for this
Bernoulli risk, it is clear that 7 [aBy| = 7 [aB;] = 0 because in both situations there is no
uncertainty involved. One could think about 7 [aB,| = 7 [aB;_,] to express the equality of
uncertainty between the two risky situations aB, and aB;_,. One could also consider the

financial picture in the following sense by means of an actuarial safety loading A > 0:
E[BJ(1+XA) =q(1+a(l —q) =q+aq(l—q),

where « is a proportional part of the excess amount 1 — ¢ above the expected claim size q.
For another Bernoulli risk By with ¢’ =1—g¢, one gets (1 —¢)(1+aq) = (1 —¢q) +a(l—q)g.
Consequently, 7 [B,| = 7 [B1—4] = aq(1 — ¢) is an example of a consistent risk measure for

calculating solvency margins.

The previous examples indicate that each realistic situation needs a specific set S of

axioms. We introduce the following definition:

Definition 1.1. Let S be a set of axioms for risk measures and o, 0 < o < 1, be a level. A
risk measure T[] = m(g.q)[-] = mal-] s called (S, a)—consistent if w[-] is a rule that assigns a
value to each risk X satisfying the azioms S and such that w[X] > Fy'(a), where Fi'(a)
is the ath quantile of the risk X and is defined, as usual, by Fyx'(a) = inf{z : F(x) > a}.

In the present paper we first generalize some of the consistent risk measures for the

following choice S; of axioms:
Al. Monotonicity: X <4 Y = 7 [X]| <7 [Y];
A2. Exchangeability: 7 [X¢+ Y] = 7 [X*® + Y] provided that 7 [X] = 7 [X*];

A3. Continuity: 7 [X,,] converges to m [X] if X, is nondecreasing and converges weakly to

X.
Here and throughout, for a random vector (Y3,...,Y,) we write by (Y,...,Y?°) a comono-
tonic random vector such that Y and Y; have the same distribution for ¢ = 1,2,...,n.

Clearly, S; is less restrictive than the axioms of Yaari’s (1987) dual theory of choice under

risks because, according to Yaari’s axioms,
T[X+Y]=n[X]|+n[Y]=n[X"+Y"
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must hold and hence A2 follows immediately. We notice that the first axiom is not always
valid in case one uses a risk measure as a solvency measure as was explained in Example 1.5.

Then, we consider another choice Sy of axioms as follows:
B1. Monotonicity: X <4 Y = 7 [X]| <7 [Y];
B2. Positive homogeneity: 7 [aX] = an [X] for a > 0;
B3. Subadditivity: 7 [X; + Xo] < 7 [X1] + 7 [Xy].

This is the set of axioms satisfied by an Orlicz premium principle; see Goovaerts et al. (1984,
2003b). By considering Orlicz distances for the risk (X — u); and determining u optimally,
one obtains in addition a translation invariance property for this risk measure; see Section

3, where we will introduce the Haezendonck risk measure.

2 Generalized Yaari risk measure

For simplicity, in this section when we mention a risk we mean that it is a nonnegative
random variable. The result below can easily be extended to the more general case where
the risk takes values on the whole real line.

Let 7[-] be a risk measure such that for a risk X, the value 7 [X] is uniquely determined
by its distribution function Fx. We write X ~ Y if 7 [X] = 7 [Y] and denote by B, with
0 < ¢ <1 a Bernoulli variable satisfying

B, - { 1 with probability ¢, (2.1)

0  with probability 1 — q.

In terms of the risk measure 7[-] and the Bernoulli variable B,, we introduce two functions
v(:,-) and f(-) by
U(l‘, Q> =7 [qu] ) f(.’L') = U(l‘, 1)7 (22)

where x > 0and 0 < ¢ < 1.

Theorem 2.1. Let the risk measure «[-], the functions f(-) and v(-,-) given above be such
that

0
w(g) = 50w, 0)l =0
exists and is nondecreasing in q € [0,1] with w(0) = 0 and w(1) = f'(0) > 0. Then =[]
satisfies the monotonicity axiom Al, the exchangeability axiom A2 and the continuity axiom

A8 if and only if the function f(-) is continuous and nondecreasing on [0,4+00) and

T[X]=f (ﬁ /0+Oow (1— Fy()) dx) . (2.3)



Proof. 1. First we prove the “if” part.

Assume that (2.3) holds with the function f(-) continuous and nondecreasing on [0, 4+00).
The proof of the monotonicity axiom Al is trivial, and the continuity axiom A3 follows
directly from the monotone convergence theorem. So we only need to prove the exchange-
ability axiom A2. For any risk X, in case fOJroow (1 — Fx(z))dx = 400, by (2.3) it holds
that 7 [X]| = 7 [X*] = f(+00). Hence by axiom Al, we can conclude that = [X¢+Y¢] =
T[X*+Y° = f(4+00), which indicates A2. Symmetrically, the same discussion can be
given for the case where f0+°° w (1 — Fx«(x))dz = +00. Thus it remains to prove A2 for the

case where
—+oco —+o0
/ w(l— Fx(z))dr < +oo and / w(l = Fy«(x))dz < 400. (2.4)
0 0

We apply an approximation device to prove the result. Write Y,, = min{Y,n}, n=1,2,....
The first relation in (2.4) indicates that

/0+°°w (1 = Fxepye(z)) da < /0+oow (1— Fx(z — n))dz

=nw(l)+ /0+00w(1 — Fx(x))dx

< +00.

Thus, for each n = 1,2, ..., applying integration by parts we have

TX+ Y= (ﬁ /01 Fyliye(1—y)dw (y))

= (o [ - BN -0 dww)

Define the inverse function of f(-), as usual, by f~!(y) = inf{z : f(z) > y}. Tt follows
immediately from (2.3) that

rbc v = (£ )+ s [ RN - pae)).

Symmetrically, it holds that

1
ey =7 (D [ R m).
0
This proves that the relation
T X+ Y] =n[X"“+Y] (2.5)

holds for each n = 1,2,.... Finally, by axiom A3, letting n — +o0 on both sides of (2.5)
yields that 7 [X¢+ Y] = 7w [X* + Y.



2. Next we prove the “only if” part.

Clearly, by the monotonicity axiom A1l and the continuity axiom A3, the function f(x)
is nondecreasing and continuous in = € [0,+00) and the bivariate function v(x,q) is also
nondecreasing and continuous both in x € [0, +00) and in ¢ € [0, 1]. It follows immediately
from (2.2) that

By~ 7 (v(z,9)) (2.6)
Now we formulate the remaining proof into three steps.
2.1. First we only consider a special case where the risk X has a discrete distribution
function with finitely many supporting points zo < z7 < ... < x,, satisfying
PriX =] =p; >0, i=0,1,...,n,
n 2.7
Yopi=1. (2.7)
i=0

Without loss of generality we assume xq = 0. We define

A, = { T; — Tiq with probability p; + ...+ pn, i—1.....n

0 with probability po + ...+ pi_1,

So A\, satisfies

d .
Ay =" (2 — 2i-1) B,y 4po> 1=1,...,n,

where =? denotes “has the same distribution as”. It is easy to see that

X =4 F);l(U) = Z F&}(U) =4 Z({CZ — xi*l)BIC%erern' (28)
i=1 1=1

Hence,
s [X] =T [Z(l’l — xil)B;i-f-----‘rpn] . (29)
i=1

Recall (2.6) and the exchangeability axiom A2. For any integer m > 1 we have that

R[X] = 7 lim (‘TB)]

i=1

iy (gmfl ('U (% 1—F(x“)>)> .

By the assumption on the function v(,-), one easily sees that

T () - _ _
e T T M s T o) ey (2.10)




Therefore, by the continuity of the function f(-) and (2.10) we derive

m[X] = lim f <Z: mf~! (v (% 1— F(xu)))>
f (i(mz — i) tim L@@ z)/m, 1 F(l’i—l))))

i=1 Mmoo (i —xi0)/m

_ - R w(l — F(z;1))
— f (Z( 7 Z—l) w(1> )

=1

ny (ﬁ /0+°°w(1 —FX(x))dx) .

This indicates that formula (2.3) holds for the case where X has only finite supporting points.

2.2. Now we consider the general case where the risk X has a distribution function
Fx that is supported on the half line [0,+00). It is standard in measure theory that the
distribution function F'x can be approximated by a sequence of nonincreasing distribution
functions Fl, of the discrete type given in (2.7). Then, applying the continuity axiom A3,
the result obtained in step 2.1 and the continuity of the function f(-), respectively, we have

7[X] = lim 7[X,]

n—-+o0o

- i (ﬁ /0+°Ow(1 - Fxn(x))dx)

+o0

_ (ﬁ lim w(i —Fxn(x))dx)

n—-+o0o 0

¢ (ﬁ /O+oow(1—FX(x))dx>, (2.11)

where at the last step we applied the monotone convergence theorem. Thus, we obtain the
announced result (2.3) for the general case.
This ends the proof of Theorem 2.1. O

3 The Haezendonck risk measure

Let X be a random variable with range —oco < min[X] < max[X] < 4o00. In this section
we aim at deriving a new risk measure. For this purpose we introduce a nonnegative,
strictly increasing and continuous function ¢(-) on [0, +oc) with ¢(0) = 0, ¢(1) = 1 and
¢(+00) = +00. Then, for any z € (—o0,+00) and 7 > z, applying the method of Goovaerts
et al. (2003b) we obtain that

Pr[X>7T]:Pr[X—x>7T—x]SEV(M>]. (3.1)

m™T—X



For inequality (3.1) to make sense, the function ¢(-) and the random variable X have to
satisfy
E[p(X/c)] < 400 for any ¢ > 0. (3.2)

Hence, by assuming (3.2) the random variables considered are restricted to the class
Xy ={X :E[¢p(X/c)] < 400 for any ¢ > 0}. (3.3)

This will be assumed tacitly in this section. For any given value 0 < a < 1, consider the

B o (M)] S (3.4

™ —X

equation

It has no solution if # > max[X] and in this case we simply assume by convention that the
solution is +00. So we only consider the case —oo < x < max[X]. Recall the restrictions

made on the function ¢(-). By the monotone convergence theorem we easily see that

lim E {¢ (M)} = ¢ (+00)Pr[X > 2] = 40

T\ ™=

Jim e o (F0)

Hence for any —oo < z < max[X] and 0 < o < 1, equation (3.4) has a unique solution, say

and that
=¢(0)Pr[X >z =0.

To | X, 2], which lies in the interval (z,+00). By (3.1), we also see that the solution 7, [X, z]
gives an upper bound for the quantile Fi'(a).

We summarize this into a lemma as follows:

Lemma 3.1. Let X be a risk and let ¢(-) be a nonnegative, strictly increasing and continuous
function on [0, 4+00) with ¢(0) =0, ¢(1) =1 and ¢(+00) = +o0. Then for any —oco < x <
max|[X] and 0 < o < 1, equation (3.4) has a unique solution 7, [ X, x| satisfying

To [X, 2] > F5'(a) and 7 [X,x] > . (3.5)

For the reader who wants some mathematical sophistication, Lemma 3.1 can be expressed
in terms of Young functions and Orlicz norms. That is the reason why we called it Orlicz risk
measure in Haezendonck and Goovaerts (1982). The idea originates from the Swiss premium
calculation principle due to Bithlmann et al. (1977).

We prove another property of the solution of equation (3.4) below:

Lemma 3.2. Let X and ¢(-) be as in Lemma 3.1 and let {X,,n =1,2,...} be a sequence
of random variables. If X,, <Y for some Y € X, and alln = 1,2,... and X,, converges
weakly to X, then X € Xy and for any —oo < x < max[X] and 0 < a < 1,

lim 7, [X,, 2] = 7m0 [ X, 2] . (3.6)

n—oo



Proof. The assertion X € X, is an immediate consequence of the dominated convergence
theorem guaranteed by X,, <Y for all n = 1,2,.... In order to verify (3.6), it suffices to
prove that any limit point of the sequence {m, [X,,z],n =1,2,...}, say

= lim 7w, [ Xy, 2] (3.7)

n/—oo

for a subsequence {X,,,n' =1,2,...}, should satisfy
[ =m, [X,x]. (3.8)

From Lemma 3.1 it is obvious that the limit  of (3.7) lies in the region [z, +00]. But in case

[ = x, applying the dominated convergence theorem it holds for any € > 0 that

1l—a = liI/n_)infE {gb (W()[i?/ _;]c)jx)]

> liminf E [gb (@ﬂ

-elo (5]
€
— +00 as e — 0,

which is a self-contradiction. Hence [ > x. We apply the dominated convergence theorem

once again and obtain that

oo ()] -5 (5]

2l (=) - )]

which indicates (3.8) since ¢(-) is nonnegative and strictly increasing and max[X| > x. This

Hence,

ends the proof of Lemma 3.2. O

Now we introduce an important notion in this section:

Definition 3.1. Let ¢(-) be as in Lemma 3.1 and let 0 < o < 1 be arbitrarily fized. We
consider
o [X] = inf Ta [ X, 7] (3.9)

—oco<z<max|[X]
as the risk measure of a risk X, where m, [X,x] is the unique solution of equation (5.4).
In honor of the late J. Haezendonck we call it the Haezendonck risk measure, which is a

manimal Orlicz norm risk measure.

Recall our convention that 7, [X,z] = oo for x > max[X]. Definition (3.9) can also be
rewritten as
o [X] = inf 7, [X, z].

—oo<r<oo



Theorem 3.1. Let ¢(-) be as in Lemma 3.1. The Haezendonck risk measure m,, [X] satisfies

Fi'(a) < 7, [X] < max[X]. (3.10)

Proof. The left-hand side of (3.10) is a direct consequence of Lemma 3.1. To prove the
right-hand side of (3.10), we choose » = Fi;'(a') for some o < o/ < 1 and observe that

E[qﬁ(@)] <PriX>z]<1-d<1l-a.

max|X]| — x

Comparing this with equation (3.4) gives 7, [X, 2] < max[X]. Hence 7, [X] < max[X]. This
ends the proof of Theorem 3.1. O

Example 3.1. Now we specify the risk in Definition 3.1 as B,, a Bernoulli variable with
Pr(B,=1]=1—-Pr[B,=0]=¢q € [0,1].

Let ¢(y) = y for y > 0 and let —oo < x < 1 and 0 < a < 1 be arbitrarily given. In case
—00 < x < 0 equation (3.4) leads to

-z 1—=x
1 — =1 3.11
1=q)—+ai— a, (3.11)
whereas in case 0 < x < 1 it leads to
]__
—— =1-a. (3.12)
T—T

Clearly, equation (3.11) has a unique solution

q—ax

To [ By, ] = , —oo < x <0,

1 -«
whereas equation (3.12) has a unique solution

1] — o —
q+&qx

o [Bg, x] = , 0<z<l
7o (B, 7] 11—« 1 -« .
Simple analysis gives that
To [By] = inf To [Bg, ] = min ELERER
e —oo<z<max|X] © 1—a’

Theorem 3.2. Let 7w, [] be the Haezendonck risk measure with ¢(-) given in Lemma 3.1 and

let 0 < a <1 be arbitrarily given. Then we have
B1. Monotonicity: If X <4Y then 7, [ X] < 7, [Y];
B2. Positive homogeneity: m, [cX]| = cmy [X] for any ¢ > 0;
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B3. Subadditivity: If ¢(-) is convez, then o [X + Y] < 7y [X] 47, [Y] holds for any (X,Y)
such that
max[X + Y] = max[X] + max[Y]; (3.13)

Bj4. Translation invariance: 7, [X + a| = wo [X]| + a for any a;

B5. Preservation of convex ordering: If ¢(+) is convex, then X <. Y = mo(X) < 7o (Y),
where X <. Y means that Ep(X) < E@(Y') holds for all convex functions ¢(-) for

which the expectations tnvolved exist.

Proof. B1. Trivially, X < Y indicates that max[X]| < max[Y] and that the inequality
7o [X, z] < 7, [Y, 2] holds for any —oco < z < max[X] < max[Y]. Hence by (3.5) and (3.10),

ma[Y] = min{ inf [V 4], inf Y, x]}

—oco<z<max|[X] max[X]<z<max[Y]

> min{ inf  ma [X, ], maX[X]}

—oco<z<max|[X]

min {7, [X], max[X]}
= 7o [ X].

B2. For any ¢ > 0 and any —oo < 2 < max[cX], by equation (3.4) we easily see that
7o [¢ X, x] = emy [ X, 2/c]. Hence,

To [cX] = inf To [cX, ]

—oco<z<max[cX]|

=c inf 7o [ X, x/c]

—oco<z<max[cX]

=c inf To | X, 2]
—oco<z<max|[X]

= ¢y [X].

B3. Let (X,Y) be any pair of random variables such that (3.13) holds and let —oo <
x < max[X] and —oo < y < max[Y], hence —co0 < x + y < max[X + Y]. We derive

oo (5 [)%]T;a v ;1]/ %))
<2 (o s )

< X g’f(;f[x - 0" V (M)J
o e et (el =)
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where we have used the convexity of the function ¢ and inequality (3.5). This proves that
for any —oo < < max[X] and —oo < y < max[Y],

Recall our convention that 7, [X, ] = 400 for z > max[X]. Hence, inequality (3.14) holds
for any —oo < x < 400 and —oo < y < 4+00. Therefore by (3.14) and the definition in (3.9),

T [ X +Y] = <in£< o [ X +Y, 2+ vy
—oco<T+y<oo
< .
s dnf  (meX g+ ma[Yiy))
- 7001£:Lf<oo Ta [X’ .%'] + foolgyf<oo Ta [Y’ y]
= 7, [X] + 7. [Y].

B4. Analogously to the proof of B2, for any —co < a < 400 and —o0 < z < max[X +al,
by equation (3.4) we easily see that m, [X + a,z] = 7, [X,x — a] + a. It follows that
o [X +a] = inf 7o [X + a, 7]

—oco<z<max|[X+a]

= inf o [X,x —al+a

—oco<z<max[X +a]

= inf 7o [ X, y] +a

—oo<y<max[X]

= 7, [ X] + a.

B5. For any m > x we write

(t - :E)+

() = pun(t) = (

) for —o0o <t < +00.

Since the function ¢(-) is assumed to be convex, the function ¢(¢) is also convex in ¢. It
follows that Ep(X) < Ep(Y), that is

SYCEERPINER R——

x T—x
This indicates that 7, [X, 2] < 7, [Y, z] holds for all z € (—o0, +00). Hence, 7, (X) < m,(Y).
This ends the proof of Theorem 3.2. U

Remark 3.1. Clearly, for any pair (X,Y") of random variables it holds that max[X + Y| <
max|[X]| + max[Y]. But in the proof of Property B3 we crucially applied assumption (3.13)
because in case max[X +Y] < max[X]+max[Y] inequality (3.14) doesn’t hold for those pairs
(x,y) from a nonempty region

A={(z,y): x < max[X], y < max[Y], z+y > max[X + Y]}.
However, (3.13) is a very mild restriction in view that it holds for each of the following cases:

12



1. X andY are independent;
2. X andY are comonotonic;
3. X and Y are such that max[X + Y] = oo;
4. X and Y are weakly associated in the sense that the relation
PriX+Y>z+y| X>z,Y >y|>0
holds for any choice of (x,y) such that Pr[X >z, Y > y] > 0.
The Orlicz and Haezendonck insurance premium principles and/or risk measures have

some interesting ordering consequences. Now we consider the following definition.

Definition 3.2. Let ¢1(-) and ¢2(+) be two real functions on (0, 4+00). We say ¢o(-) is convex
(concave) in ¢1(+) if and only if ¢po¢, () is conver (concave).

We have the following result:

Theorem 3.3. Let ¢;(+), 1 = 1,2, be two continuous and strictly increasing functions with
¢i(x) =z for x € [0,1] and ¢;(+00) = 400, let 7 [X, 2], i = 1,2, be the solutions of (3.4)
with ¢;(+) and let the corresponding Haezendonck risk measures be
9 [X] = inf 9 (X, z], i=1,2.
—oco<z<max|[X]
1). If ¢o(+) is convex in ¢1(-) then ) (X, z] < 7 (X, x|, hence P [(X] < r? [X]
2). If ¢o(-) is concave in ¢1(-) then 7y [X,z] > o [X, x|, hence M (X] > ) [(X].

.

Proof. We only give the proof of the first result since the proof for the second one can be

given similarly. By the definition of 7 [X, x], we have

Since the compound function ¢¢;*(+) is convex on (0, +00), by Jensen’s inequality we obtain
X —x X —x
E ¢2 (1() )+ =E ¢2¢1_1¢1 (1() )+
o [ X, x| —x o’ [ X, x| —x

oo (o} () )
= 0204 1 w&l)[X,x]—x

— 620" (1 - a)

Comparing (3.16) with (3.15) yields that =) [X, 2] > 7\ [X,z]. This ends the proof of
Theorem 3.3. O
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The following is an immediate consequence of Theorem 3.3, indicating that the Tail-VaR
characterizes the intermediate case among the Haezendonck risk measures based on convex

or concave functions ¢(-) on (0, +00):

Corollary 3.1. The Tail-VaR, which is defined by

1
TVaR,[X] = Fx'(a) + .

—

E [(X _ F)}l(a))J . ac(0,1),

is the smallest one among those Haezendonck risk measures o, [ X] that correspond to strictly
increasing and convex functions ¢(+) satisfying ¢(x) = x for 0 < x < 1, and is the largest
one among those Haezendonck risk measures 7, [X] that correspond to strictly increasing
and concave functions ¢(-) satisfying ¢p(x) = x for 0 < x < 1 and ¢(4+00) = +00.

Proof. In the notation of Theorem 3.3, choose ¢1(z) = x for x € (0,00), then by equation
(3.4) we derive that

O [X,z] =2+ E[(X —x),] for all — 0o < 2 < max[X].

—

Taking infimum over the range x € (—oo, max[X]) yields that ) [X]=TVaR, [X]. Hence,

the corollary can be proved by Theorem 3.3. U
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