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DE IBNR - DISCUSSIE 
 

LOGNORMALE LINEAIRE REGRESSIEMODELLEN IN 
SCHADERESERVERING 

 
Tom Hoedemakers1  Marc Goovaerts1,2  Jan Dhaene1,2 

 
Men moet steeds in het achterhoofd houden dat een statistische analyse voor het schatten 
van de schadereserve slechts één component is in het hele reserveringsproces. Meestal 
beschikt de actuaris over een zekere voorkennis bij het analyseren van dergelijke datasets. 
Reserveren is immers een praktische aangelegenheid. We moeten de data proberen te 
begrijpen in plaats van in alle mogelijke situaties steeds hetzelfde model toe te passen.  In die 
optiek is de bijdrage van Postuma en Ter Berg dan ook zeker aan te moedigen, aangezien zij 
ruimte laat voor het implementeren van extra informatie, iets wat in de toekomst zeker aan 
belang zal winnen. 
 
Toch merken we op dat het lognormale lineaire regressiemodel een vaak toegepast model is, 
onder andere ook bij 'de Australische aanpak' die door H.J. Prins wordt gepromoot. Het 
gebruiken van commerciële slogans ter verpakking van een doordeweekse statistische 
techniek, met de bedoeling een zweem van wetenschappelijkheid te creëren is voor een 
actuaris een brug te ver lijkt ons. Het  lognormale model werd immers als eerste stochastisch 
model gebruikt gelet op de eenvoud en dit op het moment dat het gebruik van modellering 
met een onderliggende GLM-benadering nog in de kinderschoenen stond. Anderzijds kan een 
lognormaal model eenvoudig geïmplementeerd worden - zonder gebruik te maken van 
gespecialiseerde software - met behulp van spreadsheets. De actuarissen in Nederland 
waren trouwens al op de hoogte van het gebruik van het lognormale model ongeveer een 
kwarteeuw geleden door het NN-boekje: Loss Reserving Methods, van De Wit-Van Eeghen. 
Dit model nu bestempelen als innoverend is gebakken lucht. 
 
Het is echter zeer belangrijk te vermelden dat het gebruik van lognormale lineaire 
regressiemodellen aanleiding kan geven tot totaal onbruikbare resultaten. Oorzaak hiervan is 
vaak dat de data niet vanzelfsprekend voldoen aan de modelassumpties die schuil gaan 
achter het lognormale model.   
 
We bespreken achtereenvolgens kort de lognormaliteit, de afhankelijkheid en de 
homoscedasticiteit. Vervolgens gaan we even dieper in op de interpretatie van de 
logtransformatie en tenslotte wijzen we nog op het gevaar dat schuil gaat achter het 
simuleren uit een lognormaal model (explosierisico). 
 
In een lognormaal lineair regressiemodel wordt eerst de logaritme genomen van de niet-
cumulatieve claims ijY . De normale variabelen )log( ijij YZ = worden dus verondersteld 

additief opgebouwd te zijn uit een deterministische component met gemiddelde ijη en een 

normaal verdeelde storingsterm )N(0,~ 2σε ij . 
Normaliteit kan eenvoudig getest worden aan de hand van allerlei statistische testen zoals 
o.a. de normale qq-plot, de Kolmogorov-Smirnov test, boxplots, histogrammen, … De 
veronderstelling van homoscedasticiteit van de storingstermen zal niet voldaan zijn indien de 
fouten een ongelijke variantie bezitten. Dit problem, dat in de praktijk vaak voorkomt, kan 
afgezwakt worden door gebruik te maken van gewogen regressie waarbij de gewichten 
empirisch bepaald worden. Bovendien komt het vaak voor dat de fouten gecorreleerd zijn van 
jaar tot jaar, waardoor de onafhankelijkheidsassumptie geschonden wordt.  
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Door het werken met getransformeerde data wordt een correcte interpretatie van de dataset 
bemoeilijkt. Een bijkomend nadeel is dat de dataset moet bestaan uit positieve waarden. 
Indien er bijvoorbeeld een overschatting gebeurd is van het te betalen bedrag, kan bij het 
werken met niet-cumulatieve data een negatief bedrag ontstaan. Negatieve waarden kunnen 
ook optreden bij herverzekeringen of teruginningen. 
 
Steekproeven in het reële leven zijn nooit oneindig. Bij eindige steekproeven zijn de staarten 
echter vaak zwaarder dan bij oneindige het geval zou zijn. Ook bij het schatten van de IBNR 
reserve werken we met een eindig aantal jaren. Het behandelen van de steekproef als zijnde 
oneindig kan in vele gevallen echter leiden tot een onderschatting van de reserve. 
 
Klassieke regressie-analyse in de lognormale context vereist volgende stappen  
 
             1) Neem de logaritme van de claims 

2) Fit een model op de getransformeerde waarden gebruik makend van kleinste 
kwadraten regressie-analyse 
3) Bereken schattingen voor de parameters 
4) Transformeer correct terug! 

 
Schattingen voor het gemiddelde worden niet eenvoudigweg bekomen door de lineaire 
predictor te exponentiëren. De gefitte waarden worden wel gegeven door 

)ˆ2/1ˆexp(ˆ 2
ijijijY ση +=                                                    (1) 

met  
                                                   ( ) 2122 ˆ')'(ˆˆ σσσ += −

ijij BXXB                                                 (2) 
en X, B de designmatrix corresponderend met de bovendriehoek resp. de benedendriehoek. 
Wanneer we nu gebruikmaken van een GLM-modellering met logaritmische linkfunctie (bv. 
een over-dispersed Poisson model), dan hebben we dat 

                                                       )ˆexp(ˆ
ijijY η=                                                          (3) 

De reden waarom er in (1) een variantie component aanwezig is, heeft te maken met het feit 
dat in een gegeneraliseerd lineair model de niet-cumulatieve data zelf als responsvariabelen 
gebruikt worden, terwijl men in de lognormale modellering werkt met de logaritme van de 
incrementele data als responsvariabelen. 
 
Hieruit vloeit onmiddellijk voort dat een schatting van de verwachte reserves stijgt naarmate 
de onderliggende variantie component groter wordt. Deze vertekeningscorrectie heeft 
uiteraard ook zijn impact op een extensieve simulatie gebaseerd op dit lognormale model 
waarbij extreme observaties de verwachte waarde sterk beïnvloeden. 
 
Concluderend kunnen we stellen dat een lognormale modellering correct kan zijn, maar het is 
zeker niet de modellering bij uitstek in een reserveringsproces.  
 
In hetgeen volgt illustreren we het explosie-effect van het lognormale model aan de hand van 
een voorbeeld. Beschouw onderstaande driehoek bestaande uit niet-cumulatieve claims: 
 
  1 2 3 4 5 6 7 8 9 10 

1 100009 299968 414232 493342 685473 849023 636022 36606 104179 88370 

2 6200 409596 284139 2513640 282809 204375 614953 210333 65252   

3 483439 156832 43447 382747 65722 66184 246965 10057    

4 13179 750669 894092 658117 229653 171645 319902     

5 349744 1995400 3488883 514386 103631 289768      

6 606697 700000 770310 1307200 1140218       

7 66023 880946 1756675 364362        

8 290301 1878413 3737107         

9 485011 439134          

10 180344                   
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Na een uitgebreide analyse m.b.v. het statistisch pakket SAS (door o.a. gebruik te maken van 
een parameter-selectietechniek)  bekomen we een regressiemodel met als lineaire predictor  
gegeven door volgende formule: 

,1)21(3)7(2)4(1)1(3)4(2)52(1)3( γβββαααη >−+>>>><<< ++++++= jijjjiiiij IIIIIII        (4) 

met ),,( 321 ααα , ),( 3,21 βββ enγ parameters die de ontstaansjaren, de afwikkelingsjaren en 

de kalenderjaren respectievelijk modelleren en waarbij bijvoorbeeld 1)2( =≤jI als 2≤j , 0 
anders. 
 
Gebruikmakend van bovenstaande formule (4) en een lognormaal regressiemodel bekomen 
we volgende output in SAS 

                                    

  estimate s.e. t-stat. p-value 

1α  10,4689 0,5544 18,88 <0,0001 

2α  9,4446 0,6523 14,48 <0,0001 

3α  10,6876 0,6528 16,37 <0,0001 

1β  1,4500 0,3717 3,90 0,0003 

2β  -0,7258 0,325 -2,23 0,0302 

3β  -1,7482 0,4733 -3,69 0,0006 

1γ  1,7274 0,6612 2,61 0,0120 
 
 
Niet minder dan 99,53% van de variantie in de historische claims wordt verklaard door de 
regressievergelijking. De aangepaste determinatiecoëfficiënt 2

aR , dat rekening houdt met het 
aantal verklarende variabelen in het model en het aantal waarnemingen, heeft een waarde 
van 0,9946. De ‘residual sum of squares’, de stochastische component van de variatie van de 
afhankelijke variabele, bedraagt 42,0466. Akaike's Informatie Criterium (AIC) en het 
Bayesiaans Informatie Criterium (BIC) hebben respectievelijk een waarde van 56,05 en 70,1. 
Deze ‘goodness-of-fit‘-maten en de parameterschattingen met bijhorend p-waarden indiceren 
op het eerste zicht een adequate fit die de historische data statistisch correct beschrijft. Er is 
duidelijk geen sprake van overparameterisatie. Indien we echter naar de residuplots kijken, 
merken we op dat de Gauss-Markov condities niet voldaan zijn.  Onderstaand hebben we de 
gestandaardiseerde residuen geplot tegenover de afwikkelingsjaren.  
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Het is duidelijk dat de residuen niet normaal verdeeld zijn met gemiddelde 0 en constante 
variantie 2σ .  De residuplot m.b.t. de kalenderjaarrichting vertoont een gelijkaardig patroon. 
De error-term moet onafhankelijk zijn van de plaats van observatie in de driehoek 
(homoscedasticiteit). Wanneer de storingsterm afhankelijk is van de ontstaansjaren, 
afwikkelingsjaren of de kalenderjaren spreekt men van heteroscedasticiteit en betekent dit dat 
de vooropgestelde assumpties niet voldaan zijn. Uit bovenstaande residuplot blijkt duidelijk 
dat de spreiding van de gestandaardiseerde residuen in de richting van de afwikkelingsjaren 
afneemt. 
 
We kunnen dit laatste, het niet constant zijn van de variantie, eenvoudig testen, door de 
variantiefunctie te creëren in een bepaalde richting. Deze test is een variant van de wel 
bekende Breusch-Pagan test. Bijvoorbeeld in de afwikkelingsjaren, kan men de volgende 
regressiefunctie schatten: 

jij 10
2* )( ββε += , 

met *
ijε  de gestandaardiseerde residuen. 

Nu kunnen we een t-test uitvoeren op 1β  om na te gaan of deze parameter significant is. 
Indien dit het geval is hebben we te maken met heteroscedasticiteit in die richting. De test in 
de twee andere richtingen is analoog. Onderstaand vind je de SAS-output voor de test in de 
drie richtingen, zijnde achtereenvolgens de ontstaansjaar-, de afwikkelingsjaar- en de 
kalenderjaarrichting: 
 

  estimate s.e. t-stat p-value 

 intercept 1,2059 0,3276 3,68 0,0005 

 ontstaans -0,0421 0,0698 -0,6 0,5489 

     
  estimate s.e. t-stat p-value 

 intercept 1,6856 0,3117 5,41 <0,0001 

 afwikkelings -0,1621 0,0665 -2,44 0,0181 

     
  estimate s.e. t-stat p-value 

 intercept 2,4667 0,4763 5,18 <0,0001 

 kalender -0,2042 0,0642 -3,18 0,0025 
 

 
Hieruit blijkt dat er sprake is van heteroscedasticiteit in de afwikkelingsjaar- en in de 
kalenderjaarrichting. Merk op dat een gewogen kleinste kwadraten methode hier geen 
soelaas biedt, mede aangezien de heteroscedasticiteit zich zowel manifesteert in de 
afwikkelingsjaarrichting als in de kalenderjaarrichting. Merk ook op dat er enige sprake is van 
multicollineariteit. Dit vertaalt zich in het feit dat het maximum van de VIF’s (Variance Inflation 
Factor) gelijk is aan 25,9545. Multicollineariteit kan leiden tot slechte, onstabiele 
voorspellingen.  
 
Indien we tenslotte de verwachte totale reserve berekenen, bekomen we 25742041. 
 
Schadereservering is een predictieproces: gegeven de data, poogt men toekomstige claims 
te voorspellen. Wanneer men de predictiefout van toekomstige betalingen en 
reserveschattingen tracht te schatten aan de hand van klassieke statistische methoden, 
reduceert het probleem zich tot het schatten van 2 componenten: enerzijds de 
procesvariantie en anderzijds de schattingsvariantie. Merk op dat er een verschil bestaat 
tussen de predictiefout en de standaardfout. Deze laatste is de wortel van de 
schattingsvariantie. De predictiefout heeft te maken met de variabiliteit van een voorspelling, 
rekeninghoudend met de onzekerheid in de parameterschatting en met de intrinsieke, 
onderliggende variabiliteit in de voorspelde data. De RMSEP (root mean squared error of 
prediction) of predictiefout wordt in de literatuur ook wel soms verkeerdelijk de standaardfout 
genoemd.  De MSEP wordt gegeven door volgende formule:  
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]ˆ[][])ˆ([]ˆ[ 2
ijijijijij YVarYVarYYEYMSEP +≈−=  

De predictievariantie van toekomstige incrementele claims ijŶ in het lognormale model wordt 
gegeven door: 

( )1)ˆexp(ˆ]ˆ[ 22 −= ijijij YYMSEP σ , 
hetgeen overeenkomt met de standaardvorm van de variantie van een lognormale verdeling.  
Merk op dat 2ˆ ijσ  gegeven wordt door uitdrukking (2). De gekwadrateerde predictiefout van de 
totale reserve wordt in een lognormale setting gegeven door 

[ ] ( )( )1]ˆ,ˆ[expˆˆ2]ˆ[
,,,,

−+≈ ∑∑
≠

klij
klijlkji

klij
ji

ij CovYYYMSEPRMSEP ηη  

Indien we deze formule toepassen op bovenstaande dataset voor het lognormaal model, dan 
bekomen we een waarde van 9493554. Dit is ongeveer 37% van de totale reserve.  
 
De gebreken aan bovenstaand model kunnen we verhelpen door over te gaan naar de familie 
van Gegeneraliseerde Lineaire Modellen (GLM’s). Deze klasse veralgemeent op een 
natuurlijke wijze het klassieke lineaire regressiemodel. Heel wat auteurs onderstreepten 
reeds recentelijk de noodzaak van een dergelijke modellering in een 
schadereserveringstoepassing. Zie hiervoor onder andere England en Verrall (2002), 
Pinheiro, Andrade e Silva en Centeno (2002), Hoedemakers, Beirlant, Goovaerts en Dhaene 
(2003), Despeyroux, Lévi, Partrat en Vignancour (2003), Taylor, McGuire en Greenfield 
(2003),…  In wat volgt geven we een kort overzicht van deze klasse lineaire modellen in de 
reserveringscontext.  
 
De structuur van een dergelijk lineair model wordt gegeven door: 
(1) ),;(~ φµijij yfY  met onafhankelijke ijY , )( ijij YE=µ  en waarbij (.)f , de 

dichtheidsfunctie van ijY  behoort tot de exponentiële familie van verdelingen. φ  is een 

schaalparameter. 

(2) )( ijij g µη = , g(.) wordt de linkfunctie genoemd. 

(3) ( )ijij Xβη
r

= , X de regressiematrix corresponderend met de bovendriehoek.  

 
De maximum likelihood schatters van de regressie parameters kunnen verkregen worden 
door de ‘iteratively reweighted least squares’ methode toe te passen, hetgeen de gewone 
least squares voor de normale lineaire regressiemodellen op een natuurlijke wijze uitbreidt. 
 
Wanneer we een gegeneraliseerd lineair model definiëren, kunnen we de verdeling van 

ijY weglaten en enkel de variantiefunctie specificeren. De parameters worden dan geschat 
met behulp van maximum quasi-likelihood technieken in plaats van de traditionele maximum 
likelihood. De schatters blijven consistent. In dit geval vervangen we de verdelingsassumptie 
door )()( ijij VYVar µφ= , waarbij (.)V de variantie functie is. Voor de normale verdeling is  

1)( =ijV µ , voor de Poisson verdeling (eventueel “over-dispersed”, wanneer 1>φ ) is 

ijijV µµ =)(  en voor de gamma verdeling hebben we dat 2)( ijijV µµ = . Merk op dat het 
gebruik van de logaritmische linkfunctie in combinatie met een quasi-likelihood benadering 
impliceert dat de som van de incrementele claims in elke kolom én in elke rij positief moet 
zijn. Wanneer we met gamma (Poisson) modellen werken moet noodzakelijkerwijze elke 
incrementele waarde positief (niet-negatief) zijn. Kortom quasi-likelihood schatting in een 
GLM-kader laat ons toe de responsvariabele te modelleren in een regressie context zonder 
de verdeling ervan te specificeren. Deze eenvoudige en robuuste methode gebruikt enkel de 
meest elementaire informatie over de responsvariabele, nl. de gemiddelde-variantie relatie. 
Deze informatie alleen is veelal voldoende om consistente maximum likelihood schatters te 
verkrijgen.  
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Het meest aangewezen model in dit voorbeeld is een quasi-gamma model gegeven door 
volgende structuur  

ijij

ijij

ijij

YVar

YE

ηµ

φµ

µ

=

=

=

)log(

][

][
2  

met ijη , de lineaire predictor, gegeven door formule (4). 
In dit geval krijgen we als SAS-output voor de parameterschattingen: 
 
 

  estimate s.e. chi-sq p-value 

 1α  11,083 0,5234 448,2927 <0,0001 

 2α  10,2105 0,6221 269,3822 <0,0001 

 3α  11,2168 0,6296 317,3543 <0,0001 

 1β  1,2155 0,3349 13,1763 0,0003 

 2β  -0,8898 0,3136 8,0518 0,0045 

 3β  -1,7014 0,4507 14,2501 0,0002 

 1γ  1,6793 0,6147 7,4632 0,0063 
 

 
 
Twee veel gebruikte goodness-of-fit maten in een GLM-context zijn de deviantie en de 
Pearson 2χ -statistiek. Beide maten zijn in het normale geval gelijk aan de ‘residual sum of 

squares’.  De deviantie is hier gelijk aan 36,1011 en de Pearson 2χ -statistiek heeft een 

waarde van 30,0704. Zowel de deviantie als de Pearson 2χ -statistiek zijn, onder de 

aanname dat het model correct is, 2χ -verdeeld met n-p vrijheidsgraden 
(n=steekproefgrootte, p=aantal parameters). Aangezien beide statistieken in waarde kleiner 
zijn dan 2

48;05.01−χ = 65,17077 mogen we besluiten, met een betrouwbaarheid van 95%, dat 
het gefitte model zeer adequaat is. De criteria AIC en BIC hebben respectievelijk een waarde 
van 50,1011 en 64,1524.  
 
Een normale qq-plot van de gestandaardiseerde deviantie residuen wordt onderstaand 
weergegeven. Merk op dat Pearson residuen de scheefheid van de onderliggende verdeling 
neigen weer te geven. Gestandaardiseerde deviantie residuen zijn benaderend normaal 
verdeeld wanneer het gefitte gegeneraliseerde lineaire model geschikt is.  
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De verwachte totale reserve is in dit geval gelijk aan 18449821, hetgeen opmerkelijk minder 
is dan bij het lognormale model. Merk op dat de vertekeningscorrectie die bij een lognormale 
aanpak nodig is, wegvalt bij een GLM-modellering aangezien hier de niet-cumulatieve data 
zelf als responsvariabelen gebruikt worden, terwijl men in een lognormaal kader werkt met de 
logaritme van de incrementele data als responsvariabelen. Hieruit vloeit onmiddellijk voort dat 
een schatting van de verwachte reserves stijgt naarmate de onderliggende variantie-
component groter wordt. 
 
De gekwadrateerde predictiefout voor individuele predicties en voor de totale reserve wordt 
hier gegeven door 

]ˆ[ˆˆ][ 2
ijijijij VarYMSEP ηµµφ ρ +≈  

 
 
 
De RMSEP voor de totale reserve is in dit geval 5070881, hetgeen slechts 27% van de 
reserve is. 
 
Een 97,5% betrouwbaarheidsgrens, gebaseerd op de normale verdeling en de predictiefout 
(als zijnde de standaardafwijking van de predictieverdeling), is in het lognormale geval gelijk 
aan 44349065 en in het quasi-gamma geval gelijk aan 28388565. Tot slot vergelijken we de 
verwachte reserves onder het lognormale model en het quasi-gamma model voor de 
verschillende rijtotalen. 
 

AY Lognormaal  Quasi-gamma  

1 0 0 
2 120.089 88.134 
3 90.072 73.665 
4 135.108 110.498 
5 1.319.015 854.561 
6 2.163.442 1.406.850 
7 3.007.869 1.959.138 
8 4.700.287 3.303.737 
9 6.392.705 4.648.336 

10 8.085.123 6.391.701 
Tot. 25.742.041 18.449.821

 
Opmerking: 
Voor een goede beschrijving van de verscheidenheid aan modellen en toetsen wordt de lezer 
verwezen naar SAS ([8]), waar men de wetenschappelijke onderbouw vindt eerder dan een 
poging (verdienstelijk overigens) om elementaire statistische begrippen op commerciële wijze 
voor te stellen als verkoopsargument. Men dient de doorgedreven opleiding van de actuaris 
naar waarde te schatten 
 
Besluit: Vaak voldoen de data niet rechtstreeks aan de vooropgestelde 
modelassumpties: het tegelijk gelden van symmetrie (normaliteit), constante variantie 
en additiviteit van systematische effecten is veelal geen realistische aanname. Om te 
proberen daar toch aan te voldoen worden vaak de data getransformeerd, maar in de 
schadeactuariële praktijk heeft dat niet altijd het beoogde effect. Transformaties 
hebben verder als nadeel dat een eenvoudige interpretatie van de parameters 
bemoeilijkt wordt. Mathematisch-statistische optimaliteitseigenschappen gaan 
bovendien verloren bij de terugtransformatie.  De vertekeningscorrectie die zich, na 
een logaritmische transformatie van de responsvariabele, opdringt impliceert een extra 
variantiecomponent in de uitdrukking voor de predictie van een individuele claim. Het 
effect van deze correctie hangt samen met de onderliggende variabiliteitsgraad. Deze 
vertekeningscorrectie heeft uiteraard ook zijn impact op een extensieve simulatie 
gebaseerd op dit lognormale model waarbij extreme observaties de verwachte waarde 

[ ] ]ˆ,ˆ[ˆˆ2]ˆ[ˆˆ
,,,,

2

,

2
klij

klijlkji
klij

ji
ijij

ji
ij CovVarRMSEP ηηµµηµµφ ∑∑∑

≠

++≈
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sterk beïnvloeden. Aan de hand van een voorbeeld hebben we in deze bijdrage 
getracht het explosierisico dat samengaat met het lognormale model uit te leggen. 
Simuleren uit een dergelijk model, als een methode om de predictieverdeling te 
bekomen, resulteert in totaal waardeloze en onbruikbare resultaten. Zoals uiteengezet 
in vorig nummer, kan men ondergrenzen en bovengrenzen bepalen aan de hand van de 
theorie van de comonotonie. De schatting van percentielen buiten de comonotone 
grenzen kan zeer in vraag gesteld worden zeker daar de boven- en de benedengrens 
kunnen uitgedrukt worden met behulp van comonotone vectoren. Raar, maar waar.  
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