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Men moet steeds in het achterhoofd houden dat een statistische analyse voor het schatten
van de schadereserve slechts één component is in het hele reserveringsproces. Meestal
beschikt de actuaris over een zekere voorkennis bij het analyseren van dergelijke datasets.
Reserveren is immers een praktische aangelegenheid. We moeten de data proberen te
begrijpen in plaats van in alle mogelijke situaties steeds hetzelfde model toe te passen. In die
optiek is de bijdrage van Postuma en Ter Berg dan ook zeker aan te moedigen, aangezien zij
ruimte laat voor het implementeren van extra informatie, iets wat in de toekomst zeker aan
belang zal winnen.

Toch merken we op dat het lognormale lineaire regressiemodel een vaak toegepast model is,
onder andere ook bij 'de Australische aanpak' die door H.J. Prins wordt gepromoot. Het
gebruiken van commerciéle slogans ter verpakking van een doordeweekse statistische
techniek, met de bedoeling een zweem van wetenschappelijkheid te creéren is voor een
actuaris een brug te ver lijkt ons. Het lognormale model werd immers als eerste stochastisch
model gebruikt gelet op de eenvoud en dit op het moment dat het gebruik van modellering
met een onderliggende GLM-benadering nog in de kinderschoenen stond. Anderzijds kan een
lognormaal model eenvoudig geimplementeerd worden - zonder gebruik te maken van
gespecialiseerde software - met behulp van spreadsheets. De actuarissen in Nederland
waren trouwens al op de hoogte van het gebruik van het lognormale model ongeveer een
kwarteeuw geleden door het NN-boekje: Loss Reserving Methods, van De Wit-Van Eeghen.
Dit model nu bestempelen als innoverend is gebakken lucht.

Het is echter zeer belangrijk te vermelden dat het gebruik van lognormale lineaire
regressiemodellen aanleiding kan geven tot totaal onbruikbare resultaten. Oorzaak hiervan is
vaak dat de data niet vanzelfsprekend voldoen aan de modelassumpties die schuil gaan
achter het lognormale model.

We bespreken achtereenvolgens kort de lognormaliteit, de afhankelijkheid en de
homoscedasticiteit. Vervolgens gaan we even dieper in op de interpretatie van de
logtransformatie en tenslotte wijzen we nog op het gevaar dat schuil gaat achter het
simuleren uit een lognormaal model (explosierisico).

In een lognormaal lineair regressiemodel wordt eerst de logaritme genomen van de niet-
cumulatieve claimsY;. De normale variabelenZ, =log(Y;)worden dus verondersteld

additief opgebouwd te zijn uit een deterministische component met gemiddelde?]l.j en een

normaal verdeelde storingsterm &, ~ N(0,5%).

Normaliteit kan eenvoudig getest worden aan de hand van allerlei statistische testen zoals
o.a. de normale qg-plot, de Kolmogorov-Smirnov test, boxplots, histogrammen, ... De
veronderstelling van homoscedasticiteit van de storingstermen zal niet voldaan zijn indien de
fouten een ongelijke variantie bezitten. Dit problem, dat in de praktijk vaak voorkomt, kan
afgezwakt worden door gebruik te maken van gewogen regressie waarbij de gewichten
empirisch bepaald worden. Bovendien komt het vaak voor dat de fouten gecorreleerd zijn van
jaar tot jaar, waardoor de onafhankelijkheidsassumptie geschonden wordt.
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Door het werken met getransformeerde data wordt een correcte interpretatie van de dataset
bemoeilijkt. Een bijkomend nadeel is dat de dataset moet bestaan uit positieve waarden.
Indien er bijvoorbeeld een overschatting gebeurd is van het te betalen bedrag, kan bij het
werken met niet-cumulatieve data een negatief bedrag ontstaan. Negatieve waarden kunnen
ook optreden bij herverzekeringen of teruginningen.

Steekproeven in het reéle leven zijn nooit oneindig. Bij eindige steekproeven zijn de staarten
echter vaak zwaarder dan bij oneindige het geval zou zijn. Ook bij het schatten van de IBNR
reserve werken we met een eindig aantal jaren. Het behandelen van de steekproef als zijnde
oneindig kan in vele gevallen echter leiden tot een onderschatting van de reserve.

Klassieke regressie-analyse in de lognormale context vereist volgende stappen

1) Neem de logaritme van de claims

2) Fit een model op de getransformeerde waarden gebruik makend van kleinste
kwadraten regressie-analyse

3) Bereken schattingen voor de parameters

4) Transformeer correct terug!

Schattingen voor het gemiddelde worden niet eenvoudigweg bekomen door de lineaire
predictor te exponentiéren. De gefitte waarden worden wel gegeven door

> ~ A2
Y, =exp(n, +1/20) (1)
met
62 =6*(B(X'X)"'B), +67 (2)
en X, B de designmatrix corresponderend met de bovendriehoek resp. de benedendriehoek.

Wanneer we nu gebruikmaken van een GLM-modellering met logaritmische linkfunctie (bv.
een over-dispersed Poisson model), dan hebben we dat

Y, = exp(7;) ®)
De reden waarom er in (1) een variantie component aanwezig is, heeft te maken met het feit
dat in een gegeneraliseerd lineair model de niet-cumulatieve data zelf als responsvariabelen

gebruikt worden, terwijl men in de lognormale modellering werkt met de logaritme van de
incrementele data als responsvariabelen.

Hieruit vloeit onmiddellijk voort dat een schatting van de verwachte reserves stijgt naarmate
de onderliggende variantie component groter wordt. Deze vertekeningscorrectie heeft
uiteraard ook zijn impact op een extensieve simulatie gebaseerd op dit lognormale model
waarbij extreme observaties de verwachte waarde sterk beinvioeden.

Concluderend kunnen we stellen dat een lognormale modellering correct kan zijn, maar het is
zeker niet de modellering bij uitstek in een reserveringsproces.

In hetgeen volgt illustreren we het explosie-effect van het lognormale model aan de hand van
een voorbeeld. Beschouw onderstaande driehoek bestaande uit niet-cumulatieve claims:
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Na een uitgebreide analyse m.b.v. het statistisch pakket SAS (door o.a. gebruik te maken van
een parameter-selectietechniek) bekomen we een regressiemodel met als lineaire predictor
gegeven door volgende formule:

ny; = [(i<3)al + I(2<i<5)a2 + I(i>4)a3 + [(j>1)lBl + [(j>4)ﬂ2 + [(j>7)ﬂ3 + I(i+j—l>2)]/1 > (4)
met (a,,,,a;),(fB,, B, B;)eny parameters die de ontstaansjaren, de afwikkelingsjaren en

de kalenderjaren respectievelijk modelleren en waarbij bijvoorbeeld / =lalsj<2,0

(j<2)
anders.

Gebruikmakend van bovenstaande formule (4) en een lognormaal regressiemodel bekomen
we volgende output in SAS

estimate s.e. t-stat. p-value
a 10,4689 | 0,5544 | 18,88 | <0,0001
a, 9,4446 | 0,6523 | 14,48 | <0,0001
a; 10,6876 | 0,6528 | 16,37 | <0,0001
ﬂl 1,4500 | 0,3717 3,90 | 0,0003
ﬂz -0,7258 | 0,325 -2,23 | 10,0302
ﬂ3 -1,7482 | 0,4733 -3,69 | 0,0006
71 1,7274 | 0,6612 2,61 0,0120

Niet minder dan 99,53% van de variantie in de historische claims wordt verklaard door de
regressievergelijking. De aangepaste determinatiecoéfficiéntRf, dat rekening houdt met het

aantal verklarende variabelen in het model en het aantal waarnemingen, heeft een waarde
van 0,9946. De ‘residual sum of squares’, de stochastische component van de variatie van de
afhankelijke variabele, bedraagt 42,0466. Akaike's Informatie Criterium (AIC) en het
Bayesiaans Informatie Criterium (BIC) hebben respectievelijk een waarde van 56,05 en 70,1.
Deze ‘goodness-of-fit'-maten en de parameterschattingen met bijhorend p-waarden indiceren
op het eerste zicht een adequate fit die de historische data statistisch correct beschrijft. Er is
duidelijk geen sprake van overparameterisatie. Indien we echter naar de residuplots kijken,
merken we op dat de Gauss-Markov condities niet voldaan zijn. Onderstaand hebben we de
gestandaardiseerde residuen geplot tegenover de afwikkelingsjaren.

gestand residuen

2 4 6 8 10

afwikkelingsjaren



Het is duidelijk dat de residuen niet normaal verdeeld zijn met gemiddelde O en constante

variantie . De residuplot m.b.t. de kalenderjaarrichting vertoont een gelijkaardig patroon.
De error-term moet onafhankelijk zijn van de plaats van observatie in de driehoek
(homoscedasticiteit). Wanneer de storingsterm afhankelijk is van de ontstaansjaren,
afwikkelingsjaren of de kalenderjaren spreekt men van heteroscedasticiteit en betekent dit dat
de vooropgestelde assumpties niet voldaan zijn. Uit bovenstaande residuplot blijkt duidelijk
dat de spreiding van de gestandaardiseerde residuen in de richting van de afwikkelingsjaren
afneemt.

We kunnen dit laatste, het niet constant zijn van de variantie, eenvoudig testen, door de
variantiefunctie te creéren in een bepaalde richting. Deze test is een variant van de wel
bekende Breusch-Pagan test. Bijvoorbeeld in de afwikkelingsjaren, kan men de volgende
regressiefunctie schatten:
*\ 2 .
(5,-,-) =B +BJ.

* . .
met &; de gestandaardiseerde residuen.

Nu kunnen we een t-test uitvoeren op /3, om na te gaan of deze parameter significant is.
Indien dit het geval is hebben we te maken met heteroscedasticiteit in die richting. De test in
de twee andere richtingen is analoog. Onderstaand vind je de SAS-output voor de test in de
drie richtingen, zijnde achtereenvolgens de ontstaansjaar-, de afwikkelingsjaar- en de
kalenderjaarrichting:

estimate s.e. t-stat p-value

intercept 1,2059 0,3276 3,68 0,0005
ontstaans -0,0421 0,0698 -0,6 0,5489
estimate S.e. t-stat p-value

intercept 1,6856 0,3117 5,41 <0,0001
afwikkelings -0,1621 0,0665 -2,44 0,0181
estimate s.e. t-stat p-value

intercept 2,4667 0,4763 5,18 <0,0001
kalender -0,2042 0,0642 -3,18 0,0025

Hieruit blijkt dat er sprake is van heteroscedasticiteit in de afwikkelingsjaar- en in de
kalenderjaarrichting. Merk op dat een gewogen kleinste kwadraten methode hier geen
soelaas biedt, mede aangezien de heteroscedasticiteit zich zowel manifesteert in de
afwikkelingsjaarrichting als in de kalenderjaarrichting. Merk ook op dat er enige sprake is van
multicollineariteit. Dit vertaalt zich in het feit dat het maximum van de VIF’s (Variance Inflation
Factor) gelijk is aan 25,9545. Multicollineariteit kan leiden tot slechte, onstabiele
voorspellingen.

Indien we tenslotte de verwachte totale reserve berekenen, bekomen we 25742041.

Schadereservering is een predictieproces: gegeven de data, poogt men toekomstige claims
te voorspellen. Wanneer men de predictiefout van toekomstige betalingen en
reserveschattingen tracht te schatten aan de hand van klassieke statistische methoden,
reduceert het probleem zich tot het schatten van 2 componenten: enerzijds de
procesvariantie en anderzijds de schattingsvariantie. Merk op dat er een verschil bestaat
tussen de predictiefout en de standaardfout. Deze laatste is de wortel van de
schattingsvariantie. De predictiefout heeft te maken met de variabiliteit van een voorspelling,
rekeninghoudend met de onzekerheid in de parameterschatting en met de intrinsieke,
onderliggende variabiliteit in de voorspelde data. De RMSEP (root mean squared error of
prediction) of predictiefout wordt in de literatuur ook wel soms verkeerdelijk de standaardfout
genoemd. De MSEP wordt gegeven door volgende formule:



MSEP[Y, 1= E[(Y, -Y,)’ 1= Var[¥, ]+ Var[Y,]

De predictievariantie van toekomstige incrementele claims Kj in het lognormale model wordt
gegeven door:
' 2 A2
MSEP[Y, 1= Y2 (exp(62)-1),
hetgeen overeenkomt met de standaardvorm van de variantie van een lognormale verdeling.
Merk op dat 6'; gegeven wordt door uitdrukking (2). De gekwadrateerde predictiefout van de

totale reserve wordt in een lognormale setting gegeven door
MSEP[R]~Y MSEP[Y,1+2 37,7, (exp(Cori7; .71, 1)-1)
ij i,k ij#kl
Indien we deze formule toepassen op bovenstaande dataset voor het lognormaal model, dan
bekomen we een waarde van 9493554. Dit is ongeveer 37% van de totale reserve.

De gebreken aan bovenstaand model kunnen we verhelpen door over te gaan naar de familie
van Gegeneraliseerde Lineaire Modellen (GLM’'s). Deze klasse veralgemeent op een
natuurlijke wijze het klassieke lineaire regressiemodel. Heel wat auteurs onderstreepten
reeds recentelik de noodzaak van een dergelijke modellering in een
schadereserveringstoepassing. Zie hiervoor onder andere England en Verrall (2002),
Pinheiro, Andrade e Silva en Centeno (2002), Hoedemakers, Beirlant, Goovaerts en Dhaene
(2003), Despeyroux, Lévi, Partrat en Vignancour (2003), Taylor, McGuire en Greenfield
(2003),... In wat volgt geven we een kort overzicht van deze klasse lineaire modellen in de
reserveringscontext.

De structuur van een dergelijk lineair model wordt gegeven door:
(1) Y, ~ f(y;p;,¢) met onafhankelijke Y, w, =E(Y;) en waarbijf(.), de

i
dichtheidsfunctie van Yij behoort tot de exponentiéle familie van verdelingen. ¢ is een

schaalparameter.

(2) n; = &(4;) , 9(.) wordt de linkfunctie genoemd.

(3) n; = (X,B)y X de regressiematrix corresponderend met de bovendriehoek.

De maximum likelihood schatters van de regressie parameters kunnen verkregen worden
door de ‘iteratively reweighted least squares’ methode toe te passen, hetgeen de gewone
least squares voor de normale lineaire regressiemodellen op een natuurlijke wijze uitbreidt.

Wanneer we een gegeneraliseerd lineair model definiéren, kunnen we de verdeling van
Y,.jweglaten en enkel de variantiefunctie specificeren. De parameters worden dan geschat

met behulp van maximum quasi-likelihood technieken in plaats van de traditionele maximum
likelihood. De schatters blijven consistent. In dit geval vervangen we de verdelingsassumptie

door Var(Y;) = ¢V (u,), waarbij V(.) de variantie functie is. Voor de normale verdeling is

V(,u,.j)zl, voor de Poisson verdeling (eventueel “over-dispersed”, wanneer ¢ >1) is

V(u,) =, en voor de gamma verdeling hebben we dat V() =,ui].2. Merk op dat het

gebruik van de logaritmische linkfunctie in combinatie met een quasi-likelihood benadering
impliceert dat de som van de incrementele claims in elke kolom én in elke rij positief moet
zijn. Wanneer we met gamma (Poisson) modellen werken moet noodzakelijkerwijze elke
incrementele waarde positief (niet-negatief) zijn. Kortom quasi-likelihood schatting in een
GLM-kader laat ons toe de responsvariabele te modelleren in een regressie context zonder
de verdeling ervan te specificeren. Deze eenvoudige en robuuste methode gebruikt enkel de
meest elementaire informatie over de responsvariabele, nl. de gemiddelde-variantie relatie.
Deze informatie alleen is veelal voldoende om consistente maximum likelihood schatters te
verkrijgen.



Het meest aangewezen model in dit voorbeeld is een quasi-gamma model gegeven door
volgende structuur

E[Yy] = H;
VarlY, 1= gu,’
log(,uij) = 77,','

met 77, , de lineaire predictor, gegeven door formule (4).
In dit geval krijgen we als SAS-output voor de parameterschattingen:

estimate S.e. chi-sq p-value
a, 11,083 0,5234 | 448,2927 <0,0001
a, 10,2105 0,6221 | 269,3822 <0,0001
a; 11,2168 0,6296 | 317,3543 <0,0001
:81 1,2155 0,3349 13,1763 0,0003
ﬂz -0,8898 0,3136 8,0518 0,0045
ﬁ3 -1,7014 0,4507 14,2501 0,0002
71 1,6793 0,6147 7,4632 0,0063

Twee veel gebruikte goodness-of-fit maten in een GLM-context zijn de deviantie en de
Pearson )(2 -statistiek. Beide maten zijn in het normale geval gelijk aan de ‘residual sum of

squares’. De deviantie is hier gelijk aan 36,1011 en de Pearson ;(2 -statistiek heeft een
waarde van 30,0704. Zowel de deviantie als de Pearson )(2 -statistiek zijn, onder de
aanname dat het model correct s, ;(2 -verdeeld met n-p vrijheidsgraden
(n=steekproefgrootte, p=aantal parameters). Aangezien beide statistieken in waarde kleiner
Zijn dan ;(1270‘05;48= 65,17077 mogen we besluiten, met een betrouwbaarheid van 95%, dat

het gefitte model zeer adequaat is. De criteria AIC en BIC hebben respectievelijk een waarde
van 50,1011 en 64,1524.

Een normale qg-plot van de gestandaardiseerde deviantie residuen wordt onderstaand
weergegeven. Merk op dat Pearson residuen de scheefheid van de onderliggende verdeling
neigen weer te geven. Gestandaardiseerde deviantie residuen zijn benaderend normaal
verdeeld wanneer het gefitte gegeneraliseerde lineaire model geschikt is.




De verwachte totale reserve is in dit geval gelijk aan 18449821, hetgeen opmerkelijk minder
is dan bij het lognormale model. Merk op dat de vertekeningscorrectie die bij een lognormale
aanpak nodig is, wegvalt bij een GLM-modellering aangezien hier de niet-cumulatieve data
zelf als responsvariabelen gebruikt worden, terwijl men in een lognormaal kader werkt met de
logaritme van de incrementele data als responsvariabelen. Hieruit vloeit onmiddellijk voort dat
een schatting van de verwachte reserves stijgt naarmate de onderliggende variantie-
component groter wordt.

De gekwadrateerde predictiefout voor individuele predicties en voor de totale reserve wordt
hier gegeven door

MSEP[Y, |~ gaf + fiVarls, ]

MSEP[R]~ Y ¢is; + 3 fi;Varlf, 142 Y, fi,Covlii, i, ]
i,j i,j i,7,k,1ij#kl
De RMSEP voor de totale reserve is in dit geval 5070881, hetgeen slechts 27% van de
reserve is.

Een 97,5% betrouwbaarheidsgrens, gebaseerd op de normale verdeling en de predictiefout
(als zijnde de standaardafwijking van de predictieverdeling), is in het lognormale geval gelijk
aan 44349065 en in het quasi-gamma geval gelijk aan 28388565. Tot slot vergelijken we de
verwachte reserves onder het lognormale model en het quasi-gamma model voor de
verschillende rijtotalen.

AY Lognormaal Quasi-gamma
1 0 0
2 120.089 88.134
3 90.072 73.665
4 135.108 110.498
51 1.319.015 854.561
6| 2.163.442 1.406.850
71 3.007.869 1.959.138
8| 4.700.287 3.303.737
91 6.392.705 4.648.336
10 | 8.085.123 6.391.701
Tot. | 25.742.041 18.449.821

Opmerking:

Voor een goede beschrijving van de verscheidenheid aan modellen en toetsen wordt de lezer
verwezen naar SAS ([8]), waar men de wetenschappelijke onderbouw vindt eerder dan een
poging (verdienstelijk overigens) om elementaire statistische begrippen op commerciéle wijze
voor te stellen als verkoopsargument. Men dient de doorgedreven opleiding van de actuaris
naar waarde te schatten

Besluit: Vaak voldoen de data niet rechtstreeks aan de vooropgestelde
modelassumpties: het tegelijk gelden van symmetrie (normaliteit), constante variantie
en additiviteit van systematische effecten is veelal geen realistische aanname. Om te
proberen daar toch aan te voldoen worden vaak de data getransformeerd, maar in de
schadeactuariéle praktijk heeft dat niet altijd het beoogde effect. Transformaties
hebben verder als nadeel dat een eenvoudige interpretatie van de parameters
bemoeilijkt wordt. Mathematisch-statistische optimaliteitseigenschappen gaan
bovendien verloren bij de terugtransformatie. De vertekeningscorrectie die zich, na
een logaritmische transformatie van de responsvariabele, opdringt impliceert een extra
variantiecomponent in de uitdrukking voor de predictie van een individuele claim. Het
effect van deze correctie hangt samen met de onderliggende variabiliteitsgraad. Deze
vertekeningscorrectie heeft uiteraard ook zijn impact op een extensieve simulatie
gebaseerd op dit lognormale model waarbij extreme observaties de verwachte waarde



sterk beinvioeden. Aan de hand van een voorbeeld hebben we in deze bijdrage
getracht het explosierisico dat samengaat met het lognormale model uit te leggen.
Simuleren uit een dergelijk model, als een methode om de predictieverdeling te
bekomen, resulteert in totaal waardeloze en onbruikbare resultaten. Zoals uiteengezet
in vorig nummer, kan men ondergrenzen en bovengrenzen bepalen aan de hand van de
theorie van de comonotonie. De schatting van percentielen buiten de comonotone
grenzen kan zeer in vraag gesteld worden zeker daar de boven- en de benedengrens
kunnen uitgedrukt worden met behulp van comonotone vectoren. Raar, maar waar.
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