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Abstract

For discrete arithmetic Asian options the payoff depends on the
price average of the underlying asset. Due to the dependence struc-
ture between the prices of the underlying asset, no simple exact pricing
formula exists, not even in a Black-Scholes setting. In the recent lit-
erature, several approximations and bounds for the price of this type
of option are proposed. One of these approximations consists of re-
placing the distribution of the stochastic price average by an ad hoc
distribution (e.g. Lognormal or Inverse Gaussian) with the same first
and second moment. In this paper we use a different approach and
combine a lower and upper bound into a new analytical approxima-
tion. This approximation can be calculated efficiently, turns out to be
very accurate and moreover, it has the correct first and second mo-
ment. Since the approximation is analytical, we can also calculate the
corresponding hedging Greeks and construct a replicating strategy.

1 Introduction

Consider a risky asset (a non-dividend paying stock) with prices described by
the stochastic process {A(t), t ≥ 0} and a risk-free continuously compounded
rate δ that is constant through time. In this section all probabilities and ex-
pectations have to be considered as conditional on the information available
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at time 0, i.e. the prices of the risky asset up to time 0, unless otherwise
stated. Note that in general, the conditional expectation (with respect to
the physical probability measure) of e−δtA(t), given the information avail-
able at time 0, will differ from the current price A(0). However, we will
assume that we can find a unique equivalent probability measure Q such
that the discounted price process {e−δt A(t), t ≥ 0} is a martingale under
this equivalent probability measure. This implies that for any t ≥ 0, the
conditional expectation (with respect to the equivalent martingale measure)
of e−δtA(t), given the information F0 available at time 0, will be equal to the
current price A(0). Denoting this conditional expectation under the equiva-
lent martingale measure by EQ

[
e−δtA(t)

]
, we have that

EQ
[
e−δtA(t)|F0

]
= A(0), t ≥ 0. (1)

The notation FA0(t)(x) will be used for the conditional probability that A(t)
is smaller than or equal to x, under the equivalent martingale measure Q
and given the information F0 available at time 0. Its inverse will be denoted
by F−1

A0(t)
(p). The existence of an equivalent martingale measure is related

to the absence of arbitrage in the securities market, while uniqueness of
the equivalent martingale measure is related to market completeness. Two
models incorporating such a unique equivalent martingale measure are the
binomial tree model of Cox, Ross and Rubinstein (1979) and the geometric
Brownian motion model of Black and Scholes (1973). The existence of the
equivalent martingale measure allows one to reduce the pricing of options
on the risky asset to calculating expected values of the discounted pay-offs,
not with respect to the physical probability measure, but with respect to
the equivalent martingale measure, see e.g. Harrison and Kreps (1979) or
Harrison and Pliska (1981). A reference in the actuarial literature is Gerber
and Shiu (1996).

A European call option on the risky asset, with exercise price K and
exercise date T generates a pay-off (A(T ) − K)+ at time T , that is, if the
price of the risky asset at time T exceeds the exercise price, the pay-off equals
the difference; if not, the pay-off is zero. Note the similarity between such a
pay-off and the payment on a stop-loss reinsurance contract. At time t this
call option will trade against a price given by

EC(K, T, t) = e−δ(T−t) EQ [(At(T ) −K)+] (2)

A European-style arithmetic Asian call option with exercise date T , n av-
eraging dates and exercise price K generates a pay-off

(
1
n

∑n−1
i=0 AT (T − i) −K

)
+
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at T , that is, if the average of the prices of the risky asset at the latest n
dates before T is more than K, the pay-off equals the difference; if not, the
pay-off is zero. Such options protect the holder against manipulations of the
asset price near the expiration date. The price of the Asian call option at
time t is given by

AC(n,K, T, t) = e−δ(T−t) EQ

[(
1

n

n−1∑
i=0

At(T − i) −K

)
+

]
(3)

and the price of the Asian put option at time t equals

AP(n,K, T, t) = e−δ(T−t) EQ

[(
K − 1

n

n−1∑
i=0

At(T − i)

)
+

]
.

Note that, due to the put-call parity, the price of an Asian put option can
be easily derived from the price of an Asian call option:

AP(n,K, T, t) = AC(n,K, T, t) +
e−δ(T−t)

n

(
K −

n−1∑
i=0

E[At(T − i)]

)

Hence, in the remainder we will only consider call options.
We can also assume that T −n+ 1 > t. Indeed, if at time t the averaging

has already started, i.e. T − n + 1 ≤ t, then we know the prices A(T − n +
1), . . . , A(t̄), where t̄ denotes the integer part of t. Since at time t the prices
A(t̄ + 1), . . . , A(T ) are still random, we can write

AC(n,K, T, t) = e−δ(T−t)T − t̄

n
EQ

[(
1

T − t̄

T−t̄−1∑
i=0

At(T − i) −K ′
)

+

]

=
n′

n
AC(n′, K ′, T, t) (4)

where

n′ = min(T − t̄, n) and K ′ =
nK −∑n−1

i=T−t̄ At(T − i)

n′ .

With these rescaled parameters the averaging has not yet started since T −
n′ + 1 > t.

3



Determining the price of an Asian option is not a trivial task, because in
general we do not have an explicit analytical expression for the distribution
of the average St =

∑n−1
i=0 At(T − i). One can use Monte-Carlo simulation

techniques to obtain a numerical estimate of the price, see Kemna and Vorst
(1990) and Vazquez-Abad and Dufresne (1998), or one can numerically solve
a parabolic partial differential equation, see Rogers and Shi (1995). But
as both approaches are rather time consuming, it would be helpful to have
an accurate, easily computable analytical approximation of this price. In
Jacques (1996) an approximation is obtained by replacing the distribution of
the sum

∑n−1
i=0 A(T − i) by a Lognormal or an Inverse Gaussian distribution.

From the expression for the price of an arithmetic Asian call option, we
see that the problem of pricing such options turns out to be equivalent to
calculating stop-loss premiums of a sum of dependent random variables. This
means that we can apply the results of Dhaene et al. (2002b,a) in order to
find analytical lower and upper bounds for the price of Asian options. By
combining these bounds a new approximation arises.

2 Bounds and approximations

Assume that at time t the averaging has not yet started and thus At(T −n+
1), . . . , At(T ) are random. The price AC(n,K, T, t) then essentially consists
of a stop-loss premium of a sum of n dependent random variables. In Dhaene
et al. (2002b,a) it is shown how to construct upper and lower bounds for such
stop-loss premiums by using the theory on comonotonic risks.

In the actuarial literature it is common practice to replace a random vari-
able by a “less attractive” random variable which has a simpler structure,
making it easier to determine its distribution function, see e.g. Goovaerts
et al. (1990), Kaas et al. (1994) or Denuit et al. (1999). Performing the com-
putations (of premiums, reserves and so on) with the less attractive random
variable is a prudent strategy. On the other, considering more attractive
random variables could help to give an idea about the degree of overestima-
tion involved in replacing the original variable by the less attractive random
variable. Of course, we have to clarify what we mean by a less attractive
random variable.

Definition 1. Consider two random variables X and Y . Then X is said to
precede Y in the stop-loss order sense, notation X ≤s	 Y , if and only if X
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has lower stop-loss premiums than Y :

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞.

Hence, X ≤s	 Y means that X has uniformly smaller upper tails than Y ,
which in turn means that a payment Y is indeed less attractive than a pay-
ment X. Stop-loss order has a natural economic interpretation in terms
of expected utility. Indeed, it can be shown that X ≤s	 Y if and only if
E[u(−X)] ≥ E[u(−Y )] holds for all non-decreasing concave real functions u
for which the expectations exist. This means that any risk-averse decision
maker would prefer to pay X instead of Y , which implies that acting as if the
obligations X are replaced by Y indeed leads to conservative or prudent de-
cisions. The characterization of stop-loss order in terms of utility functions is
equivalent to E[v(X)] ≤ E[v(Y )] holding for all non-decreasing convex func-
tions v for which the expectations exist. Therefore, stop-loss order is often
called “increasing convex order” and denoted by ≤icx. For more details and
properties of stop-loss order in a general context, see Shaked and Shanthiku-
mar (1994) or Kaas et al. (1994), where stochastic orders are considered in
an actuarial context.

If X ≤s	 Y , then also E[X] ≤ E[Y ], and it is intuitively clear that the
best approximations arise in the borderline case where E[X] = E[Y ]. This
leads to the so-called convex order.

Definition 2. Consider two random variables X and Y . Then X is said
to precede Y in the convex order sense, notation X ≤cx Y , if and only if
E[X] = E[Y ] and

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞
From E[(X − d)+] − E[(d−X)+] = E[X] − d, we find

X ≤cx Y ⇔
{

E[X] = E[Y ],
E[(d−X)+] ≤ E[(d− Y )+], −∞ < d < +∞.

Note that partial integration leads to

E[(d−X)+] =

∫ d

−∞
FX(x) dx,

which means that E[(d − X)+] can be interpreted as the weight of a lower
tail of X. We have seen that stop-loss order entails uniformly heavier upper
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tails. The additional condition of equal means implies that convex order also
leads to uniformly heavier lower tails.

It can be proven that X ≤cx Y if and only E[v(X)] ≤ E[v(Y )] for all
convex functions v, provided the expectations exist. This explains the name
“convex” order. Note that when characterizing stop-loss order, the convex
functions v are additionally required to be non-decreasing. Hence, stop-loss
order is weaker: more pairs of random variables are ordered. We also find
that X ≤cx Y if and only E[X] = E[Y ] and E[u(−X)] ≥ E[u(−Y )] for all
non-decreasing concave functions u, provided the expectations exist. Hence,
in a utility context, convex order represents the common preferences of all
risk-averse decision makers between random variables with equal mean.

In case X ≤cx Y, the upper tails as well as the lower tails of Y eclipse the
corresponding tails of X, which means that extreme values are more likely
to occur for Y than for X. This observation also implies that X ≤cx Y is
equivalent to −X ≤cx −Y. Hence, the interpretation of the random variables
as payments or as incomes is irrelevant for the convex order.

As the function v defined by v(x) = x2 is a convex function, it follows
immediately that X ≤cx Y implies Var[X] ≤ Var[Y ]. The reverse implication
does not hold in general.

For the problem at hand, we have the following result.

Theorem 1. Consider a sum S of random variables X1, X2, . . . , Xn and
define

Sc = F−1
X1

(U) + F−1
X2

(U) + . . .+ F−1
Xn

(U) (5)

Su = F−1
X1|Λ(U) + F−1

X2|Λ(U) + . . .+ F−1
Xn|Λ(U) (6)

S	 = E[X1 | Λ] + E[X2 | Λ] + . . . + E[Xn | Λ] (7)

with U ∼ Uniform(0,1) and with Z an arbitrary random variable, indepen-
dent of U . The following relations then hold:

E[(S	 − t)+] ≤ E[(S − t)+] ≤ E[(Su − t)+] ≤ E[(Sc − t)+], (8)

for all real t, and E[S	] = E[S] = E[Su] = E[Sc].

These lower and upper bounds can be considered as approximations for the
distribution of a sum S of random variables. On the other hand, any con-
vex combination of the stop-loss premiums of the lower bound S	 and the
upper bounds Sc or Su too could serve as an approximation for the stop-loss
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premium of S. Since the bounds S	 and Sc have the same mean as S, any
random variable Sm defined by its stop-loss premiums

E[(Sm − t)+] = z E[(S	 − t)+] + (1 − z) E[(Sc − t)+], 0 ≤ z ≤ 1,

will also have the same mean as S. By taking the (right-hand) derivative we
find

FSm(x) = zFS�(x) + (1 − z)FSc(x), 0 ≤ z ≤ 1,

so the distribution function of the approximation can be calculated fairly
easily. By choosing the optimal weight z, we want Sm to be as close as
possible to S. A natural optimality criterion could be to choose z such that∫ ∞

−∞
E[(Sm − t)+] − E[(S − t)+]dt = 0.

Since S, Sc, S	 and Sm all have the same mean, the relation (see Kaas et al.
(2001))

Var[X] = 2

∫ ∞

−∞
(E[(X − t)+] − (E[X] − t)+)dt

implies that the optimal weight in this case equals

z =
Var[Sc] − Var[S]

Var[Sc] − Var[S	]
. (9)

Note that this choice doesn’t depend on the retention t. Choosing z as in
(9), we have that

Var[Sm] = Var[S]

so the optimal approximation Sm can also be seen to be a moments based
approximation. As an alternative one could consider the improved upper
bound Su and define a second approximation as follows

E[(Sm2 − t)+] = z E[(S	 − t)+] + (1 − z) E[(Su − t)+],

with z = (Var[Su] − Var[S])/(Var[Su] − Var[S	]). For a comparison of these
approximations we refer to Section 4 where it is shown that Sm and Sm2

yield almost the same results.
This technique could also be used in other actuarial problems concerning

sums of (dependent) random variables. Such a sum appears for instance when
considering discounted payments related to a single policy or a portfolio at
different future points in time, i.e. when combining the (actuarial) technical
risk with the (financial) investment risk, see Dhaene et al. (2002b,a).
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3 Application in a Black & Scholes setting

In the model of Black and Scholes (1973), the price of the risky asset is de-
scribed by a stochastic process {A(t), t ≥ 0} following a geometric Brownian
motion with constant drift µ and constant volatility σ:

dA(t)

A(t)
= µdt + σdB(t), t ≥ 0, (10)

with initial value A(0) > 0 and where {B(t), t ≥ 0} is a standard Brownian
motion.

Under the equivalent martingale measure Q, the price process {A(t), t ≥ 0}
still follows a geometric Brownian motion with the same volatility but with
drift equal to the continuously compounded risk-free interest rate δ:

dA(t)

A(t)
= δdt + σdB(t), t ≥ 0, (11)

with initial value A(0) and where {B(t), t ≥ 0} is a standard Brownian mo-
tion in the Q-dynamics. Hence, under the equivalent martingale measure,
we have that

A0(t) = A(0) e

(
δ−σ2

2

)
t+σB(t)

, t ≥ 0. (12)

This implies that under the equivalent martingale measure, the random vari-

ables A0(t)
A(0)

are lognormally distributed with parameters
(
δ − σ2

2

)
t and tσ2

respectively:

FA0(t)(x) = Prob
[
A(0)e(δ−σ2

2
)t+

√
tσΦ−1(U) ≤ x

]
, (13)

where U is uniformly distributed on the interval (0, 1).
Using the famous Black and Scholes (1973) pricing formula for European

call options, we find

EC(K, T, t) = e−δ(T−t) EQ
[
(At(T ) −K)+

]
= A(t)Φ(d1) −Ke−δ(T−t)Φ(d2), (14)

where d1 and d2 are given by

d1 =
ln(A(t)/K) + (δ + σ2/2)(T − t)

σ
√
T − t

(15)
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and
d2 = d1 − σ

√
T − t. (16)

Within the Black & Scholes model, no closed form expression is available for
the price of an arithmetic Asian call option. Therefore, we will derive bounds
and approximations for the price of such options. Because of (4) we will only
consider the case that the averaging has not yet started. To avoid lengthy
formulas, we will use Ti as a shorthand for T − t− i.

Comonotonic upper bound
From (5) we find the following comonotonic upper bound for the price of an
Asian call option:

AC(n,K, T, t) ≤ e−δ(T−t)

n
E
[
(Sc

t − nK)+

]
=

A(t)

n

n−1∑
i=0

e−δiΦ
[
σ
√
Ti − Φ−1

(
FSc

t
(nK)

)]
−e−δ(T−t) K

(
1 − FSc

t
(nK)

)
, (17)

which holds for any K > 0. Note that this upper bound corresponds to
the optimal linear combination of the prices of European call options as
mentioned in Dhaene et al. (2002a).

The remaining problem is how to calculate FSc
t
(nK). This quantity fol-

lows from
n−1∑
i=0

F−1
At(T−i)

(
FSc

t
(nK)

)
= nK,

or, equivalently, from (12) we find that FSc
t
(nK) follows from

A(t)
n−1∑
i=0

exp

[(
δ − σ2

2

)
Ti + σ

√
Ti Φ−1

(
FSc

t
(nK)

)]
= nK.

Lower bound
For the lower bounds for AC(n,K, T, t) we consider the conditioning random
variable Λ defined by

Λ =

n−1∑
j=0

e

(
δ−σ2

2

)
TjBt(T − j). (18)
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From (12) we find that, in the Q-dynamics,

n−1∑
i=0

At(T − i) = A(t)

n−1∑
i=0

e

(
δ−σ2

2

)
Ti+σBt(T−i)

. (19)

So, Λ is a linear transformation of a first order approximation to
∑n−1

i=0 At(T−
i). The variance of Λ is given by

σ2
Λ =

n−1∑
j=0

n−1∑
k=0

e

(
δ−σ2

2

)
(Tj+Tk)

min(Tj , Tk). (20)

We have that (Bt(T − n + 1), Bt(T − n + 2), . . . , Bt(T )) has a multivariate
normal distribution. This implies that given Λ = λ, the random variable
Bt(T − i) is normally distributed with mean ri

√
Ti

σΛ
λ and variance Ti (1 − r2

i )
where

ri =
Cov(Bt(T − i),Λ)

σΛ

√
Ti

=

∑n−1
j=0 e

(
δ−σ2

2

)
Tj min(Ti, Tj)

σΛ

√
Ti

. (21)

We find

S	
t

d
= EQ

[
n−1∑
i=0

At(T − i) | Λ

]

d
= A(t)

n−1∑
i=0

e

(
δ−σ2

2
r2
i

)
Ti+σ ri

√
TiΦ−1(U)

(22)

where U is uniformly distributed on the unit interval. From this expression,
we see that S	

t is a comonotonic sum of lognormal random variables. Hence,
we find the following lower bound for the price of the Asian call option:

AC(n,K, T, t) ≥ e−δ(T−t)

n
E
[(
S	

t − nK
)
+

]

=
A(t)

n

n−1∑
i=0

e−δi Φ
[
σri

√
Ti − Φ−1

(
FS�

t
(nK)

)]

−e−δ(T−t) K
(

1 − FS�
t
(nK)

)
(23)

which holds for any K > 0. In this case, FS�
t
(nK) follows from

A(t)

n−1∑
i=0

exp

[(
δ − σ2

2
r2
i

)
Ti + σri

√
TiΦ

−1
(
FS�

t
(nK)

)]
= nK.
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When the number of averaging dates n equals 1, the Asian call option
reduces to a European call option. It is straightforward to prove that in
this case the upper and the lower bounds (17) and (23) for the price of the
Asian option both reduce to the Black & Scholes formula for the price of the
European call option.

Improved upper bound
By Theorem 1 we can also construct a smaller upper bound for AC(n,K, T, t).
We choose Λ = B(T ) since then the dependence structure of the terms in Su

is almost comonotonic, see Vanmaele et al. (2002). This yields

AC(n,K, T, t) ≤ e−δ(T−t)

n
E
[
(Su

t − nK)+

]
with

E
[
(Su

t − nK)+

]
= −nK(1 − FSu

t
(nK)) +

n−1∑
i=0

A(t) exp

[(
δ − σ2

2
r2
i

)
Ti

]
×

∫ 1

0

eσri
√

TiΦ−1(v)Φ

(
σ
√

1 − r2
i

√
Ti − Φ−1(FSu

t |V =v(nK))

)
dv.

where the correlation coefficients ri are given by

ri =
Cov(Bt(T − i),Λ)

σΛ

√
Ti

=

√
T − t− i√
T − t

.

The conditional distribution FSu
t |V =v(nK) follows from

A(t)

n−1∑
i=0

e
(δ−σ2

2
)Ti+σri

√
TiΦ−1(v)+σ

√
1−r2

i

√
TiΦ−1(FSu

t |V =v(nK)
= nK.

Moments based approximations
Several authors propose to replace the unknown distribution of S by an ad
hoc distribution with the correct first two moments. The question remains
which distribution one should use. For ‘reasonable’ values of the parameters,
Levy (1992) substantiates the lognormal distribution as an approximation
for the distribution of a sum of lognormal random variables. Jacques (1996)
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Figure 1: Price of an Asian option with T = 120, n = 30 and σ = 0.2 ac-
cording to the lognormal approximation (black line) and the inverse gaussian
approximation (grey line) minus the lower bound (23). Negative values show
that the approximations perform worse than the lower bound.

concludes that an Inverse Gaussian approximation gives prices comparable to
those given by the lognormal approximation when the parameters are chosen
in the same range as in Levy (1992).

Although these approximations appear to be very accurate, they have
two structural disadvantages. First, for some values of the parameters, the
approximations turn out to be smaller than our theoretical lower bound, see
Figure 1. Moreover, if a different process is used to model the stock prices,
the approximations will not be valid anymore. By using the moments based
approximation from Section 2 these drawbacks can be avoided.

A first approximation can be obtained by combining the lower bound S	

and the comonotonic upper bound Sc. For the variance of S	 and Sc we find

Var[S	] = A2(t)

n−1∑
i=0

n−1∑
j=0

eδ(Ti+Tj)
(
eσ2rirj

√
TiTj − 1

)

and

Var[Sc] = A2(t)

n−1∑
i=0

n−1∑
j=0

eδ(Ti+Tj)
(
eσ2

√
TiTj − 1

)
.
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As shown in Section 2, the random variable Sm = zS	 + (1 − z)Sc will have
the correct variance

Var[S] = A2(t)

n−1∑
i=0

n−1∑
j=0

eδ(Ti+Tj)
(
eσ2 min(Ti,Tj) − 1

)

if we choose

z =
Var[Sc] − Var[S]

Var[Sc] − Var[S	]
. (24)

Replacing the comonotonic upper bound Sc by the improved upper bound
Su yields a second approximation Sm2 = zuS

	 + (1− zu)Su. In this case, the
weight zu is given by

z =
Var[Su] − Var[S]

Var[Su] − Var[S	]

where

Var[Su] = A2(t)
n−1∑
i=0

n−1∑
j=0

eδ(Ti+Tj)
(
eσ2(rirj+

√
(1−r2

i )(1−r2
j ))

√
TiTj − 1

)
.

In the following section, we will show that the approximations Sm and Sm2

give almost equal prices. Hence, we propose to use Sm, since the computation
of Sm2 involves much more calculations.

4 Numerical illustration

In this section we numerically illustrate the bounds and approximations for
the price of an Asian option in a Black & Scholes setting, as obtained in the
previous section. We consider a time unit of one day and set t = 0. The
parameters that were used to generate the results given in Tables 1, 2 and 3
are the same as in Jacques (1996): an initial stock price A(0) = 100, a risk-
free interest rate of 9% per year, three values (0.2, 0.3 and 0.4) for the yearly
volatility, and five values (80, 90, 100, 110 and 120) for the exercise price K.
Note that the risk-free force of interest per day is given by δ = ln(1.09)/365,
while the daily volatility σ is obtained by dividing the yearly volatility by√

365.
In Table 1 we compare the bounds and approximations with Monte Carlo

estimates (based on 10000 paths each) in case T = 120 and n = 30. Note
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σ K LB MB MB2 LN IG IUB UB MC (s.e.×104)
0.2 80 21.9212 21.9212 21.9212 21.9213 21.9208 21.9246 21.9269 21.9213 (2.51)

90 12.6768 12.6768 12.6768 12.6771 12.6767 12.7038 12.7204 12.6764 (2.36)
100 5.4609 5.4609 5.4609 5.4611 5.4629 5.5200 5.5557 5.4616 (2.31)
110 1.6252 1.6252 1.6252 1.6250 1.6259 1.6762 1.7072 1.6250 (1.64)
120 0.3317 0.3317 0.3317 0.3315 0.3307 0.3536 0.3673 0.3319 (1.15)

0.3 80 22.2332 22.2332 22.2332 22.2336 22.2313 22.2571 22.2720 22.2340 (5.69)
90 13.8521 13.8521 13.8521 13.8528 13.8544 13.9137 13.9512 13.8519 (5.48)
100 7.4787 7.4788 7.4788 7.4791 7.4855 7.5686 7.6229 7.4800 (5.36)
110 3.4826 3.4827 3.4827 3.4825 3.4875 3.5690 3.6214 3.4829 (4.60)
120 1.4125 1.4126 1.4126 1.4121 1.4123 1.4733 1.5105 1.4124 (3.52)

0.4 80 22.9646 22.9646 22.9646 22.9658 22.9638 23.0190 23.0525 22.9665 (10.05)
90 15.3589 15.3589 15.3589 15.3602 15.3682 15.4539 15.5115 15.3600 (9.82)
100 9.5113 9.5114 9.5114 9.5121 9.5277 9.6315 9.7041 9.5118 (9.05)
110 5.4794 5.4795 5.4795 5.4795 5.4936 5.5994 5.6720 5.4794 (8.33)
120 2.9608 2.9609 2.9609 2.9603 2.9666 3.0611 3.1222 2.9614 (7.36)

Table 1: Upper (UB, IUB) and lower bounds (LB) for the price of an Asian
option at t = 0 with T = 120 and n = 30, compared to the Monte Carlo
estimates (MC) with their standard error times 10000 (s.e.×104) and the
moments based approximations (MB, MB2, LN, IG)

that the random paths are based on antithetic variables and that we use
the geometric average as a control variate in order to reduce the variance
of the Monte Carlo estimate. Also note that we generated different paths
for each value of σ and K. For each estimate we computed the standard
error. As is well-known, the (asymptotic) 95% confidence interval is given
by the estimate plus or minus 1.96 times the standard error. On the other
hand, the range between the lower bound and the (improved) upper bound
contains the exact price with certainty.

Despite the quite large number of paths (and consequently a long com-
puting time) and the variance reduction techniques used, the Monte Carlo
estimate (MC) violates the lower bound (LB) 4 times out of 15. This might
indicate that the lower bound is very close to the real price. The moments
based approximations all give similar prices, but the lognormal approxima-
tion (LN) appears to violate the lower bound for options that are far out-of-
the-money. Also the inverse gaussian approximation (IG) violates the lower
bound, not only for out-of-the-money options but for in-the-money options
too. Although the comonotonic upper bound (UB) and the improved upper
bound (IUB) give quite different prices, the corresponding moments based
approximations (MB, MB2) are almost equal.

In Table 2 we use the same parameters as in Table 1 but we change
the expiration time to T = 60. In this case, the Monte Carlo estimate
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σ K LB MB MB2 LN IG IUB UB MC (s.e.×104)
0.2 80 20.7841 20.7841 20.7841 20.7841 20.7841 20.7843 20.7845 20.7841 (2.43)

90 11.0273 11.0273 11.0273 11.0277 11.0275 11.0470 11.0599 11.0276 (2.43)
100 3.2013 3.2013 3.2013 3.2016 3.2021 3.2903 3.3443 3.2013 (2.15)
110 0.3373 0.3373 0.3373 0.3367 0.3366 0.3805 0.4080 0.3372 (1.33)
120 0.0116 0.0116 0.0116 0.0115 0.0114 0.0156 0.0185 0.0117 (0.55)

0.3 80 20.8122 20.8123 20.8123 20.8126 20.8122 20.8208 20.8268 20.8115 (5.44)
90 11.4929 11.4929 11.4929 11.4944 11.4942 11.5599 11.6017 11.4931 (5.40)
100 4.5063 4.5063 4.5063 4.5070 4.5086 4.6406 4.7221 4.5051 (4.55)
110 1.1516 1.1517 1.1517 1.1505 1.1508 1.2515 1.3134 1.1522 (3.81)
120 0.1915 0.1915 0.1915 0.1906 0.1898 0.2269 0.2503 0.1912 (1.97)

0.4 80 20.9708 20.9708 20.9708 20.9724 20.9709 21.0072 21.0309 20.9716 (9.57)
90 12.2468 12.2469 12.2469 12.2498 12.2505 12.3655 12.4384 12.2482 (9.47)
100 5.8157 5.8159 5.8159 5.8171 5.8210 5.9952 6.1038 5.8155 (8.49)
110 2.2082 2.2083 2.2083 2.2067 2.2088 2.3630 2.4582 2.2091 (7.63)
120 0.6783 0.6783 0.6783 0.6761 0.6750 0.7663 0.8223 0.6777 (4.96)

Table 2: Upper (UB, IUB) and lower bounds (LB) for the price of an Asian
option at t = 0 with T = 60 and n = 30, compared to the Monte Carlo
estimates (MC) with their standard error times 10000 (s.e.×104) and the
moments based approximations (MB, MB2, LN, IG)

violates the lower bound 8 times out of 15. So again, the lower bound must
be very close to the real price. For the lognormal and the inverse gaussian
approximation, we see a similar pattern as in the previous case. The moments
based approximations are again almost equal and very close to the lower
bound.

In Table 3 we change the expiration time back to T = 120 but we reduce
the number of averaging days to n = 10. With these parameters, the Monte
Carlo estimate violates the lower bound 13 times out of 15. The first 4
columns (LB, MB, MB2, LN) are almost equal while the inverse gaussian
approximation appears to underestimate the price of in-the-money options
and out-of-the-money options.

Comparing the results in Tables 1 and 3, we see that the comonotonic
upper bound performs better for the option with n = 10 than for the options
with n = 30. This illustrates the fact that the dependency structure of the
A(T − i) is more “comonotonic-like” if all points in time T − i are close to
each other.

To assess the overall accuracy of the bounds and approximations, we
assume that the Monte Carlo estimate gives the exact price and calculate
the total absolute difference of all 45 cases. As can be seen from Table 4,
the moments based approximations MB and MB2 both have the smallest
error, closely followed by the lower bound. The lognormal approximation
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σ K LB MB MB2 LN IG IUB UB MC (s.e.×104)
0.2 80 22.1712 22.1712 22.1712 22.1712 22.1706 22.1724 22.1735 22.1712 (0.85)

90 13.0085 13.0085 13.0085 13.0085 13.0081 13.0162 13.0232 13.0083 (0.81)
100 5.8630 5.8630 5.8630 5.8630 5.8651 5.8791 5.8934 5.8629 (0.75)
110 1.9169 1.9169 1.9169 1.9168 1.9181 1.9313 1.9442 1.9168 (0.59)
120 0.4534 0.4534 0.4534 0.4533 0.4525 0.4603 0.4665 0.4533 (0.33)

0.3 80 22.5656 22.5657 22.5657 22.5657 22.5631 22.5729 22.5795 22.5656 (1.89)
90 14.3149 14.3149 14.3149 14.3150 14.3172 14.3321 14.3475 14.3148 (1.84)
100 8.0101 8.0101 8.0101 8.0101 8.0178 8.0346 8.0563 8.0099 (1.72)
110 3.9475 3.9475 3.9475 3.9475 3.9540 3.9715 3.9928 3.9474 (1.37)
120 1.7297 1.7297 1.7297 1.7297 1.7307 1.7474 1.7633 1.7297 (1.14)

0.4 80 23.4194 23.4194 23.4194 23.4195 23.4181 23.4351 23.4493 23.4194 (3.43)
90 15.9549 15.9549 15.9549 15.9550 15.9654 15.9811 16.0045 15.9554 (3.33)
100 10.1735 10.1735 10.1735 10.1736 10.1925 10.2062 10.2354 10.1733 (3.02)
110 6.1019 6.1019 6.1019 6.1019 6.1196 6.1349 6.1643 6.1018 (2.80)
120 3.4683 3.4683 3.4683 3.4682 3.4775 3.4966 3.5220 3.4682 (2.41)

Table 3: Upper (UB, IUB) and lower bounds (LB) for the price of an Asian
option at t = 0 with T = 120 and n = 10, compared to the Monte Carlo
estimates (MC) with their standard error times 10000 (s.e.×104) and the
moments based approximations (MB, MB2, LN, IG)

also performs quite well, while the inverse gaussian approximation yields a
total absolute error which is 10 times bigger. In comparison to the lower
bound, the upper bounds IUB and UB perform really bad, so we suggest to
use them only to construct the moments based approximations.

5 Replicating portfolio

Since the bounds and approximations of Section 3 have an analytical form,
we can explicitly calculate the so-called Greeks for these approximations.
The Greeks are quantities representing the market sensitivities of the op-
tions as each Greek measures a different aspect of the risk in an option po-
sition. Through understanding and managing these Greeks, market traders
can manage their risks appropriately. In this section, we will focus on the
delta of the option since this quantity allows us to construct a dynamical
replicating portfolio. The delta of an option is defined as the rate of change
of the option price with respect to the price of the underlying asset, i.e.

∆(n,K, T, t) =
∂ AC(n,K, T, t)

∂A(t)
. (25)
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Approximation Total absolute error
Moments based MB 0.0174745
Moments based MB2 0.0174745
Lower bound LB 0.0176689
Lognormal LN 0.0245574
Inverse Gaussian IG 0.1702414
Improved upper bound IUB 2.3196765
Comonotonic upper bound UB 3.8251189

Table 4: Total absolute error of the bounds and approximations in compari-
son to the Monte Carlo estimate.

The dynamical replicating portfolio consisting of ∆(n,K, T, t) shares of stock
and

Ω(n,K, T, t) =
AC(n,K, T, t) − ∆(n,K, T, t)A(t)

A(0)eδt
.

shares of the bond, will reproduce the value of the option at maturity. This
can be seen as follows: If the stock price drops with a unit amount, then we
would lose ∆(n,K, T, t) on our portfolio. On the other hand, if we invest all
our money in options and the underlying stock drops with a unit amount,
then we would also lose ∆(n,K, T, t).

Since we can calculate the delta of the approximations of Section 3 ex-
plicitly, we can also use it to assess the quality of the approximations. In
order to do that, we will construct the corresponding hedging portfolio and
check how well the portfolio replicates the value of the option along a random
trajectory of the stock price. For the comonotonic upper bound (17) we find

∆c(n,K, T, t) =
1

n

n−1∑
i=0

e−δiΦ
(
σ
√
Ti − Φ−1(FSc

t
(nK))

)

if T −n+1 > t. The case T −n+1 ≤ t is essentially the same because of (4)
but one has to be careful when t̄ = t. Then also K ′ is a function of A(t) and
we pick up an extra term in the differentiation. Analogously, for the lower
bound (23) we find

∆	(n,K, T, t) =
1

n

n−1∑
i=0

e−δiΦ
(
σri

√
Ti − Φ−1(FS�

t
(nK))

)
.
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Figure 2: Moments based approximation for the price of an Asian option
(black line) along a randomly generated path of the stock price, almost com-
pletely eclipsing the price of its replicating portfolio (grey line). The intrinsic
value of the option is indicated by a dotted line.

Since z in (24) is independent of A(t), the delta of the moments based ap-
proximation Sm equals

∆m(n,K, T, t) = z∆	(n,K, T, t) + (1 − z)∆c(n,K, T, t).

We will use this value as an approximation for the real delta (25) and
construct the corresponding replicating portfolio. Note that in theory the
replicating portfolio ought to be updated continuously, but in practice it will
only be updated at discrete times. In our numerical example we will update
the portfolio 24 times a day. Using a higher updating frequency doesn’t seem
to have a significant influence on the results.

Figure 2 shows the hedging portfolio along a randomly generated path of
the stock price. The parameters are chosen as in Jacques (1996): an initial
stock price A(0) = 100, a strike price K = 90, a risk-free interest rate δ = 9%
per year and a yearly volatility σ = 20%. The number of days until maturity
is set to T = 120 and the number of averaging days equals n = 30. Recall
that for pricing purposes we have to replace the drift parameter µ with the
risk-free rate of return δ. In the present setting however, we consider physical
paths of the stock price process and hence we have to use the real rate of

18



return µ. We choose this parameter to be 0.15, significantly larger than the
risk-free rate of return. The price of the option is also plotted in Figure
2, but it is almost indistinguishable from the hedging portfolio. So, the
hedging portfolio replicates the price of the option along the path with very
high precision. We also calculate the intrinsic value of the option based on
the n-periods moving average. This number indicates how much the option
is worth assuming that maturity is attained at that time. For t < n, we need
values of the stock price at negative times to compute the moving average
and we assume that A(t) = A(0) if t < 0. The smooth curve in Figure 2
is the intrinsic value at the current time. It can be seen that the hedging
portfolio reproduces the intrinsic value of the option at maturity very well.
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