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Abstract

In this paper we present a simple static super-hedging strategy for the
payoff of an arithmetic Asian option in terms of a portfolio of European
options. Moreover, it is shown that the obtained hedge is optimal in some
sense. The strategy is based on stop-loss transforms and is applicable
under general stock price models. We focus on some popular Lévy models.
Numerical illustrations of the hedging performance are given for various
Lévy models calibrated to market data of the S&P 500.
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1 Introduction

Pricing of arithmetic Asian options is even in the Black-Scholes world not
straightforward. In general no explicit analytical expression for the average
is available. So one has to use Monte Carlo simulation techniques to obtain nu-
merical estimates of the price (see Broadie and Glasserman [1996] and Broadie
et al. [1999]), or one can follow a partial differential equation approach (cf.
Dewynne and Wilmott [1993], Vecef [2001,2002]) (respectively a partial integro-
differential equation approach in more general market models (cf. Vecef and Xu
[2004]). However, typically these approaches do not lead to practicable hedg-
ing strategies. Approximations of the distribution of the average that lead to
closed-form expressions have also been studied (see e.g. Turnbull and Wakeman
[1991], Vorst [1992]), but in general it is difficult to assess the approximation
error and for hedging purposes this method is often not satisfying. For an ap-
proach based on Fast Fourier Transforms, see Benhamou [2002].

An alternative route is to try to derive upper and lower bounds for the option
price. This can nicely be done by the use of comonotonic theory as described
in Dhaene et al. [2002a,2002b] and Vanmaele et al. [2002]. We will follow this
path and derive a static (super-)hedge for fixed-strike Asian call options based
on a buy-and-hold strategy consisting of European call options maturing with
and before the Asian option.

This is particularly useful since European call options are typically available
on the market and quite liquidly traded. Moreover, only when the contract
is struck, one has to take a position in these calls and no dynamic trading is
needed.

Static hedging has several advantages over dynamic hedging. For instance, it is
less sensitive to the assumption of zero transaction costs (both commissions and
the cost of paying individuals to monitor the positions). Furthermore, dynamic
hedging tends to fail when liquidity dries up or when the market makes large
moves, but especially in these situations effective hedging is needed (see e.g.
Carr et al. [1998] and Carr and Picron [1999)]).

As is illustrated in Section 4, the hedging error of our simple super-hedging
strategy is very small if the option is in the money. For options at and out of
the money this strategy can be quite conservative, but it is still much cheaper
than the trivial super-hedge of the Asian option by a European option with
identical strike and maturity (in case the dividend yield g is smaller than the
continuously compound interest rate ).

The procedure we develop is applicable for general stock price models. In this
paper we focus on models where the asset price is described as the exponential
of a general Lévy process. In recent years it has been realized that the dynamics
of stocks are much better described by a Lévy model than by the classical Black-
Scholes model (see for instance Schoutens [2003] and the references therein). In
a Lévy model the Brownian motion is replaced by a more general Lévy process,
taking into account the typical non-normality of asset returns. Among those



Lévy models that retain analytical tractability and at the same time fit empir-
ical data to a satisfying degree, are the NIG-, the VG- and the Meixner-Lévy
model. For NIG- and VG-Lévy models, it was observed in Albrecher and Pre-
dota [2002,2004] that Asian option prices in these more realistic models differ
significantly from the corresponding Black-Scholes prices.

Lévy market models are, except in the Brownian and the unrealistic Poissonian
case, incomplete. There are many candidates of equivalent martingale measures
for risk-neutral valuation of derivative securities. Qur approach is based on the
risk-neutral densities of the distribution of the asset price and thus works for
all equivalent martingale measures that lead to tractable numerical estimates of
these density functions.

The paper is structured as follows. In Section 2 we describe how to obtain
upper bounds for the price of an Asian option under a general market model
using comonotonicity techniques. Next, we illustrate how to super-hedge Asian
options using European call options in a buy-and-hold strategy. Section 3 de-
scribes the Lévy market model for asset prices and works out the theory in more
detail for some popular examples, namely the VG-, the NIG- and the Meixner-
Lévy model. Finally, in Section 4 we give numerical illustrations of the hedging
strategy by calibrating all the models discussed in Section 3 to market data,
namely a set of vanilla options on the S&P 500, and comparing the respec-
tive Monte Carlo prices, the comonotonic-upper-bound price (and the resulting
static hedging strategy), with other (trivial) static super-hedges, including the
well-known super-hedge by the European call with same strike and maturity,
in case ¢ < r. Moreover, these results are compared with the corresponding
results for the Black-Scholes model calibrated to the same data set. Finally, the
sensitivity of the results on the number of sampling days within the lifetime of
the Asian option is investigated.

2 A Static Hedging Strategy for Arithmetic Av-
erage Options

Throughout the text we will work under an arbitrage-free frictionless market
model which consists of a riskless bond (bank account) and one financial risky
asset, a stock or an index. The market dictates that there is a fixed interest
rate r > 0, and that the bond price process behaves (deterministicly) as B =
{B; = exp(rt),t > 0}. The stock price process follows a stochastic process and
is denoted by S = {S;,t > 0}. We assume that the stock pays a continuous
compound dividend yield at a rate g per annum. We will always work with the
natural filtration F' = S = {F;,,0 <t < T} of S. Later on, we will choose an
exponential of a Lévy process for the stock price process, but first we develop
the theory for a general model.



Suppose that in an arbitrary arbitrage-free incomplete market model we have
selected an equivalent martingale measure @, then the price of a European-style
arithmetic average call option with strike price K, maturity 7' and n averaging
days 0 <t1 <...<t, <T at time ¢ is given by

(ZZ:nl St —K>+ |}.t‘| 7
(oA =0 | (35, o)
k=1

where S; is the asset price at time ¢, r is the risk-free interest rate and (z — K)*
means max(z — K, 0).

AA; = exp(—r(T —1t))Eqg

The main difficulty in evaluating this expression is that in general the distribu-
tion of the average > _, Sy, /n, which is a sum of dependent random variables,
is not available. Here we focus on upper bounds based on a portfolio of Eu-
ropean options. For that purpose, let us assume for simplicity that we are at
time ¢ = 0 and that the averaging has not yet started. First note, that for any
Ki,...,K, >0 with K = Y7, K}, we have a.s.

n + n
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k=1 k=1
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where ECy(kg,tr) denotes the price of a European call option at time 0 with
strike kr = nK}j and maturity t.

In terms of hedging this means that we have the following static super-hedging
strategy: for each k, buy exp(—r(T —t))/n European call options at time ¢t = 0
with strike k; and maturity ¢; and hold these until their expiry. Then put their
payoff on the bank account.

Since relation (1) holds for all combinations of k; > 0 that satisfy > ,_, &k =
nK, we have a variety of portfolios of n European options whose payoff dom-
inates the Asian option. For instance, the simplest choice is Ky = K (k =



1,...,n). If ¢ < r, we have ECy(K,t) < ECy(K,T) for every K > 0 and
0 <t < T, and thus this trivial choice shows that the Asian option price is
dominated by the price of a European option with the same strike and matu-
rity, i.e.

AAo(K,T) < ECo(K,T).

However, for our super-hedging purposes, we naturally look for that combination
of ki’s which minimizes the right-hand side of (1). As shown in Dhaene et
al. [2002b], this optimal combination can be determined by using stop-loss
transforms and the theory of comonotonic risks. In the following, we will briefly
summarize these techniques and adapt them to our setting of general market
models:

Let F(z) be a distribution function of a non-negative random variable X, then
(in accordance with actuarial practice) its stop-loss transform ®r(m) is defined
by

—+oo
B (m) = / (¢ —m)dF(z) = B[(X —m)*], m>0.
m
A convex ordering of distribution functions F'(z) and G(x) (or equivalently of
the corresponding random variables) on the non-negative real line can be defined
in the following way: F'(x) is said to precede G(z) in convex order (F <cx G),
if the corresponding means of the distribution functions (random variables) are
equal and
& (m) < Pg(m) for all m > 0.

If we write .
An =8y,
k=1

and FYy (z) = Pg(A, < x|F;) for the distribution function under Q of A,, given
the information J;, then we have

i, (=T =)
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In this way the problem of pricing an arithmetic average option is transformed
to calculating the stop-loss transform of a sum of dependent risks. Concretely,
we will look at bounds for stop-loss transforms based on comonotonic risks:
A positive random vector (Xi,...,X,) with marginal distribution functions
Fi(z1),...,F(zy) is called comonotone, if for the joint distribution function
Fx,, . .x,(@1,...,2,) = min{F(z1),...,Fp(2,)} holds for every z1,...,z, >
0. It immediately follows that the distribution of a comonotone random vector
(X1,...,X,) with given marginal distributions Fi(z1),..., Fn(z,) is uniquely
determined. A comonotone random vector (Xi,...,X,) has the same joint
distribution as (F, 1(U),..., F, *(U)), where U is a uniform (0,1) random vari-
able. For a detailed account of comonotonicity and its connection to stochastic
orderings, we refer to the recent survey of Dhaene et al. [2002a]. Note that



comonotonicity represents the strongest possible positive dependence among
the marginals, i.e. all components of (X3,...,X,) are non-decreasing functions
of the same random variable U.

In Dhaene et al. [2002a], it was shown that an upper bound for the stop-
loss transform of the sum of arbitrary dependent positive random variables
> r1 X with marginal distributions Fy(21),..., F,(z,) is given by the stop-
loss transform of the sum S¢ = 3"}, Y}, where (¥7,...,Y}) is the comonotone
random vector with marginal distributions Fi (z1),. .., Fn(zy), i-e.

n n
Z Xk <cx Z Y-
k=1 k=1

Let Fge(z) denote the distribution function of Y 7_; Y, then we have the fol-
lowing relation for its inverse

Fgl(z) =) Fxlx), z>0. (3)

n
k=1

From Theorem 6 in Simon et al. [2000] it follows that the stop-loss transform
of a sum of comonotonic random variables can be obtained as a sum of the
stop-loss transforms of the marginals evaluated at specified points, namely

q)FSc (m) = Z (Pka (F);:(FSC (m))) , M Z 07 (4)
k=1

given that the marginal distribution functions involved are strictly increasing
(which will always be the case in our applications). At the same time, we have

. (m) = E((zn:Yk - m)+) < XH:E (Vi —mi)™) = znjcbpxk (my) (5)
k=1 k=1 k=1

whenever }"7_, my = m. Thus the stop-loss transform of the comonotonic sum
given by (4) at the same time represents the lowest possible bound in terms of
a sum of stop-loss transforms of the marginal distributions.

We will now apply this result to our setting of an arithmetic Asian option. Let
F(zy;ty) (k = 1,...,n) denote the conditional distribution of S;, under the
risk-neutral measure @) (given the information available at time ¢ = 0), i.e. for
Tr,tr > 0,

F(zgstr) = Pq(Sy < zx|Fo). (6)

Combining (1), (2), (4) and (5), we thus have found the optimal combination
of strike prices kj, namely

kg =F 1 (Fse(nK);ty), k=1,...,n. (7



In that way, we have obtained the optimal static super-hedge in terms of Euro-
pean call options with maturity dates equal to the averaging dates.

For the practical determination of the strike prices ky, the distribution function
of the comonotone sum Fs.(z) as given by (3) has to be calculated and evaluated
at nK (note that the involved marginal distribution functions are strictly in-
creasing and continuous). In case the risk-neutral density (or an approximation
of it) is available, this can be done numerically in a straight-forward way (cf.
Section 4). The r’s are then obtained by evaluating the inverse distribution
function of F(x;ty).

3 The Lévy Market Model

Suppose ¢(u) is the characteristic function of a distribution. If for every positive
integer n, ¢(u) is also the nth power of a characteristic function, we say that
the distribution is infinitely divisible.

One can define for every such infinitely divisible distribution a stochastic process,
X = {X;,t > 0}, called Lévy process, which starts at zero, has independent
and stationary increments and such that the distribution of an increment over
[s,5+1], s,t >0,ie Xyrs — X5, has (¢p(u))? as its characteristic function.
Every Lévy process has a modification with sample paths that are almost ev-
erywhere continuous from the right and have limits from the left (“cadlag”)
and this modification is itself a Lévy process. We always work with this cadlag
version of the process. The cumulant characteristic function ¥ (u) = log ¢(u) is
often called the characteristic exponent (see e.g. Bertoin [1996]).

We assume our market to consist of one riskless asset (the bond) with price
process given by B; = exp(rt) and one risky asset (the stock or index). The
risk-neutral model for the risky asset is given by

exp((r — q)t)
St = So E[exp(Xt)] eXp(Xt).
The factor exp((r — ¢)t)/E[exp(X})] puts us immediately in a risk-neutral set-
ting by a mean correcting argument. Note that the argument underlying the
above choice of a risk-neutral measure is in line with the classical risk-neutrally
mean-correcting technique used in the Black-Scholes setting. We would like to
stress, however, that our proposed hedging strategies are not restricted to this
particular choice of a risk-neutral density.

Note that in this case we have for (6)

F(zrite) = Pq (St < zx|Fo) (8)
_ exp((r — g)t)
= Pq (Som eXP(th) < $k|-7:0) 9)

= Po (Xu, <log@k/So) + (i) - (r—t|7)  (10)



In the next section, we describe three popular Lévy processes, which are often
used in the modelling of financial assets: the VG process, the NIG process and
the Meixner process.

To obtain the price EC(K,T) of a European call option with strike K and time
to maturity 7" under these models, one can use the Carr and Madan formula
(Carr and Madan [1998]), which is formulated in terms of the characteristic
function of the underlying Lévy process: Let o be a positive constant such that
the ath moment of the stock price exists (typically a value of a = 0.75 will
suffice). Then

exp(—alog(K))

EC(K,T) = =

+oo
/0 exp(—ivlog(K))e(v)dv, (1)

where

_exp(—rT)E[exp(i(v — (a + 1)i) log(ST))]
o) = a?+a—v2+i2a+ 1) (12)

_ exp(=rT)¢(v — (a + 1)i)

a2+ a—v2+i2a+ 1)’ (13)

The Fast Fourier Transform can be used to invert the generalized Fourier trans-
form of the call price. Using the above formula one can typically calculate the
complete option surface over all strikes and maturities in a fraction of a second.

3.1 Concrete Examples
3.1.1 The Variance Gamma Process

The VG(C, G, M) law has a characteristic function of the form

GM ¢
. M) =
ova(u; G, G, M) (GM + (M - G)iu+ u2> ’

and its density function is given by

C
Fraai 0.6, = E e (

c—-1/2
< (Gehs)  Kooual(@+ M) jal/2) (14

(e —2M)x)

where K, (z) denotes the modified Bessel function of the third kind with index
v, I'(z) denotes the gamma function and C,G, M > 0. This distribution is in-
finitely divisible and has the following convolution property: ¢y a(u; C,G, M) =
(pve(u;C/n,G, M))™. Thus one can define the VG-process X (V&) = {Xt(VG),
t > 0} as the process which starts at zero, has independent and stationary incre-
ments and where the increment X S(LG ) x{Ve)
follows a VG(C't,G, M) law.

over the time interval [s, ¢ + s]



Note that sometimes another parameterization of the VG distribution is used
(see e.g. Schoutens [2003]).

The class of Variance Gamma distributions as a model for stock returns was
introduced by Madan and Seneta [1990] (where the symmetric case G = M
was considered), see also Madan and Milne [1991]. In Madan et al. [1998], the
general case with skewness is treated.

3.1.2 The Normal Inverse Gaussian Process

The Normal Inverse Gaussian (NIG) distribution with parameters a > 0, |8] <
a and 6 > 0, has a characteristic function given by:

onic(u;a, B,8) = exp <—5 (\/a2 —(B+iu)?—+/a? - ,82)) .

Again, one can clearly see that this is an infinitely divisible characteristic func-
tion with ¢nra(u;a, 8,0) = (dn1c(u;a,B,5/n))™. Hence we can define the
NIG-process X N1 = {x N9 ¢ > 0}, with XSV = 0, stationary and inde-
pendent NIG distributed increments: To be precise, Xt(NIG) has a NIG(a, 8, t)
law. The density of the NIG(«, 8, d) distribution is given by

K ,/52 2
fNIG(,Z-;a”B,(S) = %6 exp ((S\/ a2 — ﬂQ + ﬂ:l;‘) %

The NIG distribution was introduced by Barndorff-Nielsen [1995], see also Ryd-
berg [1997].

3.1.3 The Meixner Process
The density of the Meixner distribution is given by
2cos(8/2))?° bx iz
fMei:cneT(m;aa/B:(s) = % €xp (;) ‘F (5 + E)

where a > 0, -7 < f < m,d > 0.
The characteristic function of the Meixner(a, 3, §) distribution is given by

24
¢M€iwn67' (Uy Q, B, 5) = (M)

2

2

?

The Meixner(a, 8,9) distribution is infinitely divisible: ¢preizner(u;a, 8,0) =
(PMeizner (u;a, B,0/n))™. It thus generates a Lévy process which we call the

Meixner process. More precisely, a Meixner process X (Meiener) — { x (Meianer)
t > 0} is a stochastic process which starts at zero, i.e. XéMe”"eT) =0, has in-
(Meizner)

dependent and stationary increments, and where the distribution of X;
is given by the Meixner distribution Meixner(a, 8, dt).

The Meixner process was introduced in Schoutens and Teugels [1998] and later
on it was suggested to serve for fitting stock returns in Grigelionis [1999]. This
application in finance was worked out in Schoutens [2002].



4 Numerical Results

We will now illustrate the performance of the static hedge-portfolio for the
Lévy market models discussed in Section 3.1 applied to a liquid market. For
completeness and illustration purposes, we also include the corresponding Black-
Scholes model. Concretely, we will calibrate our model parameters to the set of
vanilla options on the S&P 500 as given in Schoutens [2003, Appendix C]. The
yearly risk-free interest rate and the dividend rate are given by r» = 0.019 and
q = 0.012, respectively. The result of the calibration in the least squared sense,
i.e. with the minimal value of

Ise = Z (Market price — Model price)?,

options

is given in Exhibit 1.

We investigate an arithmetic Asian call option with a maturity of 1 year and
averaging every month (i.e. 12 averaging days) and every week (i.e. 52 aver-
aging days), respectively. In order to set up our hedge portfolio, we thus have
to determine the inverse distribution function of the asset price at these 12 (52,
respectively) days (cf. (6)). This is done by discretizing the real line in an
appropriate range and numerically building up the distribution function from
the density function. The inverse is then found by a bisection method from the
corresponding table and linear interpolation between grid points is employed.
It turns out that using 40000 points in the grid is sufficient (in the sense that
a further increase does not change the significant digits of the results). Next,
the inverse of the distribution of the comonotone sum is built up according to
(3) and then itself inverted in the above way. Finally, the strike prices ky of the
European options are obtained by evaluating the inverse distribution functions
of the marginals according to (7). For the models discussed in Section 3.1, this
numerical procedure to obtain the strike prices for our hedging strategy is both
accurate and very quick (e.g. for monthly averaging it takes less than a minute
on a standard PC to determine the entire hedge portfolio).

In Exhibits 2 and 3 the strike prices as a percentage of the spot price are listed for
the above example with monthly averaging and the various models calibrated
to the S&P 500 (all numbers are rounded to their last digit). Note that the
optimal strike prices hardly differ among the various Lévy models considered.
However, for the Black Scholes model calibrated to the same data, the corre-
sponding strike prices are significantly closer to the strike of the Asian option.

The price of the hedging strategy is then easily determined using the Euro-
pean call option pricing formula (11) of Carr and Madan and (1). Exhibits 4-7
compare the Monte-Carlo simulated price of the Asian option AA;c and the
comonotonic superhedge price AA., with the prices of two trivial super-hedging
strategies, namely the trivial super-hedge using the European option price EC
with identical strike and maturity (note ¢ < r) and the super-hedge (1) with all

10



k; = K with price AA;,.

For the Monte-Carlo price, we used 1000000 simulated paths. The VG process
was simulated as a difference of 2 Gamma processes (cf. Schoutens [2003, Sec-
tion 8.4.2]), NIG paths were obtained as described in Schoutens [2003, Section
8.4.5] and Meixner paths were obtained by a compound Poisson approximation
as described in Schoutens [2003, Section 8.2.1].

From Exhibits 4-7 we observe that the more in the money the Asian option is,
the less is the difference between the option price and the comonotonic hedge.
For an option with moneyness of 80% the difference is typically around 1.5%,
whereas the classical hedge with the European call leads to a difference of al-
most 10%. For options out of the money, the difference increases, but is then
substantially smaller than the differences for the other two trivial hedges. In
view of the easy and cheap way in which this hedge can be implemented in
practice, this comonotonic approach seems to be competitive also in these cases.

Exhibits 8-11 give the corresponding results for the same Asian options, but
now with weekly averaging. This allows to investigate the sensitivity of the
hedging performance on the number of sampling points. In principle, one ex-
pects the relative difference between the price of the option and the price of
the comonotonic hedge to increase for an increasing number of sampling points
(since one upperbounds each additional component by a comonotone depen-
dence structure). However, as can be seen from Exhibits 8-11, this effect is not
very pronounced for the values used in the numerical example, indicating that
the strategy is quite robust with respect to the number of sampling points.

Note that the Black-Scholes model underestimates the prices of Asian call op-
tions for in-the-money options and overestimates it for out-of-the-money options
(which was already observed in Albrecher and Predota [2002,2004] for other data
sets). The performance of the comonotonic hedge, however, turns out to have
a similar pattern as a function of the moneyness of the option.

5 Conclusion

Pricing of exotic derivatives is in general on rather weak foundations. As was
recently realized (see e.g. Schoutens et al. [2004]), calibration of a variety
of market models may lead to widely differing prices of exotic options, which
underlines the fact that obtaining concrete super-hedging strategies is of utmost
importance. We have shown that staticly hedging an Asian option in terms of
a portfolio of European options is a simple and quick alternative to existing
tools. Moreover, opposed to most of the existing techniques, this approach
is applicable in general market models whenever the risk-neutral density of
the asset price distribution or an approximation of it is available. Since the
proposed hedging strategy is static, it is much less sensitive to the assumption

11



of zero transaction costs and to the hedging performance in the presence of large
market movements; no dynamic rebalancing is required. These advantages may
sometimes compensate the gap of the hedging price and the option price even
for OTM Asian options.

Moreover, the method introduced in this paper is not restricted to Asian options.
It works whenever one is faced with a payoff that is defined as a sum of dependent
asset prices (for instance basket options). From the structure of the technique,
one can see that the stronger the dependence of the involved asset prices is,
the better the performance will be. For some other actuarial and financial
applications of the method, see Dhaene et al. (2002a).
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Model Parameters
VG C G M
1.3574 5.8704 14.2699
NIG «a 8 1
6.1882 -3.8941  0.1622
Meixner «a 8 é
0.3977 -1.4940 0.3462
Black-Scholes o
0.1812

Exhibit 1: Lévy models (mean correcting): parameter estimation (S&P 500)
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100K /So  t VG model NIG model Meixner model BS model

80 0.083 92.82 94.87 95.14 91.26
0.167 89.23 90.66 90.65 87.84
0.250 86.39 87.23 87.03 85.29
0.333 83.59 84.34 84.07 83.18
0.417 81.42 81.84 81.57 81.36
0.500 79.54 79.62 79.41 79.75
0.583 77.87 77.64 77.51 78.28
0.667 76.37 75.83 75.80 76.94
0.750 75.00 74.18 74.24 75.70
0.833 73.74 72.65 72.82 74.54
0.917 72.56 71.23 71.50 73.45
1.000 71.46 69.90 70.27 72.42

90 0.083 98.36 98.23 98.50 95.86
0.167 96.56 96.40 96.71 94.16
0.250 94.86 94.67 94.90 92.86
0.333 92.88 93.06 93.19 91.77
0.417 91.30 91.56 91.59 90.81
0.500 89.91 90.17 90.12 89.94
0.583 88.64 88.86 88.75 89.14
0.667 87.49 87.62 87.48 88.41
0.750 86.43 86.46 86.29 87.71
0.833 85.43 85.36 85.18 87.06
0.917 84.50 84.31 84.13 86.44
1.000 83.62 83.31 83.14 85.85

100 0.083 100.84 100.33 100.38 100.12
0.167 101.33 100.48 100.57 100.13
0.250 101.49 100.51 100.63 100.12
0.333 101.11 100.47 100.59 100.10
0.417 100.75 100.38 100.48 100.07
0.500 100.36 100.25 100.32 100.04
0.583 99.96 100.09 100.12 100.01
0.667 99.57 99.91 99.90 99.97
0.750 99.19 99.72 99.65 99.93
0.833 98.82 99.51 99.39 99.88
0.917 98.46 99.29 99.13 99.84
1.000 98.11 99.06 98.85 99.79

Exhibit 2: Strike prices ky, for the hedge portfolio (monthly averaging) (Part 1)
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100K /Sy  t VG model NIG model Meixner model BS model

110 0.083 101.87 102.35 102.24 104.09
0.167 103.61 104.21 104.09 105.80
0.250 105.24 105.83 105.72 107.11
0.333 106.93 107.28 107.19 108.21
0.417 108.42 108.62 108.56 109.18
0.500 109.81 109.86 109.84 110.05
0.583 111.12 111.03 111.04 110.86
0.667 112.36 112.14 112.18 111.61
0.750 113.53 113.20 113.27 112.31
0.833 114.65 114.20 114.31 112.97
0.917 115.72 115.17 115.30 113.60
1.000 116.74 116.10 116.26 114.21

120 0.083 106.63 106.05 105.86 107.83
0.167 109.81 109.68 109.55 111.21
0.250 112.52 112.61 112.54 113.85
0.333 115.20 115.18 115.16 116.11
0.417 117.54 117.53 117.54 118.13
0.500 119.71 119.73 119.75 119.98
0.583 121.76 121.80 121.84 121.70
0.667 123.72 123.78 123.84 123.31
0.750 125.60 125.69 125.75 124.84
0.833 127.42 127.54 127.61 126.30
0.917 129.19 129.33 129.40 127.70
1.000 130.91 131.07 131.15 129.04

Exhibit 3: Strike prices xy, for the hedge portfolio (monthly averaging) (Part 2)

100K /S, Adyc AA, A4, EC

80 20.0727 20.1523 20.2756 21.0819
90 11.0662 11.4577 11.5952 13.2550
100 4.5532 5.1833 5.1835 7.4552
110 1.3491 1.8359 1.9573 3.7642
120 0.2944 0.5174 0.6952 1.7243

Exhibit 4: Black Scholes option prices as percentage of the spot (monthly aver-
aging)
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100K/ S, AApce AA, AA, EC

80 20.5233 20.7895 20.9331 22.0739
90 11.7384 12.1649 12.3462 14.2015
100 4.5979 5.0555 5.0764 7.7732
110 0.9585 1.2261 1.5090 3.3712
120 0.2108 0.3364 0.4824 1.2554

Exhibit 5: VG option prices as percentage of the spot (monthly averaging)

100K/ S AAyc AA, AA, EC

80 20.6067 20.9335 21.0906 22.3345
90 11.7500 12.2184 12.3885 14.3309
100 4.4899 5.0184 5.0223 7.7433
110 0.9208 1.2477 1.5039 3.3441
120 0.1865 0.3149 0.4660 1.2381

Exhibit 6: NIG option prices as percentage of the spot (monthly averaging)

100K/ S AAyc AA, AA, EC

80 20.7128 20.8870 21.0459 22.2530
90 11.8590 12.2050 12.3861 14.3029
100 4.5133 5.0147 5.0204 7.7499
110 0.8768 1.2471 1.5085 3.3476
120 0.1961 0.3382 0.4862 1.2601

Exhibit 7: Meixner option prices as percentage of the spot (monthly averaging)

100K’/ S AAyc AA,. AA, EC
80 20.0198 20.0964 20.2280 21.0819
90 10.9226 11.3088 11.4833 13.2550
100 4.3373 4.9738 49741 7.4552
110 1.1970 1.6747 1.8345 3.7642
120 0.2342 0.4390 0.6384 1.7243
Exhibit 8: Black Scholes option prices as percentage of the spot (weekly aver-
aging)

100K/ S AAmc AA. AAyg, EC
80 20.3915 20.6882 20.8543 22.0739
90 11.5263 11.9870 12.2064 14.2015
100 4.3138 4.8178 4.8365 7.7732
110 0.8012 1.0884 1.3991 3.3712
120 0.1651 0.2905 0.4409 1.2554

Exhibit 9: VG option prices as percentage of the spot (weekly averaging)
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100K/ S AApc AA. AA, EC
80 20.5274 20.8217 21.0036 22.3345
90 11.6063 12.0419 12.2443 14.3309
100 4.2758 4.7829 4.7861 7.7433
110 0.8010 1.1060 1.3948 3.3441
120 0.1543 0.2696 0.4250 1.2381

Exhibit 10: NIG option prices as percentage of the spot (weekly averaging)

100K/ S AAyc AA, AA, EC
80 20.3915 20.7760 20.9615 22.2530
90 11.5263 12.0285 12.2430 14.3029
100 4.3138 4.7785 4.7834 7.7499
110 0.8012 1.1071 1.3993 3.3476
120 0.1651 0.2914 0.4446 1.2601

Exhibit 11: Meixner option prices as percentage of the spot (weekly averaging)
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