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Abstract

Renshaw and Verrall (1994) specified the generalized linear model (GLM) underlying the
chain-ladder technique and suggested some other GLMs which might be useful in claims
reserving. The purpose of this paper is to construct bounds for the discounted loss reserve
within the framework of GLMs. Exact calculation of the distribution of the total reserve is
not feasible, and hence the determination of lower and upper bounds with a simpler structure
is a possible way out. The paper ends with numerical examples illustrating the usefulness of
the presented approximations.
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1 Introduction

The correct estimation of the amount of money a company should set aside to meet claims arising
in the future on the written policies represents an important task for insurance companies in
order to get the correct picture of its liabilities. The past data used to construct estimates for the
future payments consist of a triangle of incremental claims Yij. We use the standard notation,
with the random variables Yij for i = 1, 2, . . . , t; j = 1, 2, . . . , s denoting the claim figures for
year of origin (or accident year) i and development year j, meaning that the claim amounts were
paid in calendar year i + j − 1. Year of origin, year of development and calendar year act as
possible explanatory variables for the observation Yij . Most claims reserving methods usually
assume that t = s. For (i, j) combinations with i + j ≤ t + 1, Yij has already been observed,
otherwise it is a future observation. To a large extent, it is irrelevant whether incremental or
cumulative data are used when considering claims reserving in a stochastic context. The known
values are presented in the form of a run-off triangle, as depicted in Figure 1.

We consider annual development in this paper (the methods can be extended easily to semi-
annual, quarterly or monthly development) and we assume that the time it takes for the claims
to be completely paid is fixed and known. The triangle is augmented each year by the addition
of a new diagonal. The purpose is to complete this run-off triangle to a square, and even to a
rectangle if estimates are required pertaining to development years of which no data are recorded
in the run-off triangle at hand. To aid in the setting of reserves, the actuary can make use of
a variety of techniques. The inherent uncertainty is described by the distribution of possible
outcomes, and one needs to arrive at the best estimate of the reserve.

In this paper our aim is to model claim payments using Generalized Linear Models (GLMs) and
to incorporate a stochastic discounting factor at the same time when estimating loss reserves.
Distributions used to describe the claim size should have a subexponential right tail. Further-
more, the phenomena to be modelled are rarely additive in the collateral data. A multiplicative
model is much more plausible. These problems cannot be solved by working with ordinary linear
models, but with generalized linear models. The generalization is twofold. First, it is allowed
that the random deviations from the mean obey another distribution than the normal. In fact,
one can take any distribution from the exponential dispersion family, including for instance the
Poisson, the binomial, the gamma and the inverse Gaussian distributions. Second, it is no longer
necessary that the mean of the random variable is a linear function of the explanatory variables,
but it only has to be linear on a certain scale. If this scale for instance is logarithmic, we have
in fact a multiplicative model instead of an additive model.

Loss reserving deals with the determination of the uncertain present value of an unknown amount
of future payments. One of the sub-problems in this respect consists of the discounting of the
future estimates in the run-off triangle, where interest rates (and inflation) are not known for
certain. We will model the stochastic discount factor using a Brownian motion with drift. When
determining the discounted loss reserve S, we impose an explicit margin based on a risk measure
(for example Value at Risk) from the total distribution of the discounted reserve. In general, it
is hard or even impossible to determine the quantiles of S analytically, because in any realistic
model for the return process the random variable S will be a sum of strongly dependent random
variables. In the present setting we suggest to solve this problem by calculating upper and
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Year of Development year
origin 1 2 · · · j · · · t− 1 t

1 Y11 Y12 · · · Y1j · · · Y1,t−1 Y1t

2 Y21 Y22 · · · Y2j · · · Y2,t−1
... · · · · · · · · · · · · · · ·
i Yi1 · · · · · · Yij
... · · · · · · · · ·
t Yt1

Figure 1: Random variables in a run-off triangle

lower bounds for this sum of dependent random variables making efficient use of the available
information. These bounds are based on a general technique for deriving lower and upper
bounds for stop-loss premiums of sums of dependent random variables, as explained in Kaas
et al. (2000). The first approximation we will consider for the distribution function of the
discounted IBNR reserve is derived by approximating the dependence structure between the
random variables involved by a comonotonic dependence structure. The second approximation,
which is derived by considering conditional expectations, takes part of the dependence structure
into account. We will include a numerical comparison of our approximations with a simulation
study. The second approximation turns out to perform quite well. For details of this technique
we refer to Dhaene et al. (2002a,b) and the references therein.

This paper is set out as follows. In section 2 we present a brief review of generalized linear
models and their applications to claims reserving. In section 3 we explain the methodology
for obtaining the bounds and we recall the main result concerning stochastic bounds for the
scalar product of two independent random vectors, where the marginal distribution functions
of each vector are given, but the dependence structures are unknown. To use these results for
discounted IBNR evaluations we need some asymptotic results for model parameter estimates
in GLMs. Some numerical illustrations for a simulated data set are provided in section 4. We
also illustrate the obtained bounds graphically.

2 Generalized Linear Models and Claims Reserving

For a general introduction to generalized linear models we refer to McCullagh and Nelder (1992).
This family encompasses normal error linear regression models and the nonlinear exponential,
logistic and Poisson regression models, as well as many other models, such as loglinear models
for categorical data. In this subsection we recall the structure of GLMs in the framework of
claims reserving.

The first component of a GLM, the random component, assumes that the response variables
Yij are independent and that the density function of Yij belongs to the exponential family with
densities of the form

f(yij; θij , φ) = exp {[yijθij − b(θij)] /a(φ) + c(yij, φ)} , (1)
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Distribution Density φ Canonical Mean Variance
link θ(µ) function µ(θ) function V (µ)

N(µ, σ2) 1
σ
√

2π
exp

(
− (y−µ)2

2σ2

)
σ2 µ θ 1

Poisson(µ) e−µ µy

y! 1 log(µ) eθ µ

Gamma(µ, ν) 1
Γ(ν)

(
νy
µ

)ν
exp

(
−νy

µ

)
1
y

1
ν 1/µ −1/θ µ2

IG(µ, σ2) y−3/2√
2πσ2

exp
(−(y−µ)2

2yσ2µ2

)
σ2 1/µ2 (−2θ)−1/2 µ3

Table 1: Characteristics of some frequently used distributions in loss reserving

where a(.), b(.) en c(., .) are known functions. The function a(φ) often has the form a(φ) = φ,
where φ is called the dispersion parameter.

When φ is a known constant, (1) simplifies to the natural exponential family

f(yij; θij) = ã(θij)b̃(yij)exp {yijQ(θij)} . (2)

We identify Q(θ) with θ/a(φ), ã(θ) with exp{−b(θ)/a(φ)}, and b̃(y) with exp{c(y, φ)}. The
more general formula (1) is useful for two-parameter families, such as the normal or gamma, in
which φ is a nuisance parameter. Denoting the mean of Yij by µij, it is known that

µij = E[Yij] = b′(θij) and Var[Yij] = b′′(θij)a(φ), (3)

where the primes denote derivatives with respect to θ. The variance can be expressed as a
function of the mean by

Var[Yij ] = a(φ)V (µij) = φV (µij),

where V (.) is called the variance function. The variance function V captures the relationship,
if any, between the mean and variance of Yij .

The possible distributions to work with in claims reserving include for instance the normal, the
Poisson, the gamma and the inverse Gaussian. Table 1 shows some of their characteristics. For
a given distribution, link functions other than the canonical link function can also be used. For
example, the log-link is often used with the gamma distribution.

The systematic component of a GLM is based on a linear predictor

ηij = (R�β)ij = β1Rij,1 + · · · + βpRij,p, i, j = 1, · · · , t, (4)

where �β = (β1, · · · , βp)′ are model parameters, and R is the regression (model) matrix of
dimension t2 × p. Various choices are possible for this linear predictor. We give here a short
overview of frequently used parametric structures.
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A well-known and widely used linear predictor is of the chain-ladder type, given by

ηij = αi + βj , (5)

with αi the parameter for each year of origin i and βj for each development year j. Note that a
parameter, for example β1, must be set equal to zero, in order to have a non-singular regression
matrix. Fitting a parametric curve, such as the Hoerl curve (Zehnwirth, 1985), to the run-off
triangle reduces the number of parameters used to describe trends in the development years. For
the lognormal model or models with a log-link function, the Hoerl or gamma curve is provided
by replacing βj in (5) with βilog(j) + γij. Wright (1990) extends this Hoerl curve further to
model possible claim inflation.

The separation predictor takes into account the calendar years and replaces in (5) αi with γk

(k = i+ j − 1). It combines the effects of monetary inflation and changing jurisprudence.

For a general model with parameters in the three directions, we refer to De Vylder and Goovaerts
(1979). Barnett and Zehnwirth (1998) described the probabilistic trend family (PTF) of models
with the following linear predictor

αi +
j−1∑
k=1

βk +
i+j−2∑
t=1

γt.

The link function, the third component of a GLM, connects the expectation µij of Yij to the
linear predictor by

ηij = g(µij), (6)

where g is a monotone, differentiable function. Thus, a GLM links the expected value of the
response to the explanatory variables through the equation

g(µij) = (R�β)ij i, j = 1, · · · , t. (7)

For the canonical link g for which g(µij) = θij in (1), there is the direct relationship between the
natural parameter and the linear predictor. Since µij = b′(θij), the canonical link is the inverse
function of b′.

Generalized linear models may have nonconstant variances σ2
ij for the responses Yij . Then the

variance σ2
ij can be taken as a function of the predictor variables through the mean response

µij, or the variance can be modelled using a parameterised structure (see Renshaw (1994)). Any
regression model that belongs to the family of generalized linear models can be analyzed in a
unified fashion. The maximum likelihood estimates of the regression parameters can be obtained
by iteratively reweighted least squares (naturally extending ordinary least squares for normal
error linear regression models).

Supposing that the claim amounts follow a lognormal distribution, then taking the logarithm of
all Yij ’s implies that they have a normal distribution. So, the link function is given by ηij = µij
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and the scale parameter is the variance of the normal distribution, i.e. φ = σ2. We remark that
each incremental claim must be greater than zero and predictions from this model can yield
unusable results.

We end this section with some extra comments concerning GLMs.

The need for more general GLM models for modelling claims reserves becomes clear in the
column of variance functions in Table 1. If the variance of the claims is proportional to the
square of the mean, the gamma family of distributions can accommodate this characteristic. The
Poisson and inverse Gaussian provide alternative variance functions. However, it may be that the
relationship between the mean and the variance falls somewhere between the inverse Gaussian
and the gamma models. Quasi-likelihood is designed to handle this broader class of mean-
variance relationships. This is a very simple and robust alternative, introduced in Wedderburn
(1974), which uses only the most elementary information about the response variable, namely
the mean-variance relationship. This information alone is often sufficient to stay close to the full
efficiency of maximum likelihood estimators. Suppose that we know that the response is always
positive, the data are invariably skew to the right, and the variance increases with the mean.
This does not enable to specify a particular distribution (for example it does not discriminate
between Poisson or negative binomial errors), hence one cannot use techniques like maximum
likelihood or likelihood ratio tests. However, quasi-likelihood estimation allows one to model
the response variable in a regression context without specifying its distribution.

When using a logarithmic link function, the quasi-likelihood equations are given by

t+1−i∑
j=1

eηij =
t+1−i∑
j=1

Yij 1 ≤ i ≤ t;

t+1−j∑
i=1

eηij =
t+1−j∑
i=1

Yij 1 ≤ j ≤ t. (8)

As can easily be seen from these equations, it is necessary to impose the constraint that the sum
of the incremental claims in every row and column has to be non-negative. This implies that the
described technique is not applicable for modelling incurred data with a large number of negative
incremental claims in the later stages of development, which is the result of overestimates of
case reserves in the first development years.

We recall that the only distributional assumptions used in GLMs are the functional relationship
between variance and mean and the fact that the distribution belongs to the exponential family.
When we consider the Poisson case, this relationship can be expressed as

Var[Yij ] = E[Yij ]. (9)

One can allow for more or less dispersion in the data by generalizing (9) to Var[Yij ]=φE[Yij ]
(φ ∈ (0,∞)) without any change in the form and solution of the likelihood equations. For
example, it is well known that an over-dispersed Poisson model with the chain-ladder type
linear predictor (5) gives the same predictions as those obtained by the deterministic chain-
ladder method (see Renshaw and Verrall, 1994).
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Modelling the incremental claim amounts as independent gamma response variables, with a
logarithmic link function and the chain-ladder type linear predictor (5) produces exactly the
same results as obtained by Mack (1991). The relationship between this generalized linear
model and the model proposed by Mack was first pointed out by Renshaw and Verrall (1994).
The mean-variance relationship for the gamma model is given by

Var[Yij ] = φ (E[Yij ])
2 . (10)

Using this model gives predictions close to those from the deterministic chain-ladder technique,
but not exactly the same. Remark that we need to impose that each incremental value should
be positive (non-negative) if we work with gamma (Poisson) models. This restriction can be
overcome using a quasi-likelihood approach.

As in normal regression, the search for a suitable model may encompass a wide range of possi-
bilities. The Bayesian information criterion (BIC) and the Akaike Information Criterion (AIC)
are model selection devices that emphasize parsimony by penalizing models for having large
numbers of parameters. Tests for model development to determine whether some predictor vari-
ables may be dropped from the model can be conducted using partial deviances. Two measures
for the goodness-of-fit of a given generalized linear model are the scaled deviance and Pearson’s
chi-square statistic.

In cases where the dispersion parameter is not known, an estimate can be used to obtain an
approximation to the scaled deviance and Pearson’s chi-square statistic. One strategy is to
fit a model that contains a sufficient number of parameters so that all systematic variation
is removed, estimate φ from this model, and then use this estimate in computing the scaled
deviance of sub-models. The deviance or Pearson’s chi-square divided by its degrees of freedom
is sometimes used as an estimate of the dispersion parameter φ.

3 Application to estimation of discounted IBNR reserves

In claims reserving, we are interested in the aggregated value
∑t

i=2

∑t
j=t+2−i Yij . The predicted

value will be given by

IBNR reserve =
t∑

i=2

t∑
j=t+2−i

µ̂ij , (11)

with �̂µij = g−1
(
(R�̂β)ij

)
for a given link function g.

In the case that the type of business allows for discounting, or in the case that the value of the
reserve itself is seen as a risk in the framework of financial reinsurance, we add a discounting
process. Of course, the level of the required reserve will strongly depend on how we will invest
this reserve. Let us assume that the reserve will be invested such that it generates a stochastic
return Yj in year j, j = 1, 2, · · · , t− 1, i.e. an amount of 1 at time j− 1 will become eYj at time
j. The discount factor for a payment of 1 at time i is then given by e−(Y1+Y2+···+Yi), because this
stochastic amount will exactly grow to an amount 1 at time i. We will assume that the return
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vector (Y1, Y2, · · · , Yt−1) has a multivariate normal distribution, which is independent of the
Yij’s. The present value of the payments is then a linear combination of dependent lognormal
random variables. We introduce the random variable Y (i) defined by

Y (i) = Y1 + Y2 + · · · + Yi (12)

and assume that

Y (i) = (δ + σ2/2)i + σB(i), (13)

where B(i) is the standard Brownian motion and where δ is a constant force of interest. In
order to obtain a net present value, that is consistent with pricing in the financial environment,
we transform the total estimated IBNR-reserve as follows

S
def
=

t∑
i=2

t∑
j=t+2−i

µ̂ije
−Y (i+j−t−1) (14)

=
t∑

i=2

t∑
j=t+2−i

µ̂ijexp
(−(δ + σ2/2)(i + j − t− 1) − σB(i+ j − t− 1)

)
. (15)

With this adaptation, we have that

E[e−Y (i)] . eδi = 1. (16)

In order to study the distribution of the discounted IBNR reserve (14), we will use recent results
concerning bounds for sums of stochastic variables. In the following section, we will explain the
methodology we used for finding the desired answers. We will briefly repeat the most important
results.

4 Methodology and Asymptotic Results

Because the discounted IBNR reserve is a sum of dependent random variables, its distribution
function cannot be determined analytically. Therefore, instead of calculating the exact distri-
bution, we will look for bounds, in the sense of ”more favourable/less dangerous” and ”less
favourable/more dangerous”, with a simpler structure. This technique is common practice in
the actuarial literature. When lower and upper bounds are close to each other, together they
can provide reliable information about the original and more complex variable. The notion ”less
favourable” or ”more dangerous” variable will be defined by means of the convex order.

4.1 Convex order and comonotonicity

Definition 1 A random variable V is smaller than a random variable W in convex order if

E[u(V )] ≤ E[u(W )], (17)

for all convex functions u: R → R : x �→ u(x), provided the expectations exist. This is denoted
as

V ≤cx W. (18)
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Roughly speaking, convex functions are functions that take on their largest values in the tails.
Therefore, V ≤cx W means that W is more likely to take on extreme values than V . In terms
of utility theory, V ≤cx W means that the loss V is preferred to the loss W by all risk averse
decision makers, i.e. E[u(−V )] ≥ E[u(−W )] for all concave utility functions u. This means that
replacing the (unknown) distribution function of V by the distribution function of W , can be
considered as a prudent strategy with respect to setting reserves.

It follows that V ≤cx W implies E[V ] = E[W ] and Var[V ] ≤ Var[W ], see for example Dhaene
et al. (2002a). The next theorem, given in Hoedemakers et al. (2003), extends the results of
Dhaene et al. (2002a) and Kaas et al. (2000) for ordinary sums of variables to sums of scalar
products of independent random variables.

Theorem 1 Assume that the vectors X = (X1, · · · ,Xn) and Y = (Y1, · · · , Yn), given the ran-
dom variable Z, are mutually independent and that Z is independent of Y. Consider two mu-
tually independent uniform(0,1) random variables U and V . If the Xi and Yi are non-negative
random variables, then we find that the following relations hold:

Sl ≤cx S ≤cx S
′
u ≤cx Su, (19)

with

S = X1Y1 +X2Y2 + . . .+XnYn (20)
Sl = E[X1|Z]E[Y1] + E[X2|Z]E[Y2] + . . .+ E[Xn|Z]E[Yn] (21)
S′

u = F−1
X1|Z(U)F−1

Y1
(V ) + F−1

X2|Z(U)F−1
Y2

(V ) + . . .+ F−1
Xn|Z(U)F−1

Yn
(V ) (22)

Su = F−1
X1

(U)F−1
Y1

(V ) + F−1
X2

(U)F−1
Y2

(V ) + . . .+ F−1
Xn

(U)F−1
Yn

(V ), (23)

and where U , V and Z are mutually independent.

We will apply the results of previous theorem to the discounted IBNR reserve as formulated in
(14). Before starting with this, we have to specify further the distribution of �̂µ. This is done in
what follows.

4.2 The distribution of �̂µ

Let φ̂, �̂β, �̂η = R�̂β and �̂µ = g−1(�̂η) be the maximum likelihood estimates of φ, �β, �η and �µ respec-
tively. Denote the regression matrix corresponding to the upper triangle by U. The estimation

equation for �̂β is then given by

U′ŴU�̂β = U′Ŵ�̂y
∗
, (24)

where W = diag{w11, · · · , wt1}, with wij = Var[Yij ]−1(dµij/dηij)2, �y∗ = (y∗11, · · · , y∗t1)′, and
denoting y∗ij = ηij + (yij −µij)dηij/dµij where yij denote the sample values. Note that Ŵ is W

evaluated at �̂β.

8



It is well-known that for asymptotically normal statistics, many functions of such statistics are

also asymptotically normal. Because R�̂β =
(
(R�̂β)11, · · · , (R�̂β)tt

)′
is asymptotically multivari-

ate normal with mean R�β =
(
(R�β)11, · · · , (R�β)tt

)′
and variance-covariance matrix Σ(R�̂β) =

Σa = {σa
ij} = R(U′WU)−1R′ and the function g−1(η11, · · · , ηtt) has a nonzero differential

�ψ = (ψ11, · · · , ψtt)′ at (R�β), where ψij = dµij/dηij , it follows from the delta method that

[
�̂µ− �µ

]
d→ N

(
0,Σ(�̂µ)

)
, (25)

where d→ means convergence in distribution and Σ(�̂µ) = �ψ′Σa �ψ. Hence, for large samples the

distribution of �̂µ = g−1(R�̂β) can be approximated by a normal distribution with mean �µ and
variance-covariance matrix Σ(�̂µ).

Maximum likelihood estimates may be biased when the sample size or the total Fisher informa-
tion is small. The bias is usually ignored in practice, because it is negligible compared with the
standard errors. In small or moderate-sized samples, however, a bias correction can be necessary,
and it is helpful to have a rough estimate of its size.

In deriving the convex bounds, one need the expected values. Since there is no exact expression
for the expectation of �̂µ, we approximate it using a general formula for the first-order bias of
the estimate of �µ, derived by Cordeiro and McCullagh (1991):

B(�̂µ) =
1
2

{
G2Σa

d1̃ − G1RΣbU′Σc
dFd1̄

}
, (26)

with G1 = diag{ψ11, · · · , ψtt}, G2 = diag{ϕ11, · · · , ϕtt} where ψij = dµij/dηij and ϕij =

d2µij/dη
2
ij , Σb = Σ(�̂β) = {σb

ij} = (U′WU)−1, Σc = Σ(U�̂β) = {σc
ij} = UΣbU′, Σa

d =
diag{σa

11, · · · , σa
tt}, Σc

d = diag{σc
11, · · · , σc

t1}, 1̃ is a t2 × 1 vector of ones, 1̄ is a t(t + 1)/2 × 1
vector of ones, and Fd = diag{f11, · · · , ft1} with fij = Var[Yij ]−1(dµij/dηij) (d2µij/dη

2
ij).

So, we can define adjusted values as �̂µc = �̂µ− B̂(�̂µ), which should have smaller biases than the
corresponding �̂µ. Note that B̂(.) means the value of B(.) taken at (φ̂, �̂µ).

4.3 Upper and lower bounds for the discounted IBNR reserve

We will compute the lower and upper bound using the conditioning normal random variable

Z =
t∑

i=2

t∑
j=t+2−i

νijY (i+ j − t− 1), (27)

with

νij =
(
µij + B(�̂µ)ij

)
exp (−(i+ j − t− 1)δ) . (28)
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We have chosen this random variable by following the same strategy as explained in Kaas et al.
(2000). By this choice, the lower bound will perform well in these cases. This is due to the fact
that this choice makes Z a linear transformation of a first-order approximation to

t∑
i=2

t∑
j=t+2−i

(
µij + B(�̂µ)ij

)
e−Y (i+j−t−1). (29)

When introducing the random variable Wij = −Y (i+ j− t− 1), we have that (Wij, Z) has a bi-
variate normal distribution. Conditionally given Z = z, Wij has a univariate normal distribution
with mean and variance given by

E[Wij |Z = z] = E[Wij ] + ρij
σWij

σZ
(z − E[Z]) (30)

and

Var[Wij|Z = z] = σ2
Wij

(
1 − ρ2

ij

)
, (31)

where ρij denotes the correlation between Z and Wij.

Using the same notation as in Theorem 1, we can calculate the lower, upper and improved upper
bound for the discounted reserve (14). If the vector Y describes in this setting the statistical
part and the vector X the financial part (the discounting process), we obtain the following
approximate expressions for Sl, Su and S′

u

Sl =
t∑

i=2

t∑
j=t+2−i

(
µij + B(�̂µ)ij

)
exp

(
E[Wij ] + ρijσWijΦ

−1(U) +
1
2
(1 − ρ2

ij)σ
2
Wij

)
, (32)

S′
u =

t∑
i=2

t∑
j=t+2−i

(
µij + B(�̂µ)ij +

√
Σ(�̂µ)ijΦ−1(V )

)
×

× exp
(
E[Wij ] + ρijσWijΦ

−1(U) +
√

1 − ρ2
ijσWijΦ

−1(W )
)
, (33)

Su =
t∑

i=2

t∑
j=t+2−i

(
µij + B(�̂µ)ij +

√
Σ(�̂µ)ijΦ−1(V )

)
×

× exp
(
E[Wij ] + σWijΦ

−1(U)
)
, (34)

where U , V and W are mutually independent uniform(0, 1) random variables and Φ is the
standard normal cumulative distribution function.
Proof .

1. If a random variable X is lognormal(µ, σ2) distributed, then E[X] = exp(µ+ 1
2σ

2). Hence

for Z =
∑t

i=2

∑t
j=t+2−i νijY (i+j−t−1), we find, taking U = Φ

(
Z−E[Z]

σZ

)
∼ uniform(0, 1),

that

E[µ̂ij ]E[Vij |Z] ∼=
(
µij + B(�̂µ)ij

)
×

× exp
(
E[Wij ] + ρijσWijΦ

−1(U) +
1
2
(1 − ρ2

ij)σ
2
Wij

)
. (35)
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2. If a random variable X is lognormal(µ, σ2) distributed, then F−1
X (p) = exp(µ+ σΦ−1(p)).

So, we find that

F−1
µ̂ij

(p)F−1
Vij |Z(q) ∼=

t∑
i=2

t∑
j=t+2−i

(
µij + B(�̂µ)ij +

√
Σ(�̂µ)ijΦ−1(p)

)
×

× exp
(
E[Wij ] + ρijσWijΦ

−1(U) +
√

1 − ρ2
ijσWijΦ

−1(q)
)
. (36)

3. Equation (34) follows from (36). �

Since we have no equality of the first moments, the convex order relationship (19) between the
three approximations and S is not valid here. This does not impose any restrictions on the use
of the approximations. In fact, we can say that the convex order only holds asymptotically in
this application.

In Hoedemakers et al. (2003) the reader can find some more details concerning the (calculation
of the) distributions of the different bounds.

5 Numerical illustrations

In this section we illustrate the effectiveness of the bounds derived for the discounted IBNR
reserve S, under the model studied. We investigate the accuracy of the proposed bounds,
by comparing their cumulative distribution function (cdf) to the empirical cdf obtained with
Monte Carlo simulation, which serves as a close approximation to the exact distribution of S.
The simulation results are based on generating 100.000 random paths. The estimates obtained
from this time-consuming simulation will serve as benchmark. The random paths are based on
antithetic variables in order to reduce the variance of the Monte Carlo estimates.

In order to illustrate the power of the bounds, namely inspecting the deviation of the cdf of the
convex bounds Sl, Su and S′

u from the true distribution of the total IBNR reserve S, we simulate
a triangle from a particular model. In these illustrations we model the incremental claims Yij

with a logarithmic link function to obtain a multiplicative parametric structure and we link the
expected value of the response to the chain-ladder type linear predictor. Formally, this means
with the notation introduced in section 2 that

E[Yij ] = µij,

Var[Yij ] = φµκ
ij,

log(µij) = ηij,

ηij = αi + βj . (37)

The choice of the error distribution is determined by κ. Note that a parameter, for example β1,
must be set equal to zero, in order to have a non-singular regression matrix.

We also specify the multivariate distribution function of the random vector (Y1, Y2, . . . , Yt−1).
In particular, we will assume that the random variables Yi are i.i.d. and normal(δ + 1

2σ
2, σ2)
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1 2 3 4 5 6 7 8 9 10 11

1 362, 505 493, 876 323, 065 237, 574 249, 850 152, 221 139, 293 95, 961 70, 812 53, 395 35, 902
2 399, 642 545, 274 357, 788 263, 414 276, 500 168, 064 153, 603 105, 760 78, 736 58, 612
3 805, 843 1, 100, 020 722, 110 531, 220 557, 195 337, 606 309, 306 213, 416 158, 611
4 728, 762 994, 975 653, 231 478, 728 502, 797 306, 071 278, 436 193, 201
5 661, 713 899, 778 591, 647 434, 626 456, 763 276, 588 253, 297
6 539, 789 737, 394 484, 415 355, 175 372, 800 226, 865
7 983, 897 1, 341, 585 881, 786 647, 431 679, 264
8 889, 268 1, 217, 248 798, 387 585, 099
9 487, 823 666, 590 437, 987
10 442, 982 601, 706
11 1, 087, 672

Table 2: Ex. 1 (κ=1): Run-off triangle with non-cumulative claim figures.

Parameter Model parameter Estimate Standard error
α1 12.8 12.7990566 0.0007918770
α2 12.9 12.8989406 0.0007631003
α3 13.6 13.6001742 0.0006060520
α4 13.5 13.4989356 0.0006283423
α5 13.4 13.4007436 0.0006556928
α6 13.2 13.1997559 0.0007180990
α7 13.8 13.7991616 0.0005991796
α8 13.7 13.6998329 0.0006464691
α9 13.1 13.0989431 0.0008707837
α10 13.0 12.9987252 0.0010370987
α11 13.9 13.8995502 0.0009710197
β2 0.31 0.3106789 0.0005310346
β3 −0.11 −0.1099061 0.0006026958
β4 −0.42 −0.4189677 0.0006804776
β5 −0.37 −0.3700452 0.0007168115
β6 −0.87 −0.8685181 0.0009462170
β7 −0.96 −0.9585385 0.0010542829
β8 −1.33 −1.3284870 0.0013825136
β9 −1.63 −1.6269622 0.0018947413
β10 −1.92 −1.9170757 0.0030880359
β11 −2.31 −2.3105083 0.0054029754
φ 1 1.025663

Table 3: Ex. 1 (κ=1): Model specification, maximum likelihood estimates and standard errors.

distributed with δ = 0.08 and σ = 0.11. This enables now to simulate the cdf’s. The conditioning
random variable Z is defined as in (27) and (28).

In a first example we consider model (37) with the Poisson error distribution (κ=1). The
simulated triangle for this model is depicted in Table 2. Parameter estimates and standard
errors for this fit are shown in Table 3.
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Figure 2: Ex. 1 (κ=1): The cdf’s of the lower bound Sl (dotted line), the upper bound Su

(dashed line) vs. the distribution of the discounted IBNR reserve S approximated by extensive
simulation (solid line) for the run-off triangle in Table 2.

Since this model is a generalized linear model, standard statistical software can be used to
obtain maximum (quasi) likelihood parameter estimates, fitted and predicted values. Standard
statistical theory also suggests goodness-of-fit measures and appropriate residual definitions for
diagnostic checks of the fitted model.

Figure 2 shows the distribution functions of the different bounds compared to the empirical
distribution obtained by simulation. The distribution functions are remarkably close to each
other and enclose the simulated cdf nicely. This is confirmed by the QQ-plot in Figure 3 where
we also see that the comonotonic upper bound has somewhat heavier tails. Numerical values of
some high quantiles of S, Sl and Su are given in Table 5.

Table 4 summarizes the numerical values of the 95th percentiles of the two bounds Sl and Su vs.
S, together with their means and standard deviations. This is also provided for the row totals

Si =
t∑

j=t+2−i

µ̂ije
−Y (i+j−t−1), i = 2, · · · , t. (38)

We can conclude that the lower bound approximates the ”real discounted reserve” very well.
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FSl FS FSu

year 95% mean st. dev. 95% mean st. dev. 95% mean st. dev.

2 43,622 36,623 4,041 43,624 36,623 4,042 43,631 36,623 4,046
3 214,142 177,600 21,002 214,428 177,600 21,040 217,352 177,600 22,751
4 342,589 280,318 35,595 343,011 280,318 35,691 350,360 280,318 39,805
5 489,087 396,089 52,976 489,689 396,089 53,194 502,853 396,089 60,398
6 608,891 490,289 67,401 609,535 490,289 67,565 628,672 490,289 78,021
7 1,514,480 1,205,224 175,099 1,516,799 1,205,224 175,658 1,567,945 1,205,224 203,692
8 1,977,737 1,575,313 227,703 1,980,868 1,575,313 228,343 2,054,475 1,575,313 268,661
9 1,390,601 1,093,992 167,320 1,392,957 1,093,992 167,862 1,444,660 1,093,992 197,121
10 1,632,675 1,278,947 199,110 1,634,653 1,278,947 199,693 1,702,375 1,278,947 236,121
11 5,439,986 4,276,121 655,280 5,446,107 4,276,121 656,472 5,685,932 4,276,121 785,741

total 13,631,905 10,810,476 1,594,152 13,648,695 10,810,476 1,597,507 14,200,226 10,810,476 1,896,219

Table 4: Ex. 1 (κ=1): 95th percentiles, means and standard deviations of the distributions of
Sl and Su vs. S. (δ = 0.08, σ = 0.11)

8*10^6 10^7 1.2*10^7 1.4*10^7 1.6*10^7

8*
10

^6
10

^7
1.

2*
10

^7
1.

6*
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Figure 3: Ex. 1 (κ=1): QQ-plot of the quantiles of Sl (◦) and Su ( ) versus those of S.

p F−1
Sl

(p) F−1
S (p) F−1

Su
(p)

0.95 13,631,905 13,648,695 14,200,226
0.975 14,296,448 14,305,657 15,027,414
0.99 15,115,189 15,122,840 16,057,613

0.995 15,702,702 15,709,497 16,804,206
0.999 16,996,374 17,018,860 18,469,110

Table 5: Ex. 1 (κ=1): Quantiles of Sl and Su versus those of S.
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1 2 3 4 5 6 7 8 9 10

1 292, 686 683, 476 701, 376 747, 034 504, 265 312, 468 284, 954 170, 814 249, 348 69, 752
2 423, 113 991, 584 1, 032, 142 945, 156 500, 205 413, 863 434, 622 206, 319 342, 383
3 344, 386 936, 335 971, 651 1, 104, 206 575, 666 416, 179 359, 195 246, 463
4 308, 603 830, 615 864, 751 981, 609 504, 837 372, 329 353, 145
5 338, 073 884, 174 895, 252 927, 435 647, 289 391, 208
6 322, 270 927, 791 980, 275 952, 298 577, 483
7 387, 598 1, 084, 439 1, 126, 376 1, 035, 701
8 385, 603 1, 143, 038 1, 209, 301
9 388, 795 951, 100
10 308, 586

Table 6: Ex. 2 (κ=2): Run-off triangle with non-cumulative claim figures.

Parameter Model parameter Estimate Standard error
α1 12.56 12.51790600 0.03610258
α2 12.88 12.80591922 0.03610258
α3 12.84 12.79630916 0.03663606
α4 12.72 12.67925064 0.03753296
α5 12.79 12.74885712 0.03883950
α6 12.83 12.74961540 0.04071262
α7 12.91 12.88770262 0.04347811
α8 13.02 12.94869876 0.04784851
α9 12.87 12.83535778 0.05571696
α10 12.75 12.63975585 0.07475215
β2 0.91 0.96676725 0.03523850
β3 0.93 1.00976556 0.03685331
β4 0.99 1.02578624 0.03861620
β5 0.41 0.50519662 0.04071262
β6 0.11 0.13617431 0.04337087
β7 −0.05 0.07957371 0.04697864
β8 −0.45 −0.47029820 0.05233710
β9 −0.06 −0.07666105 0.06153780
β10 −1.43 −1.36520463 0.08301374
φ 0.005 0.0055879

Table 7: Ex. 2 (κ=2): Model specification, maximum likelihood estimates and standard errors.

In a second example, we illustrate the method using a gamma regression model instead of a
Poisson regression model. The results are very similar. The simulated run-off triangle and the
table of the parameter values are shown in Table 6 and Table 7 respectively.

Since the upper and lower bounds appear to be rather close to each other in Figure 4, they
prove to be quite good approximations for the unknown distribution of S. From the QQ-plot in
Figure 5, we can conclude that the upper bound (slightly) overestimates the tails of S, whereas
the accuracy of the lower bond is extremely high for the chosen set of parameter values. Table
9 confirms these observations. Some numerical values for the row totals are given in Table 8.
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Figure 4: Ex. 2 (κ=2): The cdf’s of the lower bound Sl (dotted line), the upper bound Su

(dashed line) vs. the distribution of the discounted IBNR reserve S approximated by extensive
simulation (solid line) for the run-off triangle in Table 6.

FSl FS FSu

year 95% mean st. dev. 95% mean st. dev. 95% mean st. dev.

2 102,356 85,934 9,481 103,187 85,934 9,747 106,553 85,934 11,857
3 462,847 387,251 43,602 466,609 387,251 44,775 479,913 387,251 53,038
4 619,090 503,187 66,173 624,112 503,187 68,014 642,819 503,187 79,110
5 1,042,181 842,092 113,871 1,050,345 842,092 117,188 1,087,242 842,092 138,274
6 1,432,744 1,142,369 164,543 1,444,486 1,142,369 169,224 1,498,433 1,142,369 199,885
7 2,286,615 1,815,836 266,221 2,305,985 1,815,836 273,721 2,400,469 1,815,836 327,286
8 3,590,200 2,864,235 410,836 3,619,252 2,864,235 422,643 3,785,691 2,864,235 515,535
9 4,197,088 3,312,169 499,465 4,231,171 3,312,169 513,473 4,442,318 3,312,169 630,417
10 4,197,710 3,264,577 524,580 4,231,798 3,264,577 539,321 4,487,925 3,264,577 679,607

total 17,888,702 14,217,631 2,076,583 18,033,971 14,217,631 2,135,185 18,926,155 14,217,631 2,631,780

Table 8: Ex. 2 (κ=2): 95th percentiles, means and standard deviations of the distributions of
Sl and Su vs. S. (δ = 0.08, σ = 0.11)

We remark that the improved upper bound S′
u is very close to the comonotonic upper bound Su.

This could be expected because ρij is close to ρkl for any pair (ij, kl) with ij and kl sufficient

close. This implies that for any such pair (ij, kl)
(
F−1

e−Y (i+j−t−1)|Z(U), F−1
e−Y (k+l−t−1)|Z(U)

)
is

close to
(
F−1

e−Y (i+j−t−1)(U), F−1
e−Y (k+l−t−1)(U)

)
. Since the improved upper bound requires more

computational time, see Hoedemakers et al. (2003) for more details, the results for the improved
upper bound are not displayed in this section.
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Figure 5: Ex. 2 (κ=2): QQ-plot of the quantiles of Sl (◦) and Su ( ) versus those of S.

p F−1
Sl

(p) F−1
S (p) F−1

Su
(p)

0.95 17,888,702 18,033,971 18,926,155
0.975 18,749,885 18,923,975 20,077,389
0.99 19,809,569 19,986,346 21,511,663

0.995 20,569,107 20,799,492 22,551,353
0.999 22,239,104 22,410,022 24,870,374

Table 9: Ex. 2 (κ=2): Quantiles of Sl and Su versus those of S.

We can conclude that in each of the two examples the lower bound approximates the ”real
discounted reserve” very well. The precision of the bounds only depends on the underlying
variance of the statistical and financial part. As long as the yearly volatility does not exceed
σ = 35%, the financial part of the comonotonic approximation provides a very accurate fit.
These parameters are consistent with historical capital market values as reported by Ibbotson
Associates (2002). The underlying variance of the statistical part depends on the estimated
dispersion parameter and error distribution or mean-variance relationship. For example, in case
of the gamma distribution one obtains excellent results as long as the dispersion parameter is
smaller than 1. This is again in line with the volatility structure in practical IBNR data sets.
Since the parameters in the paper for the statistical part of the bounds, obtained through the
quasi-likelihood approach, have small standard errors, it follows that results would be similar
when simulating from a GLM with the same linear predictor, but for instance with another
distribution type. In that sense our findings are robust.

17



Distribution of bootstrapped Simulated distribution
95th percentiles of Sl of F−1

S (0.95)
1 st percentile 13,614,404 13,604,314

2.5 th percentile 13,617,028 13,609,425
5 th percentile 13,619,474 13,613,048

10 th percentile 13,622,664 13,618,053
25 th percentile 13,626,759 13,624,369
50 th percentile 13,631,651 13,631,622
75 th percentile 13,636,506 13,638,997
90 th percentile 13,641,168 13,645,812
95 th percentile 13,643,882 13,649,574

97.5 th percentile 13,646,720 13,652,995
99 th percentile 13,648,833 13,656,178

Table 10: Ex. 1 (κ=1): Percentiles of the bootstrapped 95th percentile of the distribution of
the lower bound SB

l(95) vs. the simulation.

Distribution of bootstrapped Simulated distribution
95th percentiles of Sl of F−1

S (0.95)
1 st percentile 16,661,827 16,333,152

2.5 th percentile 16,861,353 16,576,586
5 th percentile 17,048,933 16,759,301

10 th percentile 17,233,865 17,101,271
25 th percentile 17,551,891 17,450,048
50 th percentile 17,913,169 17,904,390
75 th percentile 18,284,619 18,380,651
90 th percentile 18,641,949 18,832,716
95 th percentile 18,850,593 19,117,307

97.5 th percentile 18,999,178 19,264,184
99 th percentile 19,187,288 19,481,477

Table 11: Ex. 2 (κ=2): Percentiles of the bootstrapped 95th percentile of the distribution of
the lower bound SB

l(95) vs. the simulation.

Using bootstrap methodology it is possible to provide statistical confidence intervals for the given
bounds incorporating the estimation error. The estimation error arises from the estimation of
the vector parameters β̂ from the data, and the statistical error stems from the stochastic nature
of the underlying model. We bootstrap an upper triangle using the non-parametric bootstrap
procedure. This involves resampling, with replacement, from the original residuals and then
creating a new triangle of past claims payments using the resampled residuals together with the
fitted values. For a description of the bootstrap technique to claims reserving we refer to Lowe
(1994), Taylor (2000) and England and Verrall (2002). These authors used this procedure to
obtain prediction errors for different claims reserving methods and also to obtain a predictive
distribution of reserves.

For each bootstrap sample, we calculate the desired percentile of the distribution of Sl. This
two-step procedure is repeated a large number of times. The first column of Table 10 and Table
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11 shows the results, concerning the 95th percentile, for 5000 bootstrap samples applied to the
run-off triangle in Table 2, respectively Table 6. When compared with the simulated distribution
of F−1

S (0.95) (obtained through 5000 simulated triangles), we can conclude that the bootstrap
distribution yields appropriate confidence bounds when applied to the lower bound procedure.

The chain-ladder technique and the associated GLM are widely used methods of claims reserving.
The range of the models can be expanded significantly by using other assumptions for the
distribution of the data, and for the link function. Other parametric models can easily be
incorporated using different linear predictors.

6 Conclusions and possibilities for future research

In this paper, we considered the problem of deriving the distribution function of the discounted
loss reserve using a generalized linear model together with some stochastic return process. The
use of GLMs offers a great gain in modelling flexibility over the simple lognormal model. The in-
cremental claim amounts can for instance be modelled as independent normal, Poisson, gamma
or inverse Gaussian response variables together with a logarithmic link function and a specified
linear predictor. When using the logarithmic link function, which provides a multiplicative para-
metric structure and produces positive fitted values, the technique is not applicable for incurred
data with a large number of negative incremental claims in the later stages of development.

Because an explicit expression for the distribution function is hard to obtain, we presented three
approximations for this distribution function, in the sense that these approximations are larger
or smaller in convex order sense than the exact distribution. This technique is common practice
in the actuarial literature. When lower and upper bounds are close to each other, together they
can provide reliable information about the original and more complex variable.

An essential point in the derivation of the presented approximations is the choice of the condi-
tioning random variable Z. The improved upper bound becomes closer to the original variable
S, the more the variables Z and S are alike. When dealing with very large variances in the
statistical part of our model, an adaptation of the random variable Z will be necessary. This
could be a research object for a next paper.
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