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Abstract

Knowledge of the distribution function of the stochastically com-
pounded value of a series of future (positive and/or negative) payments
is needed for solving several problems in an insurance or finance en-
vironment, see e.g. Dhaene et al. (2002 a,b). In Kaas et al. (2000),
convex lower bound approximations for such a sum have been pro-
posed. In case of changing signs of the payments however, the distri-
bution function or the quantiles of the lower bound are not easy to
determine, as the approximation for the random compounded value
of the payments will in general not be a comonotonic sum.
In this paper, we present a method for determining accurate and

easy computable approximations for risk measures of such a sum, in
case one first has positive payments (savings), followed by negative
ones (consumptions).
This particular cashflow pattern is observed in ‘saving - consump-

tion’ plans. In such a plan, a person saves money on a regular basis
for a certain number of years. The amount available at the end of this
period is then used to generate a yearly pension for a fixed number
of years. Using the results of this paper one can find accurate and
easy to compute answers to questions such as: "What is the minimal
required yearly savings effort α during a fixed number of years, such
that one will be able to meet, with a probability of at least (1− ε), a
given consumption pattern during the withdrawal period ?"
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1 Introduction

In a finance or insurance context, one is often interested in the distribution
function (d.f.) of a random variable (r.v.) S given by

S =
nX
i=0

αi e
Zi . (1)

Here the αi are real numbers and (Z0, Z1, ..., Zn) is a multivariate normal
random vector.
The accumulated value at time n of a series of future deterministic saving

amounts αi at times i, i = 0, . . . , n−1, can be written in the form (1), where
Zi denotes the random accumulation factor over the period [i, n].
The present value of a series of future deterministic payments αi at times
i, i = 1, . . . , n, can be written in the form (1), where now Zi denotes the
random discount factor over the period [0, i].
Determining the price of Asian or basket options in a Black & Scholes setting
boils down to computing stop-loss premiums of a r.v. of the type described
in (1), see for instance Albrecher, Dhaene, Goovaerts & Schoutens (2003) or
Vanmaele, Dhaene, Deelstra, Liinev & Goovaerts (2004).
As mentioned in Dhaene, Vanduffel, Goovaerts, Kaas & Vyncke (2004) or
Vanduffel, Dhaene, Goovaerts & Kaas (2003), setting provisions and cap-
ital requirements in an insurance context comes down to determining risk
measures related to a r.v. of the type (1).
As the r.v. S defined in (1) is a sum of non-independent lognormal r.v.’s,

its d.f. cannot be determined analytically. Therefore a variety of approx-
imation techniques for determining d.f.’s of this type have been proposed
in the literature. Practitioners often use a (first two moments) matching
lognormal approximation for the d.f. of S. Milevsky & Posner (1998) and
Milevsky & Robinson (2000) propose a moment matching reciprocal Gamma
approximation for the d.f. of S.
Kaas, Dhaene and Goovaerts (2000) and Dhaene, Denuit, Goovaerts,

Kaas & Vyncke (2002a,b) derive a lower bound approximation for the d.f.
of S. The lower bound is defined by E[S | Λ] for an appropriate choice of the
conditioning r.v. Λ. It is called a lower bound approximation since (the d.f.
of) E[S | Λ] is smaller in the convex order sense than (the d.f. of) S. This
means that the expectations of both r.v.’s are equal, whereas the stop-loss
premiums of the lower bound are smaller than the corresponding stop-loss
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premiums of S. The lower bound approximation for the d.f. of S has been
shown to provide very accurate results, see for instance Huang, Milevsky &
Wang (2004), Vanduffel, Hoedemakers & Dhaene (2004) for extensive studies
on this topic.
We point out that the lognormal and the reciprocal Gamma approxi-

mation have been proposed in the context of series of positive cash flows,
whereas the lower bound approximation can also be applied in case of chang-
ing signs of the αi. In this case however, and this in contrast to the situ-
ation that all αi have equal signs, it is not possible to find a conditioning
r.v. Λ that leads to an accurate approximation for the d.f. of S such that
E[S | Λ] =Pn

i=0 αi E
£
eZi | Λ¤ is a sum of non-decreasing functions of Λ. This

implies that distortion risk measures related to E[S | Λ] cannot be obtained
by simply summing the corresponding risk measures of the individual terms
in the sum, as is the case when all αi are positive, see Dhaene, Vanduffel,
Tang, Goovaerts, Kaas & Vyncke (2004).
Goovaerts, De Schepper, Hua, Darkiewicz & Vyncke (2003) propose an

approach that uses convex bounds for the positive and negative sum sepa-
rately. They connect the two r.v.’s involved by a copula of a particular family.
In this paper, we follow another path to determine accurate and easy

computable approximations for a sum S as defined in (1), in the special case
that one first has positive payments αi (savings) followed by negative ones
(withdrawals).
An important situation where one encounters this particular cash flow

pattern, and hence where our results can be applied, is the saving - con-
sumption problem. Take as an example a 20/65/95 pension plan in a defined
contribution pension scheme. A person of age 20 intends to save money for 45
consecutive years (until retirement). After his retirement, he wants to with-
draw money from his pension account on a regular basis and this for a period
of 30 years. Assume that his yearly savings are constant and equal to α, while
his yearly consumption(pension) is constant and equal to 1. A relevant ques-
tion to answer is: "What is the minimal required yearly savings effort α such
that this person will be able to meet his consumption pattern during the 30
year withdrawal period, with a probability of at least (1− ε)? In this paper,
we will present a methodology for answering these types of questions. We
point out that our framework encompasses, in a Black&Scholes world and
assuming that cash flows are deterministic, the so-called saving until retire-
ment problem and the after retirement problem. Whilst these two problems
consider the period before retirement and after retirement respectively, we
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consider in this paper the whole saving-consumption period. We point out
that for the latter two problems, optimal investment strategies, using the the-
ory of comonotonicity, have been studied by Dhaene, Vanduffel, Goovaerts,
Kaas & Vyncke (2004). On the other hand, Milevsky, Ho & Robinson (1997)
and Milevsky & Robinson (2000) take in the after-retirement problem the
time-horizon as random and equal to the remaining life time. Assuming a
given investment strategy they find the corresponding probability of lifetime
ruin. Young (2004) finds the optimal dynamic investment strategy as the one
that minimizes the probability of lifetime ruin. The case of a portfolio of
pension annuities is considered in Olivieri & Pitacco (2003).
The paper is organized as follows. In Section 2, we describe the saving-

consumption problem. In Sections 3 and 4, we present accurate and easy
computable approximations for the quantiles of final wealth random variables
in the saving-consumption problem. The special case of constant savings
and constant withdrawals is considered in Section 5. Next in Section 6 the
theoretical results presented in this paper are illustrated by some numerical
examples. Finally, Section 7 provides concluding remarks.

2 Problem description

Consider a set of deterministic amounts α0, α1, · · · , αn+m with n ≥ 1,m ≥
0. The first n amounts α0, α2, · · · , αn−1 are nonnegative and correspond to
saving amounts that are put on an investment account at respective times
0, 1, · · · , n− 1. The last m+1 amounts αn, αn+1, · · · , αn+m are non-positive
and correspond to withdrawals from the account at times n, n+1, · · · , n+m,
respectively. We will assume that α0 > 0 and αn < 0. We will call a plan as
described above a saving - consumption plan.
We assume that the return on the account is generated by a geometric

Brownian motion process. An amount of 1 available on the account at time
i − 1, is assumed to grow to the random amount eYi at time i. Hence, the
r.v. Yi is the random return over the year [i − 1, i]. The r.v.’s Yi are i.i.d.
and normal distributed, with parameters µ− σ2

2
and σ2.

Let Vj denote the surplus at time j. By convention, the surplus at time j
has to be understood as the surplus just after saving or withdrawal. Starting
from the initial value V0 = α0, the surplus Vj available at time j is given by
the following recursive relation:

Vj = Vj−1 eYj + αj, j = 1, · · · , n+m. (2)
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For the moment, we allow the surplus to become negative, which means
that shortselling of units of the investment account is allowed. Note that for
the ‘first saving - later consuming’ cash flow pattern as described in (2), we
have that once the surplus becomes negative, it will stay negative over the
whole remaining time period and no recovery is possible anymore. This ruin
scenario can only occur from time n (retirement) on.
Solving the recursion (2), we find that the final surplus Vn+m can be

written as

Vn+m =
n+mX
i=0

αi e
Zi , (3)

where the r.v.’s Zi are given by

Zi =
n+mX
j=i+1

Yj, i = 0, · · · , n+m, (4)

and where, by convention,
Ps

j=r aj = 0 if r > s. The r.v. Zi is the accu-
mulation factor over the period [i, n+m]. Its mean and variance are given
by

E [Zi] = (n+m− i)

µ
µ− σ2

2

¶
(5)

and
σ2Zi = (n+m− i)σ2. (6)

As it is impossible to determine the d.f. of Vn+m analytically, we propose to
approximate it by the d.f. of

V l
n+m = E [Vn+m | Λ] (7)

for some convenient choice of the conditioning r.v. Λ. We have that (the
d.f. of) V l

n+m is a lower bound in the sense of convex order for (the d.f. of)
Vn+m, see for instance Kaas, Dhaene & Goovaerts (2000). In particular, we
have that

E [Vn+m] = E
£
V l
n+m

¤
=

n+mX
i=0

αie
(n+m−i)µ. (8)

In the sequel, we will consider a conditioning r.v. Λ which is a linear combi-
nation of the compounded returns Zi:

Λ =
n+mX
j=0

γjZj, (9)
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for suitable choices of the parameters γj. This r.v. can also be written in
terms of the yearly returns:

Λ =
n+mX
j=1

βjYj, (10)

where the relation between the βj and the γj is given by

βj =

j−1X
k=0

γk. (11)

For more details about these kind of approximations, its relation with the
concept of comonotonicity and its applications in insurance and finance, see
Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002 a,b).
Let U be a uniform(0,1) r.v. and let Φ denote the standard normal d.f.

After some straightforward derivations, see also Kaas, Dhaene and Goovaerts
(2000), we find that the r.v. V l

n+m defined in (7) with Λ given by (9) is
distributed as

V l
n+m

d
=

n+mX
i=0

αie
E[Zi]+ 1

2
(1−r2i )σ2Zi+ri σZiΦ

−1(U), (12)

where d
= stands for ‘equality in distribution’ and where the coefficients ri are

given by

ri =
cov (Zi,Λ)

σZiσΛ
=

Pn+m
j=i+1 βj√

n+m− i
qPn+m

j=1 β2j

, i = 0, · · · , n+m− 1 (13)

and
rn+m = 0. (14)

Notice that the last term in (12), and also in (3), reduces to the constant
number αn+m.
For any real-valued r.v. X, we will denote its distribution function

Pr [X ≤ x] by FX(x).
The lower quantiles Qp[X] and the upper quantiles Q+

p [X] ofX are defined
by

Qp[X] = inf{x ∈ R|FX(x) ≥ p}, (15)

Q+
p [X] = sup{x ∈ R|FX(x) ≤ p}, p ∈ (0, 1),
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where by convention, inf φ = +∞ and supφ = −∞. When FX is strictly
increasing, we have that Qp[X] = Q+

p [X].
Let X and g(X) be real-valued r.v.’s. If g is non-decreasing and contin-

uous, then

Qp[g(X)] = g (Qp[X]) , (16)

Q+
p [g(X)] = g

¡
Q+

p [X]
¢
, p ∈ (0, 1).

Furthermore, for any real number x number, we have

p ≤ FX(x)⇐⇒ Qp[X] ≤ x, (17)

Pr [X < x] ≤ p⇐⇒ x ≤ Q+
p [X], p ∈ (0, 1).

If all the terms αie
E[Zi]+ 1

2
(1−r2i )σ2Zi+ri σZiΦ

−1(U) in (12) are non-decreasing
functions of U (or all are non-increasing functions of U), then we say that
V l
n+m is a comonotonic sum. In case all terms are non-decreasing, then also
the continuous function f defined by

f(p) =
n+mX
i=0

aie
E[Zi]+ 1

2
(1−r2i )σ2Zi+ri σZiΦ

−1(p), p ∈ (0, 1) , (18)

is non-decreasing. From (16) we find that in this case, the p-quantile of V l
n+m

is given by
Q+

p [V
l
n+m] = f(p), p ∈ (0, 1) . (19)

Moreover, in case V l
n+m is a comonotonic sum, any distortion risk measure

(such as VaRp and TVaRp) related to V l
n+m equals the sum of the risk mea-

sures related to the marginal terms in (12), see for instance Dhaene, Vanduf-
fel, Tang, Goovaerts, Kaas & Vyncke (2004).
A conditioning r.v. Λ that makes f non-decreasing (and continuous) can

always be found. Indeed, if we take all βj ≥ 0 for j = 1, 2, ...n, whereas
βj = 0 for j = n+ 1, n+ 2, ..., n+m, then one has that f is non-decreasing,
so that (19) holds in this case. Of course, we cannot expect that such a choice
of the parameters βj will in general lead to an accurate approximation for
the d.f. of Vn+m.
It is clear that for appropriate choices of Λ, the r.v. V l

n+m will not nec-
essarily be a comonotonic sum of lognormal r.v.’s. Hence, the function f(p)
will not be non-decreasing on the whole interval (0, 1). This implies that the
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quantiles of V l
n+m cannot be determined easily in this case because (16) can

not be applied.
As noticed above, the cash flow pattern that we consider (first saving -

later consuming) implies that once the value Vj become negative, no recovery
is possible in the sense that all future values Vk , k ≥ j, will be negative too.
From now on, we will assume that shortselling is not allowed. Hence, once

the surplus reaches level 0, no further withdrawals from the pension account
are allowed. One can easily verify that under this assumption, the wealth Wk

available on the account at time k can be expressed as follows in terms of
the surplus Vk, defined in (2):

Wk = max[Vk, 0], k = 0, · · · , n+m. (20)

Quantities that help the investor to make his choice when deciding upon
a given ‘saving - consumption’ plan are the quantiles and the distribution
function of final wealth Wn+m. As we have that

Q+
p [Wn+m] = sup {x | Pr [Wn+m > x] ≥ 1− p} , (21)

the quantile Q+
p [Wn+m] can be interpreted as the largest amount of money

that will be left at time n+m, with a probability of at least (1− p).
A possible requirement for a ‘saving - consumption’ plan to be considered as
feasible could be Q+

0.05[Wn+m] > 0. For a plan fulfilling this condition, there
is a probability of (at least) 95% that one will be able to meet the desired
consumption pattern, hence that there will be no consumption shortfall.
For a given plan, one could be interested in the probability that no consump-
tion shortfall will occur. This probability is given by Pr [Wn+m > 0].
In general, the probabilities Pr [Wn+m > x] and the quantiles Q+

p [Wn+m]
cannot be determined analytically. Therefore, we propose to approximate
(the d.f. of ) Wn+m by (the d.f. of) W l

n+m = max[V
l
n+m, 0]. From (12), we

find that
W l

n+m
d
= max[f(U), 0], (22)

where the function f is defined by (18).
We propose to approximate the tail probabilities Pr [Wn+m > x] and the
quantiles Q+

p [Wn+m] by Pr
£
W l

n+m > x
¤
and Q+

p [W
l
n+m], respectively.

In the next section we will prove that under rather weak conditions the
function max[f(p), 0] is non-decreasing and continuous. From (16), we find
a straightforward way to compute the quantiles of W l

n+m in this case.
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3 Approximations for the quantiles of Wn+m

The following lemma gives sufficient conditions for the function max[f(p), 0]
to be non-decreasing.

Lemma 1 If all βj > 0, for j = 1, 2, ...n + m, then for all p in the unit
interval (0, 1), one has that f(p) ≥ 0 implies f 0(p) > 0.
Proof. From (13), we find that

ri σZi = σ

Pn+m
j=i+1 βjqPn+m
j=1 β2j

, i = 0, · · · , n+m− 1.

Hence, all correlations ri > 0 for i = 0, 1, ...n + m − 1 and the sequence
{riσZi}0≤r≤n+mis strictly decreasing and strictly positive.
By application of the chain rule, we find for p ∈ (0, 1) that

f
0
(p) =

1

Φ0 [Φ−1(p)]

n+m−1X
i=0

aie
E[Zi]+1

2
(1−r2i )σ2Zi+ri σZiΦ

−1(p) ri σZi .

Now assume that f(p) ≥ 0 for some value of p in the unit interval (0, 1).
When n+m = 1, it is straightforward to prove that f 0(p) > 0.
Let us now assume that n +m > 1. Since 1

Φ0 [Φ−1(p)] > 0 and αn+m ≤ 0, we
find that

f
0
(p) >

rn−1σZn−1
Φ0 [Φ−1(p)]

n+m−1X
i=0

aie
E[Zi]+ 1

2
(1−r2i )σ2Zi+ri σZiΦ

−1(p)

=
rn−1σZn−1
Φ0 [Φ−1(p)]

(f(p)− αn+m) ≥ 0,

which ends the proof.

Notice that

σ2βj = Cov (Yj ,Λ) , j = 1, · · · , n+m. (23)

Hence, the condition that all βj > 0 in Lemma 1 means that any yearly return
Yj is strictly positive correlated with the conditioning random variable Λ.
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One can easily prove that when all βj > 0, one has that

lim
p→0

f(p) = an+m ≤ 0 (24)

and
lim
p→1

f(p) = +∞. (25)

When all βj are assumed to be strictly positive, we find from Lemma
1 that the function max [f(p), 0] is non-decreasing (and continuous) on the
interval (0, 1). From (22) and (16) we see that the quantiles of W l

n+m can
easily be determined analytically in this case:

Qp[W
l
n+m] = Q+

p [W
l
n+m] = max[f(p), 0], p ∈ (0, 1) . (26)

Under the conditions of Lemma 1, we find that the d.f. of W l
n+m can be

determined from
f(FW l

n+m
(x)) = x, x ≥ 0, (27)

Indeed, we have that for any x ≥ 0,

FW l
n+m
(x) = sup

n
p� (0, 1) | p ≤ FW l

n+m
(x)
o

(28)

= sup
©
p� (0, 1) | Qp[W

l
n+m] ≤ x

ª
= sup {p� (0, 1) | max[f(p), 0] ≤ x}
= sup {p� (0, 1) | f(p) ≤ x} ,

so that the relation (27) follows from (24), (25), Lemma 1 and the fact that
f is continuous on (0, 1).

4 On the choice of the conditioning r.v. Λ

In order to determine the optimal values for the coefficients βj, we follow
the procedure as explained in Vanduffel, Hoedemakers & Dhaene (2004).
They consider the case were all cash flow payments αi are positive. But the
procedure can easily be extended to the case of general αi.
We have that V ar [Vn+m] and V ar

£
V l
n+m

¤
are given by

Var [Vn+m] =
n+mX
i=0

n+mX
j=0

αiαj e
E[Zi]+E[Zj ]+ 1

2
(σ2Zi

+σ2Zj)(eCov(Zi,Zj) − 1) (29)
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and

Var
£
V l
n+m

¤
=

n+mX
i=0

n+mX
j=0

αiαj e
E[Zi]+E[Zj ]+1

2
(σ2Zi

+σ2Zj)(erirjσZiσZj − 1), (30)

respectively. Consider the following first order approximation for Var
£
V l
n+m

¤
:

Var
£
V l
n+m

¤
≈

n+mX
i=0

n+mX
j=0

αiαj e
E[Zi]+E[Zj ]+1

2
(σ2Zi

+σ2Zj)(rirjσZiσZj) (31)

=
n+mX
i=0

n+mX
j=0

αiαj e
E[Zi]+E[Zj ]+ 1

2
(σ2Zi

+σ2Zj)

µ
Cov[Zi,Λ] Cov[Zj,Λ]

Var(Λ)

¶

=
(Cov(

Pn+m
i=0 αi e

E[Zi]+ 1
2
σ2ZiZi,Λ))

2

Var(Λ)

= (Corr(
n+mX
j=0

αj e
E[Zj ]+1

2
σ2ZjZj,Λ))

2 Var(
n+mX
j=0

αj e
E[Zj ]+ 1

2
σ2ZjZj).

In general, we have that Var
£
V l
n+m

¤
< Var[Vn+m] holds, unless V l

n+m
d
= Vn+m.

Intuitively, it seems reasonable to choose Λ such that Var
£
V l
n+m

¤
is maximized

and hence as close as possible to Var[Vn+m].
In order to find an easy computable approximation, we propose to choose Λ
such that the first order approximation (31) for Var

£
V l
n+m

¤
is maximized:

Λ =
n+mX
j=0

αj e
E[Zj ]+1

2
σ2ZjZj. (32)

This means that the coefficients βj, j = 1, · · · , n+m, in (10) are given by

βj =

j−1X
i=0

γi =

j−1X
i=0

αi e
E[Zi]+

1
2
σ2Zi =

j−1X
i=0

αi e
(n+m−i)µ. (33)

Our main result is stated in the following Theorem.

Theorem 2 If the βj, j = 1, 2, ..., n+m, are defined by (33), and if

E [Vn+m] > 0, (34)
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then the quantiles of W l
n+m are given by

Q+
p [W

l
n+m] = max[f(p), 0], 0 < p < 1, (35)

whereas the d.f. of W l
n+m follows from

f(FW l
n+m
(x)) = x, x ≥ 0, (36)

with f(p) defined by (18).

Proof. It is straightforward to verify that the condition (34) implies that
all βj > 0, for j = 1, 2, ...n +m. The stated result then follows from (26)
and (27).
It is clear that any reasonable ‘first saving- later consuming’ plan should

fulfill the condition (34), which states that the average final surplus E[Vn+m]
should be non-negative.

5 The case of constant savings and consump-
tions

In the remainder of this paper, we will consider the special case that all saving
amounts are equal: α0 = α1 = · · · = αn−1 = α, and also that all withdrawals
are equal: αn = αn+1 = · · · = αn+m = −1. In the sequel, we will always
assume that the βj coefficients, j = 1, · · · , n + m, needed to define Λ, are
given by (33).
The condition (34) can be rewritten as

α > α∗ =
1− e−(m+1)µ

enµ − 1 . (37)

When the condition (37) is fulfilled, we find from Theorem 3 and (18) that
the approximated quantiles Q+

p [W
l
n+m] and the approximated probabilities

FW l
n+m
(x) follow from (35) and (36) with f(p) ≡ fα(p) given by

fα(p) = α
n−1X
i=0

e(n+m−i)µe−
1
2
r2i σ

2
Zi
+ri σZiΦ

−1(p)−
n+mX
i=n

e(n+m−i)µe
1
2
r2i σ

2
Zi
+ri σZiΦ

−1(p)).

(38)
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Let Wn+m(α) andW l
n+m(α) denote the (approximated) final wealth for a

given saving-consumption plan with a saving α and consumption level of 1.
Similarly, Vn+m(α) is the surplus of the α - plan.
For α∗ as defined in (37), one has that

FW l
n+m(α

∗)(0) > 0.5. (39)

Indeed, α∗ corresponds to the saving-consumption plan with expected surplus
E[Vn+m(α∗)] equal to zero. From (8), we find

E [Vn+m(α
∗)] = a∗

n−1X
i=0

e(n+m−i)µ −
n+mX
i=n

e(n+m−i)µ = 0. (40)

From this expression we see that all βj, j = 1, · · · , n + m, as defined in
(33) are strictly positive. Hence, from (27) we find that the probability of
consumption shortfall follows from

fα∗(FW l
n+m(α

∗)(0)) = 0

From (18) and the fact that the sequence {riσZi}0≤r≤n+m is non-increasing
and positive, one finds that

fα∗(0.5) = a∗
n−1X
i=0

e(n+m−i)µe−
1
2
r2i σ

2
Zi −

n+m−1X
i=n

e(n+m−i)µe−
1
2
r2i σ

2
Zi < 0.

so that FW l
n+m(α

∗)(0) > 0.5, as stated in (39).
In practical situations, one will often be interested in the minimal savings

amount α that is required such that the probability of a consumption shortfall
FWn+m(α)(0) is at most equal to ε. Hence, let us consider the case that one
wants to determine α(ε) which is determined by

α(ε) = inf
©
α | FWn+m(α)(0) ≤ ε

ª
, 0 < ε < 1. (41)

The probability ε is typically smaller than 10%, let’s say.
In general, FWn+m(α)(0) is strictly decreasing and continuous in α. This im-
plies that α(ε) follows from

FWn+m(α(ε))(0) = ε. (42)
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We propose to approximate α(ε) by αl(ε) which is defined by

FW l
n+m(α

l(ε))(0) = ε. (43)

Now, in case ε is such that αl (ε) > α∗ we have that E
£
Vn+m(α

l (ε))
¤
> 0.

Hence, from (36), we have that the approximated savings effort αl (ε) can be
found from

fαl(ε)(ε) = 0 if αl (ε) > α∗. (44)

Notice that we can expect that for any reasonable ε < 0.5, the approximated
savings effort αl (ε) can be found from (44). To see this, notice that from (39)
we have that FW l

n+m(α
∗)(0) > 0.5. Furthermore, we have that FWn+m(α)(0) is in

general strictly decreasing and continuous in α. From these two observations
we find that it is very likely that for a typical ε < 0.5 we will have that the
condition αl (ε) > α∗ in (44) is fulfilled.

6 Numerical illustration

In this section we will numerically illustrate the results of this paper, applied
to the special case of α-plans as considered in the previous section. We will
assume that the yearly returns Yi have expectation and variance given by µ
−σ2

2
and σ2, where µ = 0.075 and σ = 0.15.
First, we consider a saving-consumption plan that consists of 10 con-

stant savings α0 = α2 = · · · = α9 = 1, followed by 10 constant withdrawals
α10 = α11 = · · · = α19 = −1. In this case we find that E[V19] = 16.02 > 0, so
that Theorem 3 can be used for determining the quantiles of W l

19.
In Table 1 we compare the approximated quantiles Q+

p [W
l
19] with the sim-

ulated quantiles ‘Q+
p [W19]’ This table illustrates the accuracy of the lower

bound based approximation W l
19. From this table we find for instance that

there is a 90% probability that the final wealth at time 19 will exceed 1.75
(simulated value). The approximated value for this final wealth is 1.76.
From (27) it follows that the (approximated) probability of consumption
shortfall Pr

£
W l
19 = 0

¤
equals 4.83%. In case the investor finds this prob-

ability too high, he will have to increase his savings efforts of 1 per year
during the first ten years.
As a second application, we consider the 20/65/95 saving-consumption

plan as mentioned in the introduction. This plan consists of 45 constant
savings α0 = α2 = · · · = α44 = α > 0, the first one at the age of 20 and the

14



p Q+
p [W

l
19] ‘Q+

p [W19]’ s.e.

0.95 45.11 45.17 0.28
0.90 34.81 34.80 0.16
0.75 21.88 21.89 0.10
0.50 12.11 12.13 0.01
0.25 5.64 5.68 0.03
0.10 1.76 1.75 0.04
0.01 0 0 0.00

Table 1: Approximate and simulated values for the quantiles of W19.

α Pr
£
W l
75 = 0

¤
0.0320 71.29%
0.0500 55.38%
0.1000 23.22%
0.1500 9.89%
0.2500 2.24%
0.5000 0.14%

Table 2: The approximated probability of consumption shortfall for different
values of the savings effort.

last one at the age of 64. After retirement, yearly withdrawals equal to -1
will be made until the age of 95 has been reached, hence α45 = α46 = · · · =
α75 = −1.
The condition (34), or equivalently (37) can be expressed as: α > 0.031966.
Table 2 contains the approximated probabilities of consumption shortfall
Pr
£
W l
75 = 0

¤
, for different saving amounts α. These probabilities follow from

(27).
From (44) we find that the approximated minimal savings amount αl(0.05)
that guarantees that the probability of consumption shortfall is less than or
equal to 5% is given by 0.1935.

7 Concluding remarks

In this paper, we use the theory on comonotonicity in order to determine
accurate and easy computable approximations for the quantiles of random
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variables W = Max[
Pn+m

i=0 αi e
Zi , 0] and this in case the first n amounts

α0, α2, · · · , αn−1 are positive whilst the lastm+1 amounts αn, αn+1, · · · , αn+m

are negative. Also, (Z1, Z2, ..., Zn) is assumed to be a multivariate normal
distributed random vector. The accumulated value at time n + m of a se-
ries of n future deterministic saving amounts followed by m+1 consumption
flows can be written as a random variable W , where Zi denotes the random
accumulation factor over the period [i, n+m]. The random variable W can
thus be seen to represent the final wealth of a saving-consumption plan and
hence our results enable to assess the so-called saving-consumption problem
in case of Black & Scholes Market, assuming fixed cash flows and a given
investment strategy.
Concerning the Black & Scholes market, we assume more in particular

that the drift and volatility of the investment account are constant over
time and that the yearly returns are lognormally distributed. The results can
be generalized in a straightforward way to take into to account the time-
dependency of drifts and volatilities and/or to consider other than quantile
distortion risk measures . Also many of the results presented here can be gen-
eralized to other than normal distributions for the yearly investment returns.
In particular, the results can be generalized in a Lévy-type or elliptical-type
world. We point however out that since the total time period that we consider
is long, assuming a Gaussian model seems to be appropriate, at least approx-
imately, by the Central Limit Theorem. Also, in order to verify whether this
theoretical argument is supported by real market data, we refer to Cesari &
Cremonini (2003). They investigate four well-known stock market indices in
US dollars, from Morgan Stanley: MSCI World, North America, Europe and
Pacific, covering all major stock markets in industrial as well as emerging
countries. For the period 1997-1999, the authors conclude that weekly (and
longer period) returns can be considered as normal and independent. Daily
returns on the other hand are both non-normal and autocorrelated.
Future research of the authors will focus on the generalization of these

results in case the total period under question represents the random lifetime
and/or cash flows are random. Another topic of current research consists in
the determination of optimal portfolio strategies.
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