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Abstract

In this paper we consider different approximations for computing the
distribution function or risk measures related to a discrete sum of non-
independent lognormal random variables. Comonotonic upper bound and
lower bound approximations for such sums have been proposed in Dhaene
et al. (2002a,b). We introduce the comonotonic “maximal variance” lower
bound approximation. We also compare the comonotonic approximations
with two well-known moment matching approximations: the lognormal
and the reciprocal Gamma approximation. We find that for a wide range
of parameter values the comonotonic “maximal variance” lower bound
approximation outperforms the other approximations.
Keywords: comonotonicity, simulation, lognormal, reciprocal Gamma.

1 Introduction
In this paper we will consider and compare the performance of approximations
for the distribution function (d.f.) and risk measures related to a random vari-
able (r.v.) S given by

S =
nX
i=1

αi e
Zi . (1)

Here, the αi are non-negative real numbers and (Z1, Z2, ..., Zn) is a multivariate
normal random vector.
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The accumulated value at time n of a series of future deterministic saving
amounts αi can be written in the form (1), where Zi denotes the random accu-
mulation factor over the period [i, n]. Also the present value of a series of future
deterministic payments αi can be written in the form (1), where now Zi denotes
the random discount factor over the period [0, i]. We refer to Dhaene, Vanduffel,
Goovaerts, Kaas & Vyncke (2004) for more details.
The valuation of Asian or basket options in a Black & Scholes model and the

setting of provisions and required capitals in an insurance context boils down to
the evaluation of risk measures related to the distribution function of a random
variable S as defined in (1).
We will investigate how to (approximately) compute risk measures such as

quantiles (Q) and conditional tail expectations (CTE) of the r.v. S defined in
(1). These risk measures are defined by

Qp[S] = inf{s ∈ R|FS(s) ≥ p}, p ∈ (0, 1) (2)

and
CTEp[S] = E[S|S > Qp[S]], p ∈ (0, 1), (3)

where FS(s) = Pr[S ≤ s] and by convention, inf{φ} = +∞. Notice that
the quantile risk measure is often called the Value-at-Risk, whereas the condi-
tional tail expectation coıncides with the Tail-Value-at-Risk. The latter holds
true because S is a continuous r.v.; see for instance Dhaene, Vanduffel, Tang,
Goovaerts, Kaas & Vyncke (2004).
The r.v. S defined in (1) will in general be a sum of non-independent log-

normal r.v.’s. Its d.f. cannot be determined analytically and is too cumbersome
to work with. In the literature, several techniques for approximating this d.f.
have been proposed.
Moment matching methods approximate the unknown d.f. by a given d.f. in

such a way that the first moments coincide; see for instance Klugman, Panjer
and Willmot (1998) for an inventory of distributions that can be used for this
purpose. Within this respect, practitioners often use a moment matching log-
normal approximation for the distribution of S. The lognormal approximation is
chosen such that its first two moments are equal to the corresponding moments
of S.
The present value of a constant continuous perpetuity with lognormal re-

turn process has a reciprocal (or inverse) Gamma distribution; see for instance
Dufresne (1990) or Milevsky (1997). Notice that this present value can be con-
sidered as the limiting case of the random variable S as defined above. Motivated
by the latter observation, Milevsky & Posner (1998) and Milevsky & Robinson
(2000) propose a moment matching reciprocal Gamma approximation for the
d.f. of S such that the first two moments match. They use this technique for
deriving closed form approximations for the price of Asian and basket options.
Although these moment matching approximations find their origin in the con-
tinuous setting of the discussed problem, it makes sense to to test their accuracy
also in the real-life discrete setting that we investigate in this paper.
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Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) derive comonotonic
upper bound and lower bound approximations (in the convex order sense) for
the d.f. of S. Especially the lower bound approximation, which is given by
E[S | Λ] for an appropriate choice of the conditioning r.v. Λ, is extremely ac-
curate; see for instance Vanduffel, Dhaene, Goovaerts & Kaas (2003). In view
of its importance for practical applications we will focus here on deterministic
sums of type (1). We point out that in this paper presented approximations can
be also generalized to the case of stochastic sums. This is first done by Huang,
Milevsky and Wang (2004) for the moment matching approximations and by
Hoedemakers, Darkiewicz and Goovaerts (2005) for the comonotonic approxi-
mations. Huang, Milevsky & Wang (2004) compare the performance of different
approximations for the probability that a person outlives his money in case of a
lifelong continuous consumption pattern. As a special case, they also consider
approximations for such a probability for the deterministic case, i.e. when the
consumption period is fixed. On the other hand, Hoedemakers, Darkiewicz and
Goovaerts (2005) use the concept of comonotonicity to derive approximations
for the present value of life annuities.
Our paper is most related to Huang, Milevsky and Wang (2004), but instead

of comparing the approximations of the ruin probabilities, we will evaluate the
performance of the above mentioned techniques by comparing the approximated
values of quantiles and conditional tail expectations of r.v.’s S as defined in (1)
and in this case Zi represents the random discount factor over the period [0, i].
The results of these paper are then threefold. First, in case of the comonotonic
lower bound approximation, we propose a new choice for the conditioning r.v.
Λ and we provide theoretical evidence that supports this choice. Throughout
this paper we will call this the “maximal variance” lower bound approximation.
Secondly, we show that for a wide range of reasonable parameter values for
the lognormal return process and time horizon, the “maximal variance” lower
bound approximation often outperforms the comonotonic upper bound and both
moment-matching methods. Finally, we show that even in the limiting case of a
constant continuous perpetuity, when S is guaranteed to be reciprocal Gamma
distributed, the “maximal variance” lower bound approximation still performs
very well. Overall, we believe it is the best all-round candidate to accurately
approximate the risk measures of S.
The paper is organized as follows. In Section 2, we present the comonotonic

approximations and we also focus on the optimal choice of the conditioning
r.v. Λ in case of the comonotonic lower bound E[S | Λ]. We also propose in
this section a new conditioning r.v. which is likely to make the variance of the
approximation ’as close as possible’ to the exact variance. In Section 3 we will
briefly recall the mathematical techniques behind the reciprocal Gamma and
lognormal moment matching techniques. Finally, in Section 4 we compare the
comonotonic approximations with the moment matching techniques, using an
extensive Monte Carlo simulation as the benchmark.
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2 Comonotonic approximations

2.1 General results

In this section, we briefly repeat some results related to the comonotonic lower
and upper bounds for the d.f. of the r.v. S defined in (1). For proofs and more
details, we refer to Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b).
A central concept in the theory on comonotonic r.v.’s is the concept of convex

order. A r.v. X is said to precede a r.v. Y in the convex order sense, denoted
X ≤cx Y , if their means are equal and if their corresponding stop-loss premia
are ordered uniformly for all retentions d, i.e., E[(X − d)+] ≤ E[(Y − d)+] for
all d.
Replacing the copula describing the dependency structure of the terms in

the sum (1) by the comonotonic copula yields an convex order upper bound for
S. On the other hand, applying Jensen’s inequality to S provides us with a
lower bound. These results are formalized in the following theorem, which is
taken from Kaas, Dhaene & Goovaerts (2000).

Theorem 1 Let the r.v. S be given by (1), where the αi are non-negative
real numbers and the random vector (Z1, Z2, ..., Zn) has a multivariate normal
distribution. Consider the conditioning r.v. Λ, given by

Λ =
nX
i=1

γiZi. (4)

Also consider r.v.’s Sl and Sc defined by

Sl =
nX
i=1

αi e
E[Zi]+

1
2(1−r2i )σ2Zi+riσZiΦ

−1(U) (5)

and

Sc =
nX
i=1

αi e
E[Zi]+σZiΦ

−1(U), (6)

respectively. Here U is a Uniform(0, 1) r.v. and Φ is the cumulative d.f. of the
N(0, 1) distribution. Further, the coefficients ri are defined by

ri =
cov [Zi,Λ]

σZi σΛ
. (7)

For the r.v.’s S, Sl and Sc, the following convex order relations hold:

Sl ≤cx S ≤cx Sc. (8)

A random vector is said to be comonotonic if all its components are non-
decreasing functions of the same r.v.. This means that Sc is a comonotonic sum.
It implies that the quantiles and conditional tail expectations of Sc are given
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by the sum of the corresponding risk measures for the marginals involved; see
for instance Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004):

Qp [S
c] =

nX
i=1

αi e
E[Zi]+σZiΦ

−1(p), (9)

CTEp [S
c] =

nX
i=1

αi e
E[Zi]+

1
2σ

2
Zi
Φ
¡
σZi − Φ−1(p)

¢
1− p

, p ∈ (0, 1) . (10)

Provided that all coefficients ri are positive, the terms in Sl are also non-
decreasing functions of the same r.v. U . Hence, Sl will also be a comonotonic
sum in this case. This implies that the quantiles and conditional tail expectations
related to Sl can be computed by summing the corresponding risk measures for
the marginals involved. Hence, assuming that all ri are positive, we find the
following expressions for quantiles and conditional tail expectations of Sl:

Qp

£
Sl
¤
=

nX
i=1

αi e
E[Zi]+

1
2(1−r2i )σ2Zi+riσZiΦ

−1(p), p ∈ (0, 1) , (11)

CTEp

£
Sl
¤
=

nX
i=1

αi e
E[Zi]+

1
2σ

2
Zi
Φ
¡
ri σZi − Φ−1(p)

¢
1− p

, p ∈ (0, 1) .(12)

Finally, notice that the expected values of the r.v.’s S, Scand Sl are all equal:

E(S) = E(Sl) = E(Sc) =
nX
i=1

αi e
E[Zi]+

1
2σ

2
Zi , (13)

whereas their variances are given by

V ar(S) =
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2 (σ

2
Zi
+σ2Zj)(ecov(Zi,Zj) − 1), (14)

V ar(Sl) =
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2 (σ

2
Zi
+σ2Zj)(erirjσZiσZj − 1) (15)

and

V ar(Sc) =
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2 (σ

2
Zi
+σ2Zj)(eσZiσZj − 1), (16)

respectively.

2.2 The “maximal variance” lower bound approach

In the series of papers about the concept of comonotonicity and its applications,
one almost always takes Λ such that it can be seen as a kind of first order
approximation of S; see for instance Dhaene, Denuit, Goovaerts, Kaas & Vyncke
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(2002b). In this subsection we propose a new choice for the conditioning random
variable Λ. In order to do so, recall that ifX ≤cx Y andX and Y are not equal in
distribution, then V ar[X] < V ar[Y ] must hold. An equality in variance would

imply that X d
= Y . This indicates that if we replace S by the less convex Sl,

the best approximation arises when the variance of Sl is ’as close as possible’
to the variance of S. Indeed, in this case the d.f. of Sl is also ’close’ to the
unknown d.f. of S. This means that we have to choose the coefficients γi of the
conditioning variable Λ defined in (4) such that the variance of Sl is maximized.
We will now prove that the first order approximation of the variance of Sl

will be maximized for the following choice of the parameters γi:

γi = αie
E[Zi]+

1
2σ

2
Zi , i = 1, . . . , n. (17)

Indeed, from (15) we find that

V ar(Sl) ≈
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2 (σ

2
Zi
+σ2Zj)(rirjσZiσZj )

=
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2 (σ

2
Zi
+σ2Zj)

µ
Cov[Zi,Λ]Cov[Zj ,Λ]

V ar(Λ)

¶

=
(Cov(

Pn
i=1 αi e

E[Zi]+
1
2σ

2
ZiZi,Λ))

2

V ar(Λ)

= (Corr(
nX
i=1

αi e
E[Zi]+

1
2σ

2
ZiZi,Λ))

2 V ar(
nX
i=1

αi e
E[Zi]+

1
2σ

2
ZiZi). (18)

Hence, the first order approximation of V ar(Sl) is maximized when Λ is given
by

Λ =
nX
i=1

αi e
E[Zi]+

1
2σ

2
ZiZi. (19)

In the remainder of this paper, we will always assume that the conditioning
r.v. Λ is given by (19). Notice that this optimal choice for Λ is slightly different
from the choice that was made for this r.v. in Dhaene, Denuit, Kaas, Goovaerts
& Vyncke (2002b). Numerical comparisons reveal that the choice proposed here
in general leads to more accurate approximations.
One can easily prove that the first order approximation for V ar(Sl) with Λ

given by (19) is equal to the first order approximation of V ar(S). This observa-
tion gives an additional indication that this particular choice for Λ will provide
a good fit.
We emphasize that the conditioning r.v. Λ as defined in (19) does not

necessarily maximize the variance of Sl, but has to be understood as an approx-
imation for the optimal Λ. Theoretically, one could use numerical procedures
to determine the optimal Λ, but this would outweigh one of the main features
of the convex bounds, namely that the quantiles and conditional tail expecta-
tions (and also other actuarial quantities such as stop-loss premiums) can easily
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be determined analytically. Having a ready-to-use approximation that can be
implemented easily is important from a practical point of view.

3 Two well-known moment matching approxi-
mations

In this section we will briefly describe the reciprocal Gamma and the lognormal
moment matching approximations. These two methods are frequently used to
approximate the d.f. of the r.v. S defined by (1).

3.1 The Reciprocal Gamma approximation

The r.v. X is said to be Gamma distributed when its probability density func-
tion (p.d.f.) is given by

fX(x;α, β) =
1

βαΓ(α)
xα−1e−x/β, x > 0, (20)

where α > 0, β > 0 and Γ(.) denotes the Gamma function:

Γ(α) =

Z ∞
0

uα−1e−udu (α > 0). (21)

Consider now the r.v. Y = 1/X. This r.v. is said to be reciprocal (or
inverse) Gamma distributed. Its p.d.f. is given by

fY (y;α, β) = fX(1/y;α, β)/y
2, y > 0. (22)

It is straightforward to prove that the quantiles and conditional tail expectations
of Y are given by

Qp [Y ] =
1

F−1X (1− p;α, β)
, p ∈ (0, 1) (23)

and

CTEp [Y ] =
FX(F

−1
X (1− p;α, β);α− 1, β)
(1− p)(α− 1)β , p ∈ (0, 1) , (24)

where FX(.;α, β) is the cumulative d.f. of the Gamma distribution with pa-
rameters α and β. Since the Gamma distribution is readily available in many
statistical software packages, these risk measures can easily be determined.
The first two moments of the reciprocal Gamma distributed r.v. Y are given

by

E[Y ] =
1

β(α− 1) (25)

and
E[Y 2] =

1

β2(α− 1)(α− 2) . (26)
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Expressing the parameters α and β in terms of E[Y ] and E[Y 2] gives

α =
2E[Y 2]−E[Y ]2

E[Y 2]−E[Y ]2
(27)

and

β =
E[Y 2]−E[Y ]2

E[Y ]E[Y 2]
. (28)

The d.f. of the r.v. defined in (1) is now approximated by a reciprocal
Gamma distribution with first two moments (13) and (14), respectively. The
coefficients α and β of the reciprocal Gamma approximation follow from (27)
and (28). The reciprocal Gamma approximations for the quantiles and the
conditional tail expectations are then given by (23) and (24).
The reciprocal Gamma moment matching method appears naturally in case

one wants to approximate the d.f. of stochastic present values. Indeed, for the
limiting case of the constant continuous perpetuity:

S∞ =

Z ∞
0

exp

·
−(µ− σ2

2
)τ − σB(τ)

¸
dτ, (29)

where B(τ) represents a standard Brownian motion and µ > σ2

2 , the risk mea-
sures can be calculated very easily since Dufresne (1990) proved that S−1∞ is
Gamma distributed with parameters 2µ

σ2 − 1 and σ2

2 . An elegant proof for this
result can also be found in Milevsky (1997).
Expression (29) can be seen as a continuous counterpart of a discounted

sum such as in (23) and one intuitively expects that the present value of a finite
discrete annuity with a normal log return process with independent periodic
returns, can be approximated by a reciprocal Gamma distribution, provided
that the time period involved is long enough. This idea was set forward and
explored in Milevsky & Posner (1998), Milevsky & Robinson (2000) and Huang,
Milevsky & Wang (2004).

3.2 The lognormal approximation

The r.v. X is said to be lognormal distributed if its p.d.f. is given by

fX(x;µ, σ
2) =

1

xσ
√
2π

e−(log x−µ)
2Á2σ2 , x > 0, (30)

where σ > 0.
The quantiles and conditional tail expectations of X are given by

Qp [X] = eµ+σΦ
−1(p), p ∈ (0, 1) (31)

and

CTEp [X] = eµ+
1
2σ

2Φ
¡
σ − Φ−1(p)¢
1− p

, p ∈ (0, 1) . (32)
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The first two moments of X are given by

E[X] = eµ+
1
2σ

2

(33)

and
E[X2] = e2µ+2σ

2

. (34)

Expressing the parameters µ and σ2 of the lognormal distribution in terms
of E[X] and E[X2] leads to

µ = log

Ã
E[X]2p
E[X2]

!
(35)

and

σ2 = log

µ
E[X2]

E[X]2

¶
. (36)

The same procedure as the one explained in the previous subsection can be
followed in order to obtain a lognormal approximation for S, with the first two
moments matched. Dufresne (2004) obtains a lognormal limit distribution for S
as the volatility σ tends to zero and this provides a theoretical justification for
the use of the lognormal approximation.

4 Comparing the approximations
In order to compare the performance of the different approximations presented
above, we consider the r.v. Sn which is defined as the random present value
of a series of n deterministic unit payment obligations due at times 1, 2, ..., n,
respectively:

Sn =
nX
i=1

e−Y1−Y2−···−Yi
def
=

nX
i=1

eZi . (37)

where the r.v. Yi is the random return over the period [i−1, i] and e−(Y1+Y2+···+Yi)
= eZi is the random discount factor over the period [0, i]. We will assume that

the periodical returns Yi are i.i.d. r.v.’s with mean
³
µ− σ2

2

´
and variance σ2.

Notice that Sn is a r.v. of the general type defined in (1).
The provision or reserve to set up at time 0 for these future unit payment

obligations can be determined as Qp[Sn] or CTEp[Sn], with p sufficiently large.
A provision equal to Q0.95[Sn] for instance, will guarantee that all payments
can be made with a probability of 0.95; see for instance Dhaene, Vanduffel,
Goovaerts, Kaas & Vyncke (2004).
As the time unit that we consider is long (1 year), assuming a Gaussian

model for the returns seems to be appropriate, at least approximately, by the
Central Limit Theorem. Empirical studies that confirm our theoretical setup
can be found in Cesari & Cremonini (2003) and Levy (2004).

9



In order to compute the comonotonic approximations for quantiles and con-
ditional tail expectations, notice that E[Zi], σ2Zi and ri are given by

E[Zi] = −i(µ− σ2

2
), (38)

σ2Zi = i σ2 (39)

and

ri =

Pi
j=1

Pn
k=j γkr

i
Pn

j=1

³Pn
k=j γk

´2 , (40)

with γk given by

γk = eE[Zk]+
1
2σ

2
Zk , k = 1, . . . , n.

Notice that the correlation coefficients ri are positive, so that the formulae (11)
and (12) can be applied.
Now we will compare the performance of the different approximation meth-

ods that were presented in Sections 2 and 3: the comonotonic upper bound
method (UB), the comonotonic “maximal variance” lower bound method (LB),
the reciprocal Gamma method (RG) and the lognormal method (LN).
We will compare the different approximations for quantiles and conditional

tail expectations with the values obtained by Monte-Carlo simulation. The
simulation results are based on generating 500,000 random paths. The estimates
obtained from this time-consuming simulation will serve as benchmark. The
random paths are based on antithetic variables in order to reduce the variance
of the Monte-Carlo estimate.
The tables that we will present display the results obtained by Monte Carlo

simulation (MC) for the risk measure at hand, as well as the deviations of the
different approximation methods, relative to the Monte Carlo based result. For
the quantiles and conditional tail expectations, these deviations are defined as
follows:

Qp[S
approx
n ]−Qp[S

MC
n ]

Qp[SMCn ]
× 100%

and
CTEp[S

approx
n ]− CTEp[S

MC
n ]

CTEp[SMCn ]
× 100%,

where Sapproxn corresponds to one of the approximation methods and SMCn de-
notes the Monte Carlo simulation result. The figures displayed in bold in the
tables correspond to the best approximations, this means the ones with the
smallest deviation, relative to the Monte-Carlo result. In the tables, we also
present the standard error (s.e.) of the Monte Carlo estimates. The standard
error is formally defined as the square root of the estimated error variance and
is here expressed as a percentage of the Monte Carlo estimate.
Table 1 summarizes the results for the 0.95-quantiles for different yearly

volatilities σ and for a yearly time horizon of n = 20 and n = 40, respectively.
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n Method σ = 0.05 σ = 0.15 σ = 0.25 σ = 0.35
UB +3.24% +8.02% +9.36% +7.50%

20 LB -0.01% +0.02% +0.00% +0.35%
RECG +0.07% -0.15% -4.28% -14.27%
LN -0.16% -0.06% +2.99% +9.04%

MC (±s.e.) 12.1957
(0.04%)

20.4592
(0.10%)

41.5854
(0.25%)

106.1389
(0.30%)

UB +4.39% +10.26% +9.42% +1.47%
40 LB +0.00% -0.06% +0.06% -0.83%

RECG +0.06% -0.55% -8.52% -19.70%
LN -0.23% +0.58% +9.73% +9.96%

MC (±s.e.) 15.4733
(0.04%)

30.4033
(0.16%)

87.7482
(0.32%)

427.0793
(0.49%)

Table 1: Approximations for the 0.95-quantile of Sn for different horizons and
volatilities (µ=0.075; yearly payments of 1).

Method p = 0.95 p = 0.90 p = 0.75 p = 0.50 p = 0.25
UB +8.02% 5.62% +1.93% -2.25% -6.33%
LB +0.02% -0.06% +0.03% -0.01% +0.00%

RECG -0.15% -0.74% -0.86% -0.42% +0.57%
LN -0.06% +0.65% +1.36% +0.92% -0.65%

MC (±s.e.) 20.4592
(0.10%)

17.8221
(0.06%)

14.2191
(0.05%)

11.1986
(0.01%)

8.9199
(0.04%)

Table 2: Approximations for some selected quantiles of S20 (µ=0.075; σ=0.15;
yearly payments of 1).

The yearly expected return µ has been set equal to 7.5%. The “maximal vari-
ance” lower bound approach (LB) turns out to fit the quantiles the best for all
values of the parameters. Its quantiles fall almost always in the 95% confidence
interval around Qp[S

MC
n ]. It appears that the performances of the lognormal

and reciprocal Gamma approximations are worse for higher levels of volatility
and for longer time horizons. As far as the reciprocal Gamma approximation
is concerned, this result seems surprising given the convergence of the d.f. of
Sn to a reciprocal Gamma distribution. Note however that the variance of S∞
only exists provided that µ > 3σ

2

2 ; see (26). This explains why for σ = 0.25 and
σ = 0.35 both moment matching methods are less accurate.
Table 2 compares the different approximations for some selected quantiles

of S20, with a fixed yearly volatility σ = 0.15 and a yearly expected return
µ = 0.075. The results are in line with the previous ones. The lower bound
approach outperforms all the others, for high as well as for low values of p.
Table 3 displays the approximated and simulated 95% conditional tail ex-

pectations for the same set of parameters as in Table 1. Again the “maximal
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n Method σ = 0.05 σ = 0.15 σ = 0.25 σ = 0.35
UB +4.19% +10.98% +14.17% +12.98%

20 LB -0.02% -0.14% -0.36% -0.59%
RECG +0.21% +1.18% -0.98% -15.41%
LN -0.38% -1.88% -0.94% +4.56%

MC (±s.e.) 12.8231
(1.04%)

24.4591
(2.16%)

59.6646
(2.90%)

198.0164
(3.27%)

UB +5.86% +15.11% +16.87% +10.45%
40 LB +0.09% -0.25% -0.59% -0.84%

RECG +0.28% +0.87% -7.49% -40.77%
LN -0.48% -2.38% +4.18% +12.77%

MC (±s.e.) 16.3994
(1.55%)

38.2515
(2.61%)

149.8569
(3.25%)

1206.0858
(3.59%)

Table 3: Approximations for the 0.95-conditional tail expectation of Sn for
different horizons and volatilities (µ=0.075; yearly payments of 1).

Method µ = 0.05 µ = 0.075 µ = 0.10
UB +9.93% +10.26% +10.49%
LB +0.15% -0.06% +0.02%
RECG -1.05% -0.55% -0.13%
LN +1.24% +0.58% +0.29%

MC (±s.e.) 47.6988
(0.16%)

30.4033
(0.16%)

20.8469
(0.13%)

Table 4: Approximations for Q0.95[S40] for different expected returns (n=40;
σ=0.15; yearly payments of 1).

variance” lower bound approach performs the best as an approximation for the
conditional tail expectations.
In Table 4 we test the sensitivity of the results with respect to the yearly

expected return µ. This table reports the approximations for Q0.95[S40] for
different yearly expected returns µ and for a fixed yearly volatility σ = 0.15.
The results show that the higher the yearly expected return µ, the better any of
the proposed approximations. Also in this case, the “maximal variance” lower
bound approximation seems to provide the best fit.
At some point however, for increasing horizon and periodicity of the cash

flows, the (limiting) reciprocal Gamma approximation must outperform the
lower bound approximation. In Table 5, we compare the performances of the
different approximations when increasing the yearly horizon, whereas in Table
6 we also increase the periodicity of the payments. More precisely, in Table
5 we consider yearly unit payments whereas in Table 6 we assume quarterly
payments of 0.25 each. These tables confirm that increasing the periodicity and
the total horizon positively impacts the performance of the reciprocal Gamma
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Method n = 40 n = 100 n = 250
UB +10.26% +12.45% +12.67%
LB -0.06% +0.09% +0.16%
RECG -0.55% -0.19% -0.05%
LN +0.58% +2.01% +2.23%

MC (±s.e) 30.4033
(0.16%)

36.2960
(0.14%)

36.5572
(0.17%)

Table 5: Approximations for Q0.95[Sn] for different horizons (µ=0.075; σ=0.15;
yearly payments of 1).

Method n = 40 n = 100
UB +10.21% +12.30%
LB -0.10% -0.03%
RECG -0.49% -0.16%
LN +0.49% +1.86%

MC (±s.e.) 30.6718
(0.16%)

36.7083
(0.17%)

Table 6: Approximations for Q0.95[Sn] for different horizons (µ=0.075; σ=0.15;
quarterly payments of 0.25).

approximation.
Finally, in Table 7 we consider continuous perpetuities and confront the

lower bound approximation with the exact reciprocal Gamma distribution. We
consider different values of the volatility parameter σ while µ is chosen equal to
µ = 0.075.and we compare the exact results for the 0.95-quantile of a constant
continuous perpetuity (distributed like reciprocal Gamma) with the “maximal
variance” lower bound approximation. The lower bound approximation has been
obtained by a numerical evaluation of the quantile function of the “maximal
variance” lower bound approximation for S∞ which is given by

Qp[S
l
t] =

Z ∞
0

e−(µ−
σ2

2 )τ+
1
2σ

2τ(1−r2(τ))+r(τ)σ√τΦ−1(p)dτ,

with Λ =
R∞
0
exp

£−(µ− σ2)τ
¤
B(τ)dτ and r(τ) = corr[Y (τ),Λ]. We note that

also in this case the “maximal variance” lower bound approximation provides
rather accurate approximate results.
From the 7 tables, one can observe that, generally speaking, the moment

matching techniques perform poorly for high levels of p and/or σ whilst the
“maximal variance” comonotonic lower bound continues to produce accurate
approximations, also in these extreme cases.
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n Method σ = 0.05 σ = 0.15 σ = 0.25
∞ LB -0.02% +0.01% -0.96%

RECG 27.2786 37.1132 219.2890

Table 7: Maximal variance lowerbound approximations for the 0.95-quantile of
the constant continuous perpetuity for different volatilities (µ=0.075).

5 Conclusion
In this paper, we compared in a discrete setting some approximation methods
for a standard actuarial and financial problem: the determination of quantiles
and conditional tail expectations of the present value of a series of cash-flows,
when discounting is performed by a Brownian motion process. We introduce
the comonotonic “maximal variance” lower bound approximation and we tested
the accuracy of the comonotonic approximations and two moment matching
approximations by comparing these approximations with the estimates obtained
from extensive Monte Carlo simulations.
Overall, the comonotonic “maximal variance” lower bound approach pro-

vides the best fit and leads to accurate approximations under varying parameter
assumptions, which are in line with realistic market values.
The comonotonic approach has the additional advantage that it gives rise

to easily computable approximations for any risk measure that is additive for
comonotonic risks. Examples of such risk measures are the distortion risk mea-
sures which were introduced in the actuarial literature by Wang (2000).
Also notice that the comonotonic approximations that we presented here

can easily be transformed to the case when accumulating saving amounts to
a final value, and also to the case where the cash flow payments vary from
period to period; see Dhaene, Vanduffel, Goovaerts, Kaas & Vyncke (2004).
Furthermore, Vanduffel, Dhaene & Goovaerts (2004) show that also in case of
positive cash flow payments followed by negative withdrawals the comonotonic
approximations can often be used to approximate the relevant risk measures. For
all these mentioned cases the moment matching methods are less appropriate.
On the other hand, notice that Huang, Milevsky and Wang (2004) show in a

continuous setting how the moment matching approximations can also be used
in case the variable n in equation (1) is itself stochastic. Also the comonotonic
approximations can be used in this case. Indeed, Hoedemakers, Darkiewicz
and Goovaerts (2005) use the theory on comonotonicity to obtain in a discrete
setting approximations for the present value of a life annuity and a portfolio of
life annuities.
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