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Abstract

We consider a continuous-time Markowitz type portfolio problem
that consists of minimizing the discounted cost of a given cash-flow
under the constraint of a restricted Capital at Risk. In a Black-Scholes
setting, upper and lower bounds are obtained by means of simple
analytical expressions that avoid the classical simulation approach for
this type of problems. The problem is easily extended to cope with
more general discount processes.
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1 Introduction

The portfolio selection algorithm as introduced in Markowitz (1959) uses a
mean-variance analysis to find optimal portfolios. In this method, a portfolio
is called optimal if it yields the largest return among all portfolios with
the same variance or, vice versa, if it has the smallest variance among all
portfolios with the same return. For long term investments, however, the use
of the variance as a risk measure leads to a smaller proportion of risky assets
in a portfolio than one would expect. Based on the empirical observation
that stock indices are growing faster than riskless rates in the long run, the
proportion of risky assets should increase with the duration of the investment
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period. But since the variance increases with time, the proportion of risky
assets will decrease. Therefore, Emmer et al (2001) propose to use the Capital
at Risk (CaR) as an alternative risk measure and derive a closed-form formula
to calculate the optimal CaR-constrained portfolio.

The Capital at Risk of a portfolio is commonly defined as the difference be-
tween the mean of the profit-loss distribution and a small quantile of this
distribution (the so-called Value at Risk), but Emmer et al (2001) use a
different definition which limits the possibility of excess losses over the risk-
less investment. We will also follow this approach and show how optimal
CaR-constrained portfolios can be obtained for cash-flows in a Black-Scholes
setting.

In a Black-Scholes market the stock prices {Si(t)}t≥0 for i = 1, . . . , d, evolve
from the following equations:

dSi(t) = Si(t)

(
µidt +

d∑
j=1

σijdWj(t)

)
, Si(0) = si, i = 1, . . . , d

where W (t) is a standard d-dimensional Brownian motion, µ = (µ1, . . . , µd)
′

is the vector of stock-appreciation rates, and σ = (σij)1≤i,j≤d is the matrix
of stock-volatilities.

Denoting the fraction of the wealth X(π, t) that is invested in asset i by
πi(t), the wealth process of an initial unit amount follows the dynamic

dX(π, t) = X(π, t) (π′µdt + π′σdW (t)) , X(π, 0) = 1. (1)

As in Emmer et al (2001), we assume that the fractions in the different stocks
remain constant on [0, T ], i.e. π(t) = π = (π1, . . . , πd)

′. So, since the stock
prices evolve randomly, one has to follow a dynamic trading strategy to keep
the fractions of wealth invested in the different stocks constant. Solving the
SDE (1) yields

X(π, t) = exp {Y (π, t)} (2)

where Y (π, t) equals

Y (π, t) = π′µt − π′σ2π
t

2
+ π′σW (t). (3)
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In the following section we extend some results obtained by Emmer et al
(2001) to an actuarial context where consecutive payments have to be made.
But implementing the mean-CaR criterion in a multi-period model inevitably
turns the portfolio selection problem into a very complex problem for which
no analytical solutions exist. Consequently, this type of portfolio selection
problem is generally tackled by means of simulation of the corresponding
stochastic processes. In section 3 we construct close approximations to the
model in order to avoid this excessive time-consuming approach. Section 4
concludes with a numerical illustration of the approximations.

2 Extension to cash-flows

In an insurance setting, at certain points in time an amount is withdrawn
from or added to the money invested. We consider a cash-flow ct denoting the
total payments for each year t (e.g. pensions in a pension fund). Throughout
the paper we will assume that ct ≥ 0 (t = 1, . . . , T ).

The present value of the cash-flow equals

V =
T∑

t=1

cte
−Y (π,t). (4)

with expected value given by

V0 = E[V ] =
T∑

t=1

cte
−m(π)t+s2(π)t (5)

where m(π) = π′µ and s2(π) = π′σ2π. Obviously, we want to select a
portfolio that minimizes V0. Note however that there are restrictions on
the amounts of risky stocks that can be bought, due to the requirements of
control authorities. In addition, also due to regulators, the probability of
“ruin” has to be restricted. Let ε denote the maximum probability of “ruin
allowed”. Denoting the 1− ε quantile of the discounted cash-flow by Qε(π),
i.e.

Pr

[
T∑

t=1

cte
−Y (π,t) ≤ Qε(π)

]
= 1 − ε (6)
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we define the Capital at Risk as

CaR = Qε(π) −
T∑

t=1

cte
−rt (7)

where r is a constant reference interest rate, e.g. the riskless interest rate.
So, if we assume that the provision for the future payment obligations is
the 1 − ε quantile, then the CAR is the required provision in excess of the
required provision in case of riskless investments. By taking into account the
extra cost of the CaR, we come to the following optimization problem:

min
π

V0 + u(CaR), subject to πj ≥ 0,
d∑

j=1

πj = 1, CaR ≤ C

where the increasing function u(·) denotes the supplementary cost of the
Capital at Risk and where C denotes the maximum CaR allowed.

Since the quantile Qε(π) is very hard (or even impossible) to obtain due to
the dependency structure between the random variables Y (π, t), t = 1, . . . , T ,
in (4), it seems impossible to solve this optimization problem without using
Monte Carlo simulation. In the next section, we will show how this exces-
sive time-consuming approach can be avoided by using easily computable
approximations to Qε(π).

3 Avoiding simulation

Instead of calculating the exact quantile of the distribution, we will look for
bounds, in the sense of “more favourable/less dangerous” and “less favourable/more
dangerous”, with a simpler structure. This technique is common practice in
the actuarial literature. When lower and upper bounds are close to each
other, together they can provide reliable information about the original and
more complex variable. The notion “less favourable” or “more dangerous”
will be defined by means of the convex order.

Definition 1 A random variable V is smaller than a random variable W in
convex order if

E [u(V )] ≤ E [u(W )] , (8)
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for all convex functions u : R → R : x 	→ u(x), provided the expectations
exist. This is denoted as

V ≤cx W. (9)

Since convex functions are functions that take on their largest values in the
tails, the variable W is more likely to take on extreme values than the variable
V , and thus W is more dangerous.

In Vyncke et al (2001) and Kaas et al (2001) upper and lower bounds for
present value functions are constructed. These bounds in convex order turn
out to be rather close to the exact present value distribution.

Proposition 1 Consider a sum of random variables

V = X1 + X2 + . . . + Xn,

and define the related stochastic quantities

Vu = F−1
X1

(U) + F−1
X2

(U) + . . . + F−1
Xn

(U) (10)

V� = E[X1|Z] + E[X2|Z] + . . . + E[Xn|Z], (11)

where U is a random variable, uniformly distributed on [0, 1], and where Z
can be any random variable for which the expectations exist. The following
relations then hold:

V� ≤cx V ≤cx Vu.

Proof: see Vyncke et al (2001) and Dhaene et al (2002).

It is clear that the lower bound V� will perform at best if Z and V are very
similar, so we choose

Z =
T∑

t=1

cte
−π′µtY (π, t) (12)

which can be seen to be a first order approximation of V .

For the (1 − ε)-quantiles of Vu and V� we find

Q�
ε(π) =

T∑
t=1

ct exp

{
−m(π)t + ρ(π, t)s(π)

√
tΦ−1(1 − ε) + (1 − ρ2(π, t)

2
)s2(π)t

}
(13)
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with m(π) = π′µ, s2(π) = π′σ2π and where the parameters ρ(π, t) are
given by

ρ(π, t) = Corr(Y (π, t), Z) =

∑t
i=1 βi√

t
∑T

i=1 β2
i

, with βi =
T∑

t=i

cte
−m(π)t

in case of the lower bound V�, and ρ(π, t) ≡ 1 in case of the upper bound Vu.
Note that ρ(π, t) depends on π only through m(π). Since 0 ≤ ρ(π, t) ≤ 1
and s(π) ≥ 0, the quantile Q�

ε(π) is an increasing function of s(π). This
implies that the adjusted Capital at Risk

CaR� = Q�
ε(π) −

T∑
t=1

cte
−rt (14)

is also increasing in s(π) for both approximations. Note, however, that
the adjusted CaR isn’t necessarily increasing with the planning horizon T .
Figure 1 shows the adjusted CaR (ε = 0.05) for a pure stock portfolio, i.e.
a portfolio consisting of one asset with a strictly positive volatility, for a
cash-flow ct = 100 (t = 1, . . . , T ) for different values of T . In case the return
µ equals 0.1, the adjusted CaR increases with T (for both upper and lower
bound), but if µ = 0.18 then the CaR� first increases and then decreases
with time. As in Emmer et al (2001), at some point in time the CaR�

even becomes negative which means that the pure stock strategy should be
preferred over the risk-free strategy if the planning horizon is beyond that
point in time.

From (5) it can be seen that also V0 is increasing in s(π). So logically
assuming that the cost function u(·) is an increasing function, we see that
the adjusted objective function V0 + u(CaR�) is increasing in s(π). This
implies that the adjusted optimization problem

min
π

V0 + u(CaR�), subject to πj ≥ 0,
d∑

j=1

πj = 1, CaR� ≤ C

can be solved by minimizing s2(π) for each m(π) = m, and choosing the
solution which minimizes the adjusted objective function. So, solving this
optimization problem boils down to successively solving a quadratic program.
Because of the specific nature of the optimization problem, the solution will
also be part of the mean-variance efficient frontier.
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Figure 1: Capital at Risk of the pure stock portfolio as a function of the
planning horizon. Both upper (grey) and lower bound (black) are depicted
for µ = 0.10 (solid line) and µ = 0.18 (dashed line). The volatility equals
0.20 and the risk free interest rate equals 0.05.

4 Numerical illustration

In this section we illustrate the method by considering a portfolio consisting
of 5 risky stocks and 1 riskless bond. The stock-appreciation rates µ and
stock-volatilities σ are given by

stock 1 2 3 4 5
µ 0.1346 0.1659 0.1895 0.2014 0.095
σ 0.1585 0.2293 0.3368 0.4299 0.0686

and their correlation matrix equals


1 0.7217 0.2571 −0.0719 0.408
0.7217 1 0.1436 −0.083 0.1419
0.2571 0.1436 1 0.0255 −0.0829
−0.0719 −0.083 0.0255 1 −0.1154
0.408 0.1419 −0.0829 −0.1154 1




The riskless bond yields a 0.05 return and we assume that the cost function
is given by

u(x) =

{
0.2x x ≥ 0
0.05x x ≤ 0

7



First, we consider a cash-flow ct = 100 (t = 1, . . . , 20). For ε = 0.05, the
proportions (in %) based on the upper bound Vu are very close to those based
on V�, as can be seen from the following table. Note that π0 indicates the
proportion that is invested in the riskless bond.

appr. Vu V� Vu V�

ε 0.05 0.05 0.01 0.01
π0 0.00 0.00 0.00 0.00
π1 0.00 0.00 0.00 0.00
π2 48.28 48.01 37.28 45.59
π3 27.16 27.30 20.44 24.35
π4 24.57 24.70 18.39 21.97
π5 0.00 0.00 23.90 8.10
m 18.10 18.11 16.03 17.37
s 18.23 18.25 13.90 16.67
V0 595.13 595.10 621.03 602.11
CaR� -139.10 -235.56 52.46 -0.12
cost 588.17 583.33 631.52 602.10

In Figure 2 the optimal portfolios based on Vu and V� are indicated by a
circle and a rectangle respectively. For ε = 0.01, the proportions appears to
be less efficient for this kind of cash-flow (see also Figure 3).

Next, we consider an increasing cash-flow ct = 5t (t = 1, . . . , 20). Apart from
rounding errors, we see that the proportions for the Vu approximation equal
those of the V� approximation in case of ε = 0.05. For ε = 0.01, the largest
difference in proportion is approximately 8% (see also Figures 4 and 5).

appr. Vu V� Vu V�

ε 0.05 0.05 0.01 0.01
π0 0.00 0.00 0.00 0.00
π1 0.00 0.00 0.00 0.00
π2 48.01 48.01 45.73 48.28
π3 27.30 27.30 24.42 27.16
π4 24.70 24.70 22.04 24.57
π5 0.00 0.00 7.82 0.00
m 18.11 18.11 17.39 18.10
s 18.25 18.25 16.72 18.23
V0 183.89 183.89 187.21 183.91

CaR� -155.02 -184.89 -0.19 -32.75
cost 176.14 174.67 187.20 182.27

Finally, we consider a decreasing cash-flow ct = 105− 5t (t = 1, . . . , 20). For
ε = 0.05 (see Figure 6) as well as for ε = 0.01 (see Figure 7), the method
appears to perform quite well.
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appr. Vu V� Vu V�

ε 0.05 0.05 0.01 0.01
π0 0.00 0.00 0.00 0.00
π1 0.00 0.00 0.00 0.00
π2 48.52 48.28 34.96 40.04
π3 25.73 27.16 19.35 21.74
π4 23.24 24.57 17.40 19.59
π5 2.52 0.00 28.30 18.64
m 17.84 18.10 15.66 16.48
s 17.67 18.23 13.15 14.81
V0 442.18 440.98 459.03 451.36

CaR� 0.61 -51.86 91.55 43.59
cost 442.30 438.38 477.34 460.08
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Figure 2: Optimal portfolios for ct = 100 (t = 1, . . . , 20) with ε = 0.05.
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Figure 3: Optimal portfolios for ct = 100 (t = 1, . . . , 20) with ε = 0.01.
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Figure 4: Optimal portfolios for ct = 5t (t = 1, . . . , 20) with ε = 0.05.
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Figure 5: Optimal portfolios for ct = 5t (t = 1, . . . , 20) with ε = 0.01.
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Figure 6: Optimal portfolios for ct = 105 − 5t (t = 1, . . . , 20) with ε = 0.05.
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Figure 7: Optimal portfolios for ct = 105 − 5t (t = 1, . . . , 20) with ε = 0.01.
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