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We consider a single period portfolio of n dependent credit risks that are3275

subject to default during the period. We show that using stochastic loss given3276

default random variables in conjunction with default correlations can give rise3277

to an inconsistent set of assumptions for estimating the variance of the port-3278
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Key words and phrases: default correlation, loss correlation, comonotonicity,3282

economic capital3283

∗Jan Dhaene, Ph.D., is a professor at the University of Amsterdam and at the
Katholieke Universiteit Leuven, Department of Applied Economics, University Leuven,
Naamsestraat 69, B-3000, Leuven, BELGIUM. E-mail: Jan.dhaene@econ.kuleuven.ac.be
†Marc Goovaerts, Ph.D., is a professor at the University of Amsterdam

and at the Katholieke Univzrsiteit Leuven, Department of Applied Eco-
nomics, University Leuven, Naamsestraat 69, B-3000, Leuven, BELGIUM. E-mail:
Marc.goovaerts@econ.kuleuven.ac.be
‡Robert Koch is a director at Fortis Central Risk Management, Rue Royale 20, B-1000,

Brussels, BELGIUM. E-mail: Robert.koch@fortisbank.com
§Ruben Olieslagers is a director at Fortis Central Risk Management, Rue Royale 20,

B-1000, Brussels, BELGIUM. E-mail: Ruben.olieslagers@fortis.com
¶Olivier Romijn is a consultant at Fortis Central Risk Management, Rue Royale 20,

B-1000, Brussels, Belgium.BELGIUM.
‖Steven Vanduffel, Ph.D., is a postdoctoral researcher at the University of Am-

sterdam and at the Katholieke Univzrsiteit Leuven, Department of Applied Eco-
nomics, University Leuven, Naamsestraat 69, B-3000, Leuven, BELGIUM. E-mail:
Steven.vanduffel@econ.kuleuven.ac.be
∗∗The authors thank the two anonymous referees and the editor for their helpful

comments. Jan Dhaene, Marc Goovaerts and Steven Vanduffel acknowledge the finan-
cial support by the Onderzoeksfonds K.U.Leuven (GOA/02: Actuariële, financiële en
statistische aspecten van afhankelijkheden in verzekerings- en financiële portefeuilles).

173



174 Journal of Actuarial Practice, Vol. 13, 2006

1 Introduction3284

Advanced credit portfolio models such as J.P. Morgan’s CreditMetrics®
3285

(<http://www.creditmetrics.com>), Credit Suisse Financial Products’3286

CreditRisk+® (<http://www.csfb.com/creditrisk>), McKinsey & Com-3287

pany’s CreditPortfolioView® (Wilson 1997a and b), and KMV’s Portfolio-3288

Manager® (Kealhofer 1995) are widely used by banks to assess the credit3289

default risk of their diverse loan portfolios.1 Knowledge of this risk al-3290

lows banks to set aside capital buffers to protect them against default.3291

The implementation of these models is often the bank’s first step to-3292

ward developing what is now called an enterprise risk framework, i.e.,3293

a which can support consistent risk and reward management of the3294

whole enterprise by integrating all risk components. Indeed, the capi-3295

tal used by different business units within a financial enterprise may3296

adversely affect investment decisions and the performance of other3297

business units.3298

Despite the commercial success of the above mentioned models, De-3299

loitte & Touche’s 2004 global risk management survey2 has shown that3300

many financial institutions have yet to set up such an integrated frame-3301

work. Instead, some financial institutions have maintained the tradi-3302

tional variance-covariance portfolio model for the sake of transparency3303

and practicality. In contrast to the credit risk models that compute the3304

distribution of the portfolio loss, the variance-covariance approach fo-3305

cuses on the computation of the mean and the variance of this loss. The3306

mean and variance are then linked to the required capital through a cal-3307

ibration on a known two-parameter distribution such as, for example,3308

the beta distribution.3309

Using the variance-covariance framework requires information on3310

the probability of default, exposure at default, the mean and variance3311

of the loss given default, and the default correlation matrix among the3312

various debtors. These parameters can also be found in the quanti-3313

tative groundings of the 2004 Basel Accord.3 Before setting up that3314

stage the loss given default is assumed to be constant, while in the second stage it was
assumed to be stochastic.

1For a comparison of these models see, for example, Crouhy, Galai and Mark (2000).
Gordy (2000) compares CreditMetrics® and CreditRisk+®.

2Deloitte & Touche’s Global Risk Management Survey is available online at
<http://www.deloitte.com>

3See “International Convergence of Capital Measurement and Capital Standards, a
Revised Framework.” Basel Committee for Banking Supervision, 2004.

4For example, when introducing the variance-covariance framework, a well known
Belgian financial enterprise considered in inconsistent two-stage procedure. In the first



Dhaene et al.: Stochastic Loss Given Default 175

variance-covariance framework, however, we must specify assumptions3315

and ensure that these assumptions are mutually consistent.43316

We propose two consistent variance-covariance models. Both meth-3317

ods use a stochastic loss given default but but differ in their correla-3318

tion assumptions. The first assumes independence among the stochas-3319

tic loss given default they are comonotonic, meaning that they are all3320

monotonic functions of a common random variable. We show that these3321

two models are extremal in the sense that they provide bounds for the3322

portfolio variance.3323

2 Description of the Problem3324

Consider a single period portfolio of n dependent credit risks at the3325

start of the period. These risks, labeled 1,2, . . . , n, can default during3326

the period. For i = 1,2, . . . , n, let3327

Ii = Indicator random variable for the ith risk’s default during the3328

period, i.e., Ii = 1 if default occurs and 0 otherwise;3329

qi = P [Ii = 1] is the probability of default for the ith risk;3330

Mi = Portfolio’s exposure at default due to the ith risk, i.e., the max-3331

imum amount of loss on risk i given that it defaults. Mi is3332

assumed to be a finite deterministic quantity;3333

Θi = The loss given default random variable, which is the fraction3334

of Mi that actually is lost given the ith risk defaults;3335

Li = IiMiΘi is the actual (unconditional) loss from the ith risk’s de-3336

fault during the period; and3337

L = ∑n
i=1 Li is the aggregate portfolio loss from defaults.3338

For any pair of random variables (X, Y) with finite variance, the no-3339

tation ρ (X,Y) is used to denote its Pearson’s correlation coefficient3340

where3341

ρ (X,Y) = Cov (X, Y)

σ (X)σ (Y)
.

The default correlation of risk pair
(
i, j
)

is denoted by ρDi,j where3342

ρDi,j = ρ
(
Ii, Ij

)
, (1)
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where σ 2(Ii) = qi(1 − qi) for i = 1,2, . . . , n. The loss given default3343

correlation of the risk pair
(
i, j
)

is denoted by ρΘi,j where3344

ρΘi,j = ρ
(
Θi,Θj

)
. (2)

Finally, the loss correlation of risk pair
(
i, j
)

is denoted by ρLi,j where3345

ρLi,j = ρ
(
Li, Lj

)
. (3)

We will discuss how to construct a consistent model of correlations3346

ρDi,j , ρ
Θ

i,j and ρLi,j . In addition, we will show that while it is of course3347

correct to consider Θ as a random variable, the consequences of this3348

assumption should be carefully considered. For example, even though3349

loss and default correlations are the same when the Θi’s are determin-3350

istic, one cannot continue to assume that ρLi,j = ρDi,j for all risk pairs3351

(i, j) when the Θi’s are random variables.3352

Though a number of authors have considered methods of estimat-3353

ing default correlations, e.g., the theoretical models of Hull and White3354

(2001) and Zhou (2001), the estimates from real data that are used in3355

Stevenson et al (1995) and Gollinger and Morgan (1993), it appears that3356

much less work has been done on the more general concept of loss3357

correlations. We hope this paper makes a contribution to the further3358

understanding of loss correlations.3359

3 Some General Results3360

3.1 The Basic Assumption3361

Our first and most basic assumption is:3362

A1 The default indicator random variables Ii and the loss given de-3363

fault random variables Θj are mutually independent for any pair3364

i and j, i, j = 1,2, . . . , n.3365

We emphasize that the mutual independence of Ii and Θi is just a tech-3366

nical assumption because only the variable Θi | Ii = 1 is relevant. So3367

we can choose any distribution function for Θi | Ii = 0. A convenient3368

choice is to assume that Θi | Ii = 0
d= Θi | Ii = 1, where

d= stands for3369

equality in distribution. This is indeed a good choice, because it makes3370

the random variables Θi and Ii mutually independent which is conve-3371

nient from a mathematical point of view. The assumption of mutually3372

independence between Ii and Θj for i ≠ j cannot be considered as a3373
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technical assumption, rather it is a simplifying assumption. As the Θi’s3374

are fractions of the Mi’s, we can, without loss of generality, set Mi = 1.3375

Results and conclusions can easily be generalized to the case where the3376

Mi’s are arbitrary.3377

Two well known results from probability are: for any triplet of ran-3378

dom variables X, Y , and Z3379

Cov (X, Y) = E [Cov[(X, Y) | Z]]+Cov [E (X | Z) ,E (Y | Z)]
Var(Li) = Var [E (X | Z)]+ E [Var (X | Z)]

From assumption A1 we find that3380

Cov
(
Li, Lj

)
= E

(
IiIj

)
Cov

(
Θi,Θj

)
+ E(Θi)E(Θj)Cov(Ii, Ij)

=
(
Cov(Ii, Ij)+ qiqj

)
Cov(Θi,Θj)+ E(Θi)E(Θj)Cov(Ii, Ij).

(4)

Hence,3381

ρLi,jσ(Li)σ(Lj) =
[
ρDi,jσ(Ii)σ(Ij)+ qiqj)

]
ρΘi,jσ(Θi)σ(Θj)

+ ρDi,jσ(Ii)σ(Ij)E(Θi) E(Θj). (5)

and

Var(Li) = (E(Θi))2 qi(1− qi)+ qiVar (Θi) . (6)

From the derivations above, we find that a general expression for3382

Var(L) is given by3383

Var(L) = 2

n−1∑

i=1

n∑

j=i+1

Cov(Li, Lj)+
n∑

i=1

Var(Li)

= 2

n−1∑

i=1

n∑

j=i+1

[
ρDi,jσ(Ii)σ(Ij)+ qiqj)

]
ρΘi,jσ(Θi)σ(Θj)

+
n∑

i≠j

ρDi,jσ(Ii)σ(Ij)E(Θi)E(Θj)

+
n∑

i=1

qi
(
(E(Θi))

2 (1− qi)+Var (Θi)
)
. (7)
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3.2 First Model with Consistent Correlations3384

The simplest additional assumption that is consistent with assump-3385

tion A1 is to assume that the Θi’s are mutually independent, i.e.,3386

A2(a): Θi andΘj are mutually independent for i, j = 1,2, . . . , n and i ≠ j.3387

This assumption implies that ρΘi,j = 0 for all i ≠ j. In this case, we find3388

from equation (5) that, for i ≠ j,3389

Cov(Li, Lj) = ρDi,jσ(Ii)σ(Ij)E(Θi)E(Θj))

or equivalently,

ρLi,j =
ρDi,jσ(Ii)σ(Ij)E(Θi)E(Θj))

σ(Li)σ(Lj)
(8)

From equation (7) we find now the following expression for the variance3390

of the portfolio loss is:3391

Var(L) =
n∑

i≠j

ρDi,j

√
qi(1− qi)qj(1− qj)E(Θi)E(Θj)

+
n∑

i=1

qi
(
E2(Θi)(1− qi)+Var (Θi)

)
. (9)

3.3 Second Model with Consistent Correlations3392

An alternative to assumption A2(a) is to assume that:3393

A2(b): The vector (Θ1, . . . ,Θn) is a comonotonic vector, i.e., the vector3394

(Θ1, · · · ,Θn) has the same distribution as
(
F−1
Θ1
(U), · · · , F−1

Θn
(U)

)
,3395

where U is uniformly distributed on the unit interval (0,1), and3396

F−1
Θi

is the inverse distribution function of the random variable Θi.3397

5For more on the theory of comonotonicity see Dhaene and Goovaerts (1996), Kaas et
al. (2000), and Dhaene et al. (2000a and b). The theory has been applied to a number of
important financial and actuarial problems such as pricing Asian and basket options in
a Black-Scholes model, setting provisions and required capitals in an insurance context,
and determining optimal portfolio strategies; see, for example, Albrecher et al. (2005),
Dhaene et al. (2002b), Dhaene et al. (2004), Vanduffel et al. (2002), and Vanduffel et al.
(2005).
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The assumption of comonotonicity implies that the different Θi are3398

monotonic functions of a common random variable, U .53399

One implication of comonotonicity is that3400

Cov
(
Θi,Θj

)
= Cov

(
F−1
Θi
(U), F−1

Θj
(U)

)
for all

(
i, j
)
. (10)

Note that the vectors (Θ1, · · · ,Θn) and
(
F−1
Θ1
(U), · · · , F−1

Θn
(U)

)
have the3401

same marginal distributions, so that the Θ-correlations are given by3402

ρΘi,j =
Cov

(
F−1
Θi
(U), F−1

Θj
(U)

)
√

Var (Θi)Var
(
Θj

) . (11)

It is straightforward to show that ρΘi,j = 1 for all i ≠ j implies that3403

the vector (Θ1, · · · ,Θn) is comonotonic; the reverse implication is only3404

true if there exists a random variable Y , and real constants ai > 0 and3405

−∞ < bi < ∞ such that the relation Θi
d= aiY + bi for i = 1,2, . . . , n.3406

In addition, Dhaene et al. (2000a) have proved that the comonotonicity3407

of (Θ1, , · · · ,Θn) is equivalent with the maximization of the ρΘi,j for all3408

pairs
(
Θi,Θj

)
with i ≠ j.3409

From equation (5) we find3410

Cov(Li, Lj) =
[
ρDi,jσ(Ii)σ(Ij)+ qiqj)

]
Cov

(
F−1
Θi
(U), F−1

Θj
(U)

)

+ ρDi,jσ(Ii)σ(Ij)E(Θi)E(Θj),

or equivalently

ρLi,jσ(Li)σ(Lj) =
[
ρDi,jσ(Ii)σ(Ij)+ qiqj)

]
Cov

(
F−1
Θi
(U), F−1

Θj
(U)

)

+ ρDi,jσ(Ii)σ(Ij)E(Θi)E(Θj). (12)

The variance of the portfolio loss follows from equation (7):3411

Var(L) = 2

n−1∑

i=1

n∑

j=i+1

[
ρDi,jσ(Ii)σ(Ij)+ qiqj)

]
Cov

(
F−1
Θi
(U), F−1

Θj
(U)

)

+ 2

n−1∑

i=1

n∑

j=i+1

ρDi,jσ(Ii)σ(Ij)E(Θi)E(Θj)

+
n∑

i=1

qi
(
E2(Θi)(1− qi)+Var (Θi)

)
. (13)
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Assuming that ρDi,j ≥ 0 and ρΘi,j ≥ 0 for all (i, j), we find by compar-3412

ing equations (5), (8) and (12), that:3413

ρLi,j[equation (8)] ≤ ρLi,j[equation (5)] ≤ ρLi,j[equation (12)] (14)

and also that

Var(L)[equation (8)] ≤ Var(L)[equation (5)] ≤ Var(L)[equation (12)].
(15)

3.4 An Inconsistent Correlations Model3414

When the Θi are deterministic, it is straightforward to prove that for3415

any risk pair (i, j) the loss correlation is equal to the default correlation.3416

Suppose we make the following assumption:3417

A2(c): ρLi,j = ρDi,j for all (i, j).3418

This assumption A2(c), however, leads to inconsistencies. Suppose the3419

Θi and Θj are random variables, consider this numerical example: let3420

qi = 0.001, qj = 0.01, E (Θi) = 0.8, E

(
Θj

)
= 0.2, Var (Θi) = 0.04,3421

Var
(
Θj

)
= 0.04, and ρDi,j = ρLi,j = 0.03. We find from equation (6) that3422

Var(Li) = 0.00068 and Var(Lj) = 0.00080, while from equation (5)3423

we find now that ρΘi,j = 1.669, which is in contradiction with ρΘi,j ≤ 1.3424

Hence assumptions A1 and A2(c) may lead to inconsistencies.3425

If we apply this example using assumption A2(a) instead, we find3426

from equation (8) that ρLi,j = 0.021 and not ρLi,j = 0.03, as it was the3427

case with assumption A2(c).3428

4 Final Remarks3429

The results of this paper continue to hold if we relax the assumption3430

that the Mi’s are all equal to one. For instance, assuming that ρDi,j and3431

ρΘi,j are both non-negative for all (i, j) we find that the most general3432

expression for the lower bound on the portfolio variance is given by3433
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Var(L) =
n∑

i≠j

MiMjρ
D
i,j

√
qi(1− qi)qj(1− qj)E(Θi)E(Θj)

+
n∑

i=1

M2
i qi

(
E2(Θi)(1− qi)+Var (Θi)

)
. (16)

Finally, we remark that all the results in this paper continue to hold3434

if we generalize the model to the case that the defaults (I1, · · · , In)3435

depend on some conditioning random vector (Q1, · · · ,Qn) such that3436

Qi = Pr [Ii = 1 | Qi] , which leads to3437

Pr [Ii = 1] = E (Qi) = qi. (17)

Hence, the probability of default of risk i can be interpreted as the3438

expectation of the conditioning random variable Qi in this case.3439

References3440

Albrecher, H., Dhaene, J., Goovaerts, M.J., and Schoutens, W. “Static3441

Hedging of Asian Options under Lévy Models: The Comonotonic Ap-3442

proach.” Journal of Derivatives 12, no. 3 (2005): 63–72.3443

Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current3444

Credit Risk Models.” Journal of Banking and Finance 24, no. 1–23445

(2000): 59–117.3446

Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., and Vyncke, D. “The3447

Concept of Comonotonicity in Actuarial Science and Finance: The-3448

ory.” Insurance: Mathematics and Economics 31 (2002a): 3–33.3449

Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., and Vyncke, D. “The3450

Concept of Comonotonicity in Actuarial Science and Finance: Appli-3451

cations.” Insurance: Mathematics and Economics 31 (2002b): 133–3452

161.3453

Dhaene, J. and Goovaerts, M.J. “Dependency of Risks and Stop-Loss Or-3454

der.” ASTIN Bulletin 26 (1996): 201–212.3455

Dhaene, J., Vanduffel, S., Goovaerts, M.J., Kaas, R., and Vyncke, D. “Comono-3456

tonic Approximations for Optimal Portfolio Selection Problems.” Jour-3457

nal of Risk and Insurance 72, no. 2 (2005): 253–301.3458

Gollinger, T.L. and Morgan, J.B. “Calculation of an Efficient Frontier3459

for a Commercial Loan Portfolio.” Journal of Portfolio Management3460

(1993): 39–46.3461



182 Journal of Actuarial Practice, Vol. 13, 2006

Gordy, M.B. “A Comparative Anatomy of Credit Risk Models.” Journal3462

of Banking and Finance 24, no. 1–2 (2000): 119–1493463

Hull, J. and White, A. “Valuing Credit Default Swaps II: Modeling Default3464

Correlations.” Journal of Derivatives 8, no. 3 (2001): 12–21.3465

Kaas, R., Goovaerts, M.J., Dhaene, J., Denuit, M. (2001). Modern Actu-3466

arial Risk Theory. Dordrecht, The Netherlands: Kluwer Academic3467

Publishers, pp. 328.3468

Kaas, R., Dhaene, J., and Goovaerts, M. “Upper and Lower Bounds for3469

Sums of Random Variables.” Insurance: Mathematics and Economics3470

27 (2000): 151–168.3471

Kealhofer, S. “Managing Default Risk in Derivative Portfolios.” In Deriva-3472

tive Credit Risk: Advances in Measurement and Management. Lon-3473

don, England: Risk Publications, 1995.3474

Stevenson, B.G. and Fadil, M. “Modern Portfolio Theory: Can it Work for3475

Commercial Loans?” Commercial Lending Review 10, no. 2 (1995):3476

4–12.3477

Vanduffel, S., Dhaene, J., Goovaerts, M., and Kaas, R. “The Hurdle-Race3478

Problem”, Insurance: Mathematics and Economics 33, no. 2 (2002):3479

405–413.3480

Vanduffel, S., Dhaene, J., and Goovaerts, M. “On the Evaluation of Saving-3481

Consumption Plans.”, Journal of Pension Economics and Finance 4,3482

no. 1 (2005): 17–30.3483

Wilson, T. “Portfolio Credit Risk: Part I.” Risk (September) (1997a): 111–3484

117.3485

Wilson, T. “Portfolio Credit Risk: Part II.” Risk (October) (1997a): 56–61.3486

Zhou, C. “An Analysis of Default Correlations and Multiple Defaults.”3487

Review of Financial Studies 14, no. 2 (2001): 555–576.3488


