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Consistent Assumptions for Modeling Credit Loss
Correlations
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Abstract**

We consider a single period portfolio of 1 dependent credit risks that are
subject to default during the period. We show that using stochastic loss given
default random variables in conjunction with default correlations can give rise
to an inconsistent set of assumptions for estimating the variance of the port-
folio loss. Two sets of consistent assumptions are provided, which it turns
out, also provide bounds on the variance of the portfolio’s loss. An example
of an inconsistent set of assumptions is given.
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1 Introduction

Advanced credit portfolio models such as J.P. Morgan’s CreditMetrics”
(<http://www.creditmetrics.com>), Credit Suisse Financial Products’
CreditRisk+" (<http://www.csfb.com/creditrisk>), McKinsey & Com-
pany’s CreditPortfolioView" (Wilson 1997a and b), and KMV’s Portfolio-
Manager” (Kealhofer 1995) are widely used by banks to assess the credit
default risk of their diverse loan portfolios.! Knowledge of this risk al-
lows banks to set aside capital buffers to protect them against default.
The implementation of these models is often the bank’s first step to-
ward developing what is now called an enterprise risk framework, i.e.,
a which can support consistent risk and reward management of the
whole enterprise by integrating all risk components. Indeed, the capi-
tal used by different business units within a financial enterprise may
adversely affect investment decisions and the performance of other
business units.

Despite the commercial success of the above mentioned models, De-
loitte & Touche’s 2004 global risk management survey? has shown that
many financial institutions have yet to set up such an integrated frame-
work. Instead, some financial institutions have maintained the tradi-
tional variance-covariance portfolio model for the sake of transparency
and practicality. In contrast to the credit risk models that compute the
distribution of the portfolio loss, the variance-covariance approach fo-
cuses on the computation of the mean and the variance of this loss. The
mean and variance are then linked to the required capital through a cal-
ibration on a known two-parameter distribution such as, for example,
the beta distribution.

Using the variance-covariance framework requires information on
the probability of default, exposure at default, the mean and variance
of the loss given default, and the default correlation matrix among the
various debtors. These parameters can also be found in the quanti-
tative groundings of the 2004 Basel Accord.? Before setting up that

stage the loss given default is assumed to be constant, while in the second stage it was
assumed to be stochastic.

LFor a comparison of these models see, for example, Crouhy, Galai and Mark (2000).
Gordy (2000) compares CreditMetrics” and CreditRisk+".

2Deloitte & Touche’s Global Risk Management Survey is available online at
<http://www.deloitte.com>

3See “International Convergence of Capital Measurement and Capital Standards, a
Revised Framework.” Basel Committee for Banking Supervision, 2004.

4For example, when introducing the variance-covariance framework, a well known
Belgian financial enterprise considered in inconsistent two-stage procedure. In the first
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variance-covariance framework, however, we must specify assumptions
and ensure that these assumptions are mutually consistent.*

We propose two consistent variance-covariance models. Both meth-
ods use a stochastic loss given default but but differ in their correla-
tion assumptions. The first assumes independence among the stochas-
tic loss given default they are comonotonic, meaning that they are all
monotonic functions of a common random variable. We show that these
two models are extremal in the sense that they provide bounds for the
portfolio variance.

2 Description of the Problem

Consider a single period portfolio of n dependent credit risks at the
start of the period. These risks, labeled 1, 2,...,n, can default during
the period. Fori=1,2,...,n,let

I; = Indicator random variable for the i'? risk’s default during the
period, i.e., I; = 1 if default occurs and 0 otherwise;

qi = P[I; = 1] is the probability of default for the i risk;

M; = Portfolio’s exposure at default due to the i risk, i.e., the max-
imum amount of loss on risk i given that it defaults. M; is
assumed to be a finite deterministic quantity;

©; = The loss given default random variable, which is the fraction
of M; that actually is lost given the i'" risk defaults;

L; = I;M;0; is the actual (unconditional) loss from the i'? risk’s de-
fault during the period; and

L= 3", L;is the aggregate portfolio loss from defaults.

For any pair of random variables (X, Y) with finite variance, the no-
tation p (X,Y) is used to denote its Pearson’s correlation coefficient
where

Cov (X,Y)
oX)o(Y)’

The default correlation of risk pair (i, j) is denoted by pEj where

p(X,Y) =

oo (1), 0
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where 02(I;) = qi(1 —q;i) for i = 1,2,...,n. The loss given default
correlation of the risk pair (i, j) is denoted by pf?j where

pf‘)j :p<@i,@j>. (2)

Finally, the loss correlation of risk pair (i, j) is denoted by piL‘ j where

piLJ :p<Li,LJ->. 3)

We will discuss how to construct a consistent model of correlations
pP;,pY; and pf ;. In addition, we will show that while it is of course
correct to consider ® as a random variable, the consequences of this
assumption should be carefully considered. For example, even though
loss and default correlations are the same when the ®;’s are determin-
istic, one cannot continue to assume that piL’ j = pfj for all risk pairs
(i, j) when the ©;’s are random variables.

Though a number of authors have considered methods of estimat-
ing default correlations, e.g., the theoretical models of Hull and White
(2001) and Zhou (2001), the estimates from real data that are used in
Stevenson et al (1995) and Gollinger and Morgan (1993), it appears that
much less work has been done on the more general concept of loss
correlations. We hope this paper makes a contribution to the further
understanding of loss correlations.

3 Some General Results

3.1 The Basic Assumption
Our first and most basic assumption is:

Al The default indicator random variables I; and the loss given de-
fault random variables ©; are mutually independent for any pair
iand j,i,j=1,2,...,n.

We emphasize that the mutual independence of I; and ©; is just a tech-
nical assumption because only the variable ©®; | I; = 1 is relevant. So
we can choose any distribution function for ©; | I; = 0. A convenient

choice is to assume that ®; | I; = 0 4 O; | I; = 1, where 4 stands for
equality in distribution. This is indeed a good choice, because it makes
the random variables ®; and I; mutually independent which is conve-
nient from a mathematical point of view. The assumption of mutually
independence between I; and ©; for i # j cannot be considered as a
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3374 technical assumption, rather it is a simplifying assumption. As the 0;’s
3375 are fractions of the M;’s, we can, without loss of generality, set M; = 1.
3376 Results and conclusions can easily be generalized to the case where the
3377 Mj’s are arbitrary.

3378 Two well known results from probability are: for any triplet of ran-
3379 dom variables X, Y, and Z

Cov(X,Y) =E[Cov[(X,Y) | Z]]+ Cov[E(X | Z),E(Y | Z)]
Var(L;) =Var[E(X | Z)]+E[Var (X | Z)]

3380 From assumption Al we find that

Cov (Li, L;) = E (II;) Cov (0;,0;) + E(0;,)E(®;)Cov(l;, I;)
= <(COV(Ii,Ij) + qiqj) (COV(@i,@j) + E(@l‘)]E(@j)(COV(Ii,IJ').

4)
3381 Hence,
L . N = | pP . . g 0 . .
pi,jO—(Ll)O-(LJ) = [pi,jo—(ll)o—(lj) + Q1QJ)] pi,jo-(®l)o-(®J)
+pp o (1) o (I))E(8;) E(©)). (5)
and
Var(Li) = (E(©:)° ai(1 - qi) + q;Var (0;). (6)
3382 From the derivations above, we find that a general expression for
3383 Var(L) is given by
n-1 n n
Var(L) =2 > > Cov(Li,Lj) + > Var(L;)
i=1 j=i+1 i-1
n-1 n
=2 [P0 Una L)) + aiap) | pP,0(0:1)0(8))
i=1 j=i+1
n
+ > pPo )0 (I)EO;)E(®;)
i*j
n
+ > ai ((E(©:))° (1 q:) + Var (6;)). (7)

-
Il
—
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134 3.2 First Model with Consistent Correlations

3385 The simplest additional assumption that is consistent with assump-
3386 tion Al is to assume that the ©;’s are mutually independent, i.e.,

3387 A2(a): O; and ©; are mutually independentfori, j = 1,2,...,nand i # j.
3388 This assumption implies that pf?j = 0 for all i # j. In this case, we find

3380 from equation (5) that, for i = j,

(COV(Li, LJ')

or equivalently,

pP.o (1) o (I))E(©,)E(0);))

L _
Pis = o (Lo (L)) ®

3390 From equation (7) we find now the following expression for the variance
3391 of the portfolio loss is:

var(L) = > pP\ai(1 - a)a;(1 — ;) E(©,)E(©))
i+j
+> ai (E2(©))(1 - ) + Var (6))) . )
i=1

132 3.3 Second Model with Consistent Correlations

3393 An alternative to assumption A2(a) is to assume that:

3304 A2(b): The vector (04,...,0,) is a comonotonic vector, i.e., the vector
3305 (@1, - - - ,0,) has the same distribution as (F@ll(U), ‘e ,F@jnl(U)) ,
3396 where U is uniformly distributed on the unit interval (0, 1), and
3397 F@}il is the inverse distribution function of the random variable ;.

>For more on the theory of comonotonicity see Dhaene and Goovaerts (1996), Kaas et
al. (2000), and Dhaene et al. (2000a and b). The theory has been applied to a number of
important financial and actuarial problems such as pricing Asian and basket options in
a Black-Scholes model, setting provisions and required capitals in an insurance context,
and determining optimal portfolio strategies; see, for example, Albrecher et al. (2005),
Dhaene et al. (2002b), Dhaene et al. (2004), Vanduffel et al. (2002), and Vanduffel et al.
(2005).
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The assumption of comonotonicity implies that the different ®; are
monotonic functions of a common random variable, U.>
One implication of comonotonicity is that
Cov (;,0;) = Cov (F3! (U),F5! (U)) forall (i, j). (10)

Note that the vectors (01, - - - ,©,) and (F(gll(U), e ,ng(U)) have the
same marginal distributions, so that the ©-correlations are given by

0 _
Pij =

Cov (F@}il(U),F@},l(U)) (11)
JVar @) var (0;)

It is straightforward to show that pl@j =1 for all i + j implies that
the vector (©4, - - - ,0;) is comonotonic; the reverse implication is only
true if there exists a random variable Y, and real constants a; > 0 and

—o0 < b; < oo such that the relation ©; 4 a;Y + b;fori=1,2,...,n.
In addition, Dhaene et al. (2000a) have proved that the comonotom’city
of (®4,,- -+ ,0y,) is equivalent with the maximization of the p - for all

pairs (@i,@j) with i # j.
From equation (5) we find

Cov(LiLy) = [p20 ()0 (1)) + aiap] Cov (Fs! (U), Fy ! (U))
4 pi’j()'(li)O'(Ij)E(@i)E(@j)’

or equivalently

o(Li)o(Ly) = [pPo U)o ;) + aia)) | Cov (F! (U), Fg(U))
+pPio (I o (I))E(0,)E(0)). (12)

The variance of the portfolio loss follows from equation (7):
n-1 n
Varil) =2 3 Z [p{?ja(mouj) + i) | Cov (Fo (U), Fo ! ()
Z Dio)o(I)E©,)E©;)

ai (E2(®i)(1 — qi) + Var (). (13)
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Assuming that pf- > 0 and pgj > 0 for all (i, j), we find by compar-
ing equations (5), (8) and (12), that:

pi jlequation (8)] < p; [equation (5)] < pf ;[equation (12)] (14)

and also that

Var(L)[equation (8)] < Var(L)[equation (5)] < Var(L)[equation (12)].
(15)

3.4 An Inconsistent Correlations Model

When the ©; are deterministic, it is straightforward to prove that for
any risk pair (i, j) the loss correlation is equal to the default correlation.
Suppose we make the following assumption:

318 A2(C): piL’j = pfj for all (i, j).
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This assumption A2(c), however, leads to inconsistencies. Suppose the
0; and ©; are random variables, consider this numerical example: let

ai = 0.001, q; = 0.01, E(®;) = 0.8, E(0;) = 0.2, Var (8;) = 0.04,

Var (@j) = 0.04, and p?; = pf; = 0.03. We find from equation (6) that
Var(L;) = 0.00068 and Var(Lj) = 0.00080, while from equation (5)
we find now that p?; = 1.669, which is in contradiction with pp; < 1.
Hence assumptions Al and A2(c) may lead to inconsistencies.

If we apply this example using assumption A2(a) instead, we find
from equation (8) that pf; = 0.021 and not pf; = 0.03, as it was the
case with assumption A2(c).

4 Final Remarks

The results of this paper continue to hold if we relax the assumption
that the M;’s are all equal to one. For instance, assuming that pfj and

pfj are both non-negative for all (i, j) we find that the most general
expression for the lower bound on the portfolio variance is given by
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Var(L) = > MiMjpPnJai(1 - ana;(1 - a)E(©,)E(©))

i#j

n
+ > MZq; (E2(0)(1 - q;) + Var (6))) . (16)
i=1
Finally, we remark that all the results in this paper continue to hold
if we generalize the model to the case that the defaults (I1,--- ,Iy)

depend on some conditioning random vector (Q,- - - ,Qy) such that
Qi =Pr[I; =11 Q;], which leads to

Pril; = 1] = E(Qi) = qi. (17)

Hence, the probability of default of risk i can be interpreted as the
expectation of the conditioning random variable Q; in this case.
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