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Abstract

In the actuarial literature, several exact and approximative recursive methods
have been proposed for calculating the distribution of a sum of mutually indepen-
dent compound Bernoulli distributed random variables. In this paper, we give an
overview of these methods. We compare their performance with the straightfor-
ward convolution technique by counting the number of dot operations involved in
each method. It turns out that in many practicle situations, the recursive methods
outperform the convolution method.

1 Introduction

In the individual risk theory model, the aggregate claims of an insurance portfolio over a
certain reference period, e.g. 1 year, is modelled as the sum of the claims produced by
the individual policies, see e.g. Kaas et al. (2001). Suppose that the claim amounts of
the individual policies involved are random variables with a support that is a subset of
the non-negative integers and with a strictly positive probability of no claims. Further,
assume that the claim amounts of the policies involved are mutually independent. The
distribution of the aggregate claims can then be determined by convolution. As this tech-
nique is often time-consuming, given the large number of terms in the sum, approximate
techniques to calculate quantities such as probabilities and stop-loss premiums have been
proposed in the literature, see e.g. Bowers et al. (1997) or Kaas et al. (2001). These
techniques are mainly based on fitting moments of the distribution.

Alternatively, several exact and approximate recursive procedures for computing the
aggregate claims distribution in the individual risk model have been proposed in the
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actuarial literature, see De Pril (1988), (1989), Dhaene & De Pril (1994), Dhaene & Sundt
(1997, 1998), Dhaene & Vandebroek (1995), Hipp (1985), (1986) and Kornya (1983).
Recursions for stop-loss premiums in the individual risk model have been derived by
Dhaene, Willmot & Sundt (1999).

In the framework of the individual risk model, the case where the individual claim
amounts have only two possible outcomes, 0 and some strictly positive value, has been
called the individual life model because of its straightforward application in life insurance.
Recursions for this particular case have been derived in De Pril (1986) and Waldmann
(1994). A recursion for the number of policies in the portfolio that lead to a strictly
positive claim amount has been derived by White & Greville (1959). Most of the recur-
sions that have been derived for the general individual risk model can be considered as
generalizations of this early result.

In this paper, we give an overview of the actuarial literature on recursive methods for
the computation of aggregate claims distributions within the framework of the individual
risk model. Furthermore some new results are obtained in this setting by comparing the
different exact and approximative recursions with respect to the straightforward convolu-
tion method.

The recursions in this paper can be considered as the equivalent in the individual
risk theory model of the many recursions that have been developed for the collective risk
model, starting with the seminal papers of Panjer (1981) and Sundt & Jewell (1981).
A general framework for recursions of both the individual and collective risk models is
introduced and explored in Sundt (1995), (1998), (2000a) and Sundt, Dhaene & De Pril
(1998). An extended survey of the literature on recursive evaluation of aggregate claims
distributions is given in Sundt (2002).

2 Exact recursions for the individual risk model

2.1 Notations

Consider a portfolio of n policies whose claim amounts are mutually independent. This
portfolio is divided into a number of classes by clustering all policies with the same
probability of a strictly positive claim amount and with the same severity distribution,
as is displayed in the next table. The severity distribution of a policy corresponds to the
conditional distribution of the claim amount, given that a claim has occurred.

claim probability
q1 q2 · · · qj · · · qb

g1(x)
g2(x) · · ·

claim · · ·
amount gi(x) · · · nij

distribution · · ·
ga(x)
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The class (i, j), i = 1, . . . , a, j = 1, . . . , b, contains all policies with severity distribution
gi and claim probability qj = 1− pj. The number of policies in class (i, j) is denoted by
nij. It is assumed that for each j, 0 < qj < 1 and that the claim amounts of the individual
policies are positive integer representing multiples of some convenient monetary unit, so
that for each i, gi(x) is defined for x = 1, 2, . . . .

The probability that the aggregate claims S equal s, i.e. Pr [S = s], is denoted by
p(s). For the computation of the probabilities p (s) several computation techniques can
be used. We start by presenting the traditional convolution method for the individual
risk model.

Let Xijk denote the random claim amount of the k-th policy belonging to the class
(i, j) , k = 1, ..., nij . Then the distribution of Xijk can be represented by the matrix

(
0 1 2 ... x ...
pj qj gi(1) qj gi(2) ... qj gi(x) ...

)
, i = 1, . . . , a, j = 1, . . . , b, (1)

where the first row describes the possible outcomes of the random variable and the second
row gives the corresponding probabilities.

The aggregate claims S can be written as

S =
a∑

i=1

b∑

j=1

nij∑

k=1

Xijk.

Denoting hij (x) = Pr [Xijk = x], the probabilities of S follow from

p (x) =
a
∗
i=1

b
∗
j=1

h
∗nij
ij (x) ,

where ∗ denotes the convolution operation:

(f ∗ g) (x) =
x∑

y=0

f (x− y) g (y) , (2)

and where h
∗nij
ij stands for the nij-fold convolution of hij.

In the remainder of Section 2, we will consider exact recursive procedures for determin-
ing the aggregate claims distribution. In Section 3, we will investigate several approximate
recursive methods.

2.2 De Pril’s recursion.

One possible way to derive an exact recursion is to introduce coefficients t(x) which are
defined by

lnP (u) =
∞∑

x=0

t(x) ux, (3)
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with P (u) being the probability generating function of the aggregate claims S,

P (u) =
∞∑

s=0

p(s) us =
a∏

i=1

b∏

j=1

[pj + qjGi(u)]
nij , (4)

and where Gi(u) is the probability generating function of the severity of a particular risk
of class (i, j):

Gi (u) =
∞∑

x=1

gi (x) ux. (5)

Equation (3) gives rise to the following relation:

u
d

du
ln

(
∞∑

x=0

p(x) ux

)

=
∞∑

x=0

x t(x) ux. (6)

Equating the coefficients of the same power of u in (6), we find the following recursion for
the probabilities p(s) in terms of the coefficients t (x):

p(0) = et(0), (7)

s p(s) =
s∑

x=1

x t(x) p(s− x), s = 1, 2, . . . .

In this way, the problem of computing the probabilities p (s) can be solved by deriving
explicit expressions for the coefficients t (x). In order to derive these expressions, observe
that lnP (u) can be expanded as

lnP (u) =
a∑

i=1

b∑

j=1

nij

[
ln pj + ln

(
1 +

qj
pj

Gi (u)

)]

=
a∑

i=1

b∑

j=1

nij

[

ln pj +
∞∑

k=1

(−1)k+1

k

(
qj
pj

)k
Gk
i (u)

]

,

so that it can be written in the form (3), with coefficients t (x) given by

t (0) =
a∑

i=1

b∑

j=1

nij ln pj = ln p(0), (8)

t (x) =
a∑

i=1

x∑

k=1

A (i, k) g∗ki (x) , x = 1, 2, . . . ,

where, as before, g∗ki denotes the k-fold convolution of gi, and the A(i, k) are defined by

A(i, k) =
(−1)k+1

k

b∑

j=1

nij

(
qj
pj

)k
. (9)
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Inserting the t(x)-values in (7) leads to an exact recursive formula for the evaluation of
the aggregate claims distribution in the individual model:

p(s) =
1

s

a∑

i=1

s∑

k=1

A(i, k)
s∑

x=k

x g∗ki (x) p(s− x), s = 1, 2, . . . , (10)

with initial value p(0) given by

p(0) =
a∏

i=1

b∏

j=1

(pj)
nij . (11)

This recursion was derived by De Pril (1989) and is now commonly known in actuarial
circles as ’De Pril’s recursion’. In some sense, it can be considered as the twin brother of
Panjer’s (1981) recursion in the collective model.

2.3 Other exact recursions.

In Dhaene & Vandebroek (1995) the following recursion for computing the probabilities
p (s) in the individual risk model is proposed:

p(s) =
1

s

a∑

i=1

b∑

j=1

nij vij(s), s = 1, 2, . . . , (12)

with initial value given by (11) and where the coefficients vij(s) are determined by

vij(s) =
qj
pj

s∑

x=1

gi(x) [x p(s− x)− vij(s− x)] , s = 1, 2, . . . (13)

and vij(s) = 0 otherwise.
In order to derive this recursive formula, consider the probability generating function

of the aggregate claims given in (4).Taking the derivative of (4) gives rise to

P ′ (u) = P (u)
a∑

i=1

b∑

j=1

nij
qjG

′
i (u)

pj + qjGi (u)
.

Since

G′
i (u) =

∞∑

x=1

x gi (x) ux−1 =
∞∑

x=0

(x+ 1) gi (x+ 1) ux,

we have that

P ′ (u) =
a∑

i=1

b∑

j=1

nijVij (u) , (14)
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where the auxiliary functions Vij (u) are defined by

Vij (u) =
qjG

′
i (u)P (u)

pj + qjGi (u)
=

∞∑

x=0

vij (x+ 1) ux. (15)

The following relations hold for the derivatives of order t, with t = 1, 2, . . . ,

P (t) (0) = t! pS (t) ,

V
(t)

ij (0) = t! vij (t+ 1) .

Hence, taking the derivative of order s− 1 of (14), taking into account Leibnitz’s formula
and letting u = 0 leads immediately to formula (12).

The recursion formula (13) for the vij (s) is obtained by taking according to Leib-
nitz formula the derivative of order s − 1 of the following relation, which follows from
rearranging (15):

Vij (u) =
qj
pj
(G′

i (u)P (u)−Gi (u)Vij (u)) ,

and letting u = 0. This completes the proof of the recursive formula of Dhaene &
Vandebroek (1995).

Alternatively, De Pril (1989) proposed the following exact recursive formula:

p(s) =
1

s

a∑

i=1

b∑

j=1

nij

s∑

x=1

wij (x) p(s− x), s = 1, 2, . . . , (16)

with initial value given by (11) and where the coefficients wij (x) are given by

wij (x) =
qj
pj

(

x gi (x)−
x∑

k=1

gi (k)wij (x− k)

)

, x = 1, 2, . . . (17)

and wij (x) = 0 elsewhere.
In order to obtain this recursion, define

Wij (u) =
Vij (u)

P (u)
,

where the Vij (u) are the auxiliary functions defined in (15). Hence,

Wij (u) =
qj G′

i (u)

pj + qjGi (u)
=

∞∑

x=0

wij (x+ 1) ux.

Proceeding as above, we find the recursions in (16) and (17).
Dhaene & Vandebroek (1995) compare the performance of both exact procedures in

(16), (17) and (12), (13). They conclude that their algorithm is more efficient than De
Pril’s method as to the number of multiplications to be carried out in case the portfolio
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is not too heterogeneous. For very heterogeneous portfolios De Pril’s method will have to
be preferred.

In the following examples, we consider some special cases of the general individual risk
model.

Example 1. Consider a life coverage with double indemnity provision providing a death
benefit which is doubled when death is caused by an accident. The conditional claim
amounts distribution is then given by

gi(x) =






1− α x = i
α x = 2i
0 elsewhere

, (18)

so that the aggregate claims distribution can be computed by (12) and (13) with

vij(s) =
qj
pj
{(1− α) [i p(s− i)− vij(s− i)] + α [2 i p(s− 2i)− vij(s− 2i)]} . (19)

Example 2. Consider a portfolio with all the policies having identical claim probability
distributions. In this case, we can omit the indices i and j in qj, pj and gi(x). Furthermore,
the aggregate claims have a compound binomial distribution. We obtain from (12) and
(13):

p(s) =
q

p

s∑

x=1

g(x)

[
(n+ 1) x

s
− 1

]
p(s− x), s = 1, 2, . . . , (20)

with initial value given by
p(0) = pn. (21)

This recursion is a special case of the recursion of Panjer (1981), see also De Pril (1986).

2.4 The individual life model

The individual life model is obtained from the general individual risk model considered
above by choosing

gi(x) = δci,x, i = 1, 2, . . . a, (22)

with ci the amount-at-risk of the policies in row i and where δa,b = 1 if a = b and 0
otherwise.

In this case, since g∗ki (x) = δk ci,x the recursion in (10) reduces to

p(s) =
1

s

a∑

i=1

[s/ci]∑

k=1

a(i, k) p(s− k ci), s = 1, 2, . . . , (23)

with

a(i, k) = (−1)k+1 ci

b∑

j=1

nij

(
qj
pj

)k
, (24)
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where [a] is the largest integer smaller than or equal to a, and where
∑n

l=m equals 0 if m
exceeds n. This recursion was first derived in De Pril (1986).

In the individual life model, the coefficients vij(s) in (13) reduce to

vij(s) =
qj
pj
[ci p(s− ci)− vij(s− ci)] , s = 1, 2, . . . (25)

and the recursion in (12) and (25) is due to Waldmann (1994). Waldmann obtains his
results by a rearrangement of the recursive scheme of De Pril (1986) and shows that his
exact recursive scheme is more efficient than the original algorithm of De Pril.

Recursions for the number of policies that lead to a strictly positive claim amount are
obtained from (23) and (25) by setting all ci equal to 1. In this case, the recursion of De
Pril (1986) given in (23) reduces to the recursion of White & Greville (1959).

3 Approximate recursions

3.1 The r-th order approximations

The problem of computing the probabilities p(s) numerically is not always solved satisfac-
tory by deriving an explicit expression for the coefficients t(x) as defined in (3). This will
only be the case if the t(x) can easily be computed, as in the individual life model. In case
these coefficients are too difficult to work with, it is of interest to consider approximative
methods. Following the ideas of De Pril (1988), (1989) and Dhaene & De Pril (1994),
approximations f(s) of the probabilities p(s) are set up by replacing the exact coefficients
t(x) in the recursion (7) by easier computable values h(x).

For a given choice of the coefficients h(x) and of the starting value f(0), approximations
f(s) of p(s) are thus determined by the recursion

f(s) =
1

s

s∑

x=1

x h(x) f(s− x), s = 1, 2, . . . . (26)

Hereafter, we introduce the coefficients h (x) that lead to the approximative recursive
methods for the individual model proposed by De Pril (1989), Hipp (1986) and Kornya
(1983). The approximate algorithms perform well in case all claim probabilities qj are
sufficiently small, more precisely if qj < 1

2
, j = 1, 2, . . . , b, which will be assumed in the

sequel.
Remark that for each of the methods the approximations f(s) can be negative for some
values of s so that they are not necessarily probabilities anymore.
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The approximations of De Pril. De Pril (1989) proposed the ’r-th order approxima-

tions’ f (r)(s) for the ’exact probabilities’ p(s) by omitting in (10) all terms in
(
qj
pj

)r+1
and

higher. This leads to the following recursion:

f (r)(s) =
1

s

a∑

i=1

min(r,s)∑

k=1

A(i, k)
s∑

x=k

x g∗ki (x) f
(r)(s− x) for s = 1, 2, . . . , (27)

with starting value f (r)(0) = p(0). This recursion is of the form (26) with

h(r) (0) = t (0) =
a∑

i=1

b∑

j=1

nij ln pj, (28)

h(r) (x) =
a∑

i=1

min(r,x)∑

k=1

(−1)k+1

k

b∑

j=1

nij

(
qj
pj

)k
g∗ki (x) , x = 1, 2, . . . .

Observe that the r-th order approximations f (r) (s) in (27) are exact for the first r values.

The approximations of Kornya. The initial value p(0) = et(0) with t(0) defined in (8)
can also be written as

p(0) = exp

(
a∑

i=1

b∑

j=1

nij

∞∑

k=1

(−1)k

k

(
qj
pj

)k)

. (29)

Kornya (1983) proposes the same recursion as in (27), but with an alternative initial value
f (r)(0) which is defined by restricting the summation over k in (29) to a summation over
all k values smaller than or equal to r, with r some positive integer. Given r, the exact
value p(0) is thus approximated by

f (r)(0) = exp

(
a∑

i=1

b∑

j=1

nij

r∑

k=1

(−1)k

k

(
qj
pj

)k)

, (30)

In this way, an approximative recursion of the form (26) is obtained with

h(r) (0) =
a∑

i=1

b∑

j=1

nij

r∑

k=1

(−1)k

k

(
qj
pj

)k
, (31)

h(r) (x) =
a∑

i=1

min(r,x)∑

k=1

(−1)k+1

k

b∑

j=1

nij

(
qj
pj

)k
g∗ki (x) , x = 1, 2, . . . .

This recursion was developed in two stages. The first stage is given in Kornya (1983),
where the special case of the individual life model is considered. The generalization to
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arbitrary positive claims can be found in Hipp (1986). One can easily prove that the
approximations f (r)(s) of Kornya sum up to 1.

The approximations of Hipp. Hipp (1986) defines alternate approximate recursions
for the individual model which are also of the form (26). The starting point is to write
lnP (u) as

lnP (u) =

a∑

i=1

b∑

j=1

nij ln (1 + qj (Gi (u)− 1)) =
a∑

i=1

b∑

j=1

nij

∞∑

k=1

(−1)k+1

k
qkj (Gi (u)− 1)

k

=
a∑

i=1

b∑

j=1

nij

∞∑

k=1

(−1)k+1

k
qkj

k∑

l=0

(−1)l+1

(−1)k+1

(
k

l

)
(Gi (u))

l .

This expansion is of the form (3), with coefficients t (x) given by

t (0) = −
a∑

i=1

b∑

j=1

nij

∞∑

k=1

qkj
k
, (32)

t (x) =
a∑

i=1

b∑

j=1

nij

x∑

k=1

k∑

l=1

(−1)l+1

k

(
k

l

)
qkj g∗li (x) , x = 1, 2, . . . ,

Let r be some positive integer. Hipp’s r-th order approximations is defined by restricting
the summations over k in (32) to summations over all k values smaller than or equal to
r, with r some positive integer. The recursion that arises is of the form (26) with

h(r) (0) = −
a∑

i=1

b∑

j=1

nij

r∑

k=1

qkj
k
, (33)

h(r) (x) =
a∑

i=1

b∑

j=1

nij

min(r,x)∑

k=1

k∑

l=1

(−1)l+1

k

(
k

l

)
qkj g∗li (x) , x = 1, 2, . . . .

Hipp’s approximations require more computation time but have the advantage that the
r-th order approximation leads to ’exact moments’ up to order r, see Dhaene, Sundt &
De Pril (1996).

3.2 Compound Poisson approximations

Alternatively, approximative recursive formulas for the computation of the aggregate
claims distribution can be obtained by replacing the individual model by a collective
model and using the recursion of Panjer (1981) to evaluate the associated compound dis-
tributions, see e.g. Bühlmann, Gagliardi, Gerber & Straub (1977), Gerber (1984), Hipp
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(1985), Michel (1987), Hipp & Michel (1990) and Kuon, Radtke & Reich (1993). An
overview and extensions of these results are presented in De Pril & Dhaene (1992).

A key problem to obtain a good fit between the individual and the collective model
is the choice of the distribution of the number of claims and of the claims amounts. A
common approximation for the individual risk model, is to replace the distribution of
the claim amounts of each policy in class (i, j) by a compound Poisson distribution with
parameter λj and severity distribution gi. From the independence assumption, it follows
that the aggregate claims S is then approximated by a compound Poisson distribution
with parameter

λ =

a∑

i=1

b∑

j=1

nij λj, (34)

and severity distribution g given by

g(x) =

∑a
i=1

∑b
j=1 nij λj gi(x)

λ
, x = 1, 2, . . . , (35)

see e.g. Gerber (1984), Hipp (1985) and De Pril & Dhaene (1992). Denoting the approx-
imation for p(s) by f cP (s) in this particular case, we find from Panjer’s (1981) formula
that the approximated probabilities can be computed from the recursion

f cP (s) =
1

s

s∑

x=1

x
a∑

i=1

b∑

j=1

nij λj gi(x) f
cP (s− x) for s = 1, 2, . . . , (36)

with starting value f cP (0) = e−λ. This recursion is of the form (26) with

h (0) = −λ,

h (x) = λg(x), x = 1, 2, . . .

The most common choice for the parameters is λj = qj which guarantees that the exact
and the approximate distribution have the same expectation. This approximation, which
is often referred to as the compound Poisson approximation is identical to the first-order
approximation of Hipp (1986).

In case the Poisson parameters λj are chosen as

λj =
qj
pj

, j = 1, 2, . . . , b, (37)

the recursion in (36) corresponds with the first-order approximation of Kornya (1983).

3.3 Error bounds

As is stated in Kaas (1993), several kinds of error have to be considered when computing
the aggregate claims distribution. A first type of error results from rounding the possible
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claim amounts of the policies to some monetary unit, e.g. $ 1000. A second type of error
arises if the assumption of independence is violated. Computing the aggregate claims
distribution of the portfolio generates a third type of error if this computation is done
approximately. Hereafter, we only consider this third type of error.

For any of the approximative methods as explained in the previous subsection, let
f (r) (s) be the r-th order approximation of p (s). In Dhaene & De Pril (1994), the following
result is derived which gives a quantitative measure to assess the quality of the f (r) (s) as
approximations of the p (s).
If there exists a real number ε (r) > 0 such that

∞∑

x=0

∣∣t(x)− h(r)(x)
∣∣ ≤ ε (r) , (38)

then the following error bound holds:

∞∑

s=0

∣∣p(s)− f (r)(s)
∣∣ ≤ eε(r) − 1. (39)

Furthermore, Dhaene & De Pril (1994) consider approximating stop-loss premiums by
means of the approximated probabilities f (r) (s) and derive related error bounds. Starting
from the expression

Π(d) = E
[
(S − d)+

]
=

d∑

s=0

(d− s) p(s) + E [S]− d, for d = 0, 1, . . . , (40)

for the stop-loss premium with retention d, they propose to approximate Π(d) by Π(r)(d)
which is given by

Π(r)(d) =
d∑

s=0

(d− s) f (r)(s) + E [S]− d, for d = 0, 1, . . . . (41)

Assuming that ε (r) < ln 2, with ε (r) defined as before, they prove the following error
bound related to this approximation:

∣∣Π(d)− Π(r)(d)
∣∣ ≤

eε(r) − 1

2− eε(r)
(
Π(r)(d) + d− E [S]

)
, (42)

Error bounds related to probabilities and stop-loss premiums for De Pril’s, as well as
Kornya’s and Hipp’s approximations follow easily from (39) and (42) . For each method,
the key quantities ε (r) needed to compute these error bounds are deduced hereafter. In
the sequel, we introduce the subscripts P , K and H to distinguish between the methods
of De Pril, Kornya and Hipp.
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Error bounds for De Pril’s approximations. De Pril’s r-th order approximations
f (r) (s) in (27) are exact for the first r values. Hence, from (8) and (28) we find

∞∑

x=0

∣∣t(x)− h(r)(x)
∣∣ ≤

∞∑

x=r+1

a∑

i=1

b∑

j=1

nij

x∑

k=r+1

∣∣∣∣∣
(−1)k+1

k

(
qj
pj

)k
g∗ki (x)

∣∣∣∣∣

≤
1

r + 1

∞∑

x=r+1

a∑

i=1

b∑

j=1

nij

x∑

k=r+1

(
qj
pj

)k
g∗ki (x)

=
1

r + 1

a∑

i=1

b∑

j=1

nij

∞∑

k=r+1

(
qj
pj

)k ∞∑

x=k

g∗ki (x)

=
1

r + 1

a∑

i=1

b∑

j=1

nij
pj

pj − qj

(
qj
pj

)r+1
= εP (r) . (43)

Error bounds for Kornya’s approximations. From (8) and (31) it follows that

∣∣t(0)− h(r)(0)
∣∣ ≤

a∑

i=1

b∑

j=1

nij

∣∣∣∣∣

∞∑

k=r+1

1

k

(
−

qj
pj

)k∣∣∣∣∣
≤

a∑

i=1

b∑

j=1

nij pj
r + 1

(
qj
pj

)r+1
,

and by proceeding as above

∞∑

x=1

∣∣t(x)− h(r)(x)
∣∣ =

∞∑

x=r+1

a∑

i=1

b∑

j=1

nij

x∑

k=r+1

∣∣∣∣∣
(−1)k+1

k

(
qj
pj

)k
g∗ki (x)

∣∣∣∣∣

≤
1

r + 1

a∑

i=1

b∑

j=1

nij
pj

pj − qj

(
qj
pj

)r+1
.

Hence, for Kornya’s approximation, we find

εK (r) =
1

r + 1

a∑

i=1

b∑

j=1

nij

(
pj +

pj
pj − qj

)(
qj
pj

)r+1
. (44)

Error bounds for Hipp’s approximations. From (32) and (33) one has

∞∑

x=0

∣∣t(x)− h(r)(x)
∣∣ ≤

∞∑

x=0

a∑

i=1

b∑

j=1

nij

∞∑

k=r+1

k∑

l=0

∣∣∣∣∣
(−1)l+1

k

(
k

l

)
qkj g∗li (x)

∣∣∣∣∣

≤
∞∑

x=0

a∑

i=1

b∑

j=1

nij

∞∑

k=r+1

k∑

l=0

1

k

(
k

l

)
qkj g∗li (x)

=
a∑

i=1

b∑

j=1

nij

∞∑

k=r+1

1

k
(2qj)

k ≤
1

r + 1

a∑

i=1

b∑

j=1

nij
(2qj)

r+1

pj − qj
= εH (r) .

(45)
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From this result, we immediately find the following error bound for the compound Poisson
approximation:

∞∑

s=0

∣∣p(s)− f cP (s)
∣∣ ≤ exp

(
1

2

a∑

i=1

b∑

j=1

nij
(2qj)

2

pj − qj

)

− 1. (46)

Alternative error bounds for the general class of compound Poisson approximations de-
fined by (36) are considered in Gerber (1984), see also De Pril & Dhaene (1992). For the
compound Poisson approximation they deduce the following bound:

∞∑

s=0

∣∣p(s)− f cP (s)
∣∣ ≤

1

2

a∑

i=1

b∑

j=1

nij (qj)
2 ,

which is sharper than the bound given in (46). Unfortunately, the method used there
to derive error bounds is specific for compound Poisson distributions and can not be
generalized to the general type of approximations considered in this section.

4 Computational aspects

The efficiency of the different exact and approximate recursions presented in this paper,
in terms of the number of computations required and the size of the array of the data to
be kept, has been investigated partly in Dhaene & Vandebroek (1995). They conclude
that if an exact recursive method is required, Dhaene-Vandebroek’s recursion (12)-(13)
will be the optimal choice if the portfolio is not too heterogeneous. In most practical
cases however, an ’r-th order approximation’ will be the best choice. From the theoretical
error bounds for the r-th order approximations obtained in the previous section, but also
from numerical examples, see Vandebroek & De Pril (1988), it follows that in practical
situations, with values of the claim probabilities qj smaller than 1

2
, the approximations for

the probabilities converge very quickly to their respective exact values, so that a choice
of r equal to 3, 4 or 5 will give almost exact results.
From (43), (44) and (45) it follows that

εP (r) < εK (r) < εH (r) ,

so that De Pril’s approximative probabilities f (r) (s) give rise to smaller error bounds
than the approximations proposed by Kornya and Hipp. Since the computational effort is
about the same in the three cases, preference should be given to De Pril’s approximations.
It is important to note however that the method with the smallest error bound will not
always be the best approximation as is illustrated in an example in Kornya (2004).
A comparison of the compound Poisson approximation with De Pril’s, Kornya’s and Hipp’s
methods is given in Kuon, Reich & Reimers (1987).

In this section, we will complement the results obtained in Dhaene & Vandebroek
(1995) by considering computational aspects of the recursive scheme (12)-(13), of De
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Pril’s approximative formula (27) and also of the straightforward convolution technique
(2) for the individual risk model. We will compare these three alternative methods.
The comparison is based on the number of dot operations (multiplications and divisions)
involved by each method, as dot operations are in general more time-consuming than
summations or subtractions. For each of the three algorithms, we will count the number
of dot operations to be carried out for computing p (0) , p (1) , . . . , p (s) for s sufficiently
large. These comparisons may give an idea of which method is most efficient.

As pointed out by Kaas (1993) and Sundt & Dickson (2000), one should be aware
that there are also other aspects (e.g. storage, stability etc.) that should be taken into
account when choosing an algorithm. Some computational aspects of recursive formulas
concerning numerical stability have been investigated in Panjer & Wang (1993), (1995).

Depending on the support of the gi, the number of dot operations required by a
particular algorithm can be significantly different. This is why we will consider two
situations in the remainder of this section. First, we will consider the case that for
any i, the severity function gi(x) has an unbounded support. Next, we will consider the
individual life model as described in Section 2.4.

4.1 Unbounded severity distributions

In this subsection, we will assume that gi (x) > 0 for all x ≥ 1 and for all i = 1, . . . , a.

4.1.1 The convolution method

Notice that in order to evaluate the distribution function of S up to value s, all the
formulas involved can be stopped at s. We start by counting the dot operations required
for the evaluation of the probability functions (1) of all Xijk. Since for all i = 1, . . . , a
and j = 1, . . . , b, we only need the values pj , qjgi(1), ..., qjgi(s), this leads to exactly abs
dot operations.

Considering the particularities of the convolution method, we evaluate p in two steps:

1. Evaluate each h
∗nij
ij .

2. Evaluate p =
a
∗
i=1

b
∗
j=1

h
∗nij
ij .

In the first step we have to evaluate convolutions of higher order, which can be done
in several ways, see e.g. Sundt & Dickson (2000). In the second step we have to evaluate
the convolution of different distributions.

Step 1. Sundt & Dickson (2000) present the following optimal strategy to evaluate a
generic f∗u by strictly convolution:

15



1. First consider the following binary representation of u :

u = 2k(u) +

k(u)−1∑

i=0

2ibui,

where k (u) is a positive integer and bui ∈ {0, 1} for i = 0, ..., k (u)− 1;

2. Evaluate f ∗2
i

= f ∗2
i−1
∗ f ∗2

i−1
for i = 1, ..., k (u) ;

3. Finally, evaluate f∗u = f ∗2
k(u)
∗

(
∗

{i:bui=1}
f ∗2

i

)
.

Assuming that u is a power of two, i.e. u = 2k(u), applying the above strategy to
evaluate f ∗u (0) , ..., f ∗u (s) will require k (u) (s+ 2)2 /4 dot operations if s is even, and
k (u) (s2 + 4s+ 3) /4 dot operations if s is odd, see Sundt & Dickson (2000).

A natural assumption is that all nij > 1. In order to prove that convolutions are
generally more time consuming, we will consider the "best scenario", that is we assume
that nij = 2

lij , where lij is a positive integer for all i, j, and we also assume that s is odd.
Then all h

∗nij
ij (0) , ..., h

∗nij
ij (s) will involve

s2 + 4s+ 3

4

∑

i,j

lij =
s2 + 4s+ 3

4
log2

(
∏

i,j

nij

)

dot operations.

Step 2. For distinct f and g, formula (2) involves x+1 dot operations. For x = 0, ..., s
this gives a total of

1 + 2 + ...+ (s+ 1) =
(s+ 1) (s+ 2)

2
dot operations. (47)

Hence, evaluating p =
a
∗
i=1

b
∗
j=1

h
∗nij
ij requires

(ab− 1) (s+ 1) (s+ 2)

2
dot operations.

Adding this number to the number of dot operations counted for step 1 and to abs dot
operations from the evaluation of all hij, we get a total number of dot operations equal
to

(ab− 1) (s2 + 3s+ 2)

2
+

s2 + 4s+ 3

4
log2

(
∏

i,j

nij

)

+ abs =

[
1

4
log2

(
∏

i,j

nij

)

+
ab− 1

2

]

s2 +

[

log2

(
∏

i,j

nij

)

+
5ab− 3

2

]

s+
3

4
log2

(
∏

i,j

nij

)

+ ab− 1.

(48)
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4.1.2 The Dhaene-Vandebroek recursion

Let us now count the number of dot operations involved in the recursion described in (12)
and (13).

As can be seen from (12), calculating a single value of p (x) requires ab+ 1 dot oper-
ations, so that determining p (1) , ..., p (s) require (ab+ 1) s dot operations.

For a fixed s, formula (13) leads to 2s+ 1 dot operations. As we have to perform this
for i = 1, ..., a, j = 1, ..., b, i.e. ab times, we find a total of ab (2s+ 1) dot operations. We
also need to evaluate vij(1), ..., vij(s), which requires

∑s
i=1 ab(2i + 1) = ab [s (s+ 1) + s]

dot operations. Notice that we also have to evaluate qj/pj for each j, which totally gives
b dot operations.

Combining these figures, we can conclude that the Dhaene-Vandebroek algorithm
involves

s (ab+ 1) + ab [s (s+ 1) + s] + b = abs2 + (3ab+ 1) s + b (49)

dot operations.

4.1.3 De Pril’s r-th order approximation

Finally, we consider the number of dot operations involved in De Pril’s r-th order approx-
imation (27). We assume that r is sufficiently small such that r < s.

Starting with the convolutions g∗ki (x) in (27), we see that we need all the convolutions
from g∗2i (2) till g∗ri (s), i = 1, ..., a. Since gi (x) is defined for x ≥ 1, we notice that

g∗ki (y) =

y−k+1∑

x=1

g
∗(k−1)
i (y − x)gi (x) , k = 2, ..., y, (50)

because we must have that y − x ≥ k − 1. Hence determining g∗ki (y) requires y − k + 1
dot operations. Summing over y and k, we obtain a total number of dot operations given
by

r∑

k=2

s∑

y=k

(y − k + 1) =
r∑

k=2

s−k+1∑

z=1

z =
r∑

k=2

(s− k + 1) (s− k + 2)

2
=

r−1∑

j=1

(s− j) (s− j + 1)

2

=
1

2

[(
s2 + s

)
(r − 1) +

(r − 1) r (2r − 1)

6
− (2s + 1)

(r − 1) r

2

]

=
r − 1

2

[
s2 − (r − 1) s+

(r − 2) r

3

]
.

Considering now i = 1, ..., a, we obtain a total of
a (r − 1)

2

[
s2 − (r − 1) s+

(r − 2) r

3

]

dot operations. Since we need high order convolutions for the same distribution function,
we could apply the more efficient technique presented in Section 8 of Sundt & Dickson
(2000). However, since r is small, the difference will not be that important.
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Since the evaluation of the A(i, k) does not involve s, we neglect it for the moment.
Let us now consider the calculation of the f (r) as given by (27). In order to reduce the

number of dot operations, we rewrite (27) as

f (r)(y) =
1

y

y∑

x=1

f (r)(y − x)x

min(r,x,y)∑

k=1

a∑

i=1

A(i, k) g∗ki (x) =
1

y

y∑

x=1

ϕf(r) (x) f
(r) (y − x) , (51)

where

ϕf(r) (x) = x
a∑

i=1

min(r,x)∑

k=1

A (i, k) g∗ki (x) .

Since we need f (r) up to value s, we see that one should first evaluate all ϕf (r) (1) , ..., ϕf(r) (s)
separately. This implies two cases:

1. In case x < r, we have that ϕf(r)(x) needs a single dot operation from the multipli-
cation with x and ax operations for the products in the double sum.

2. In case x ≥ r, we have that ϕf (r)(x) needs one dot operation from the multiplication
with x and ar operations for the products in the double sum.

Calculating ϕf (r) (1) , ..., ϕf(r) (s) will then require

r−1∑

x=1

(ax+ 1) +
s∑

x=r

(ar + 1) = a
(r − 1) r

2
+ r − 1 + (ar + 1) (s− r + 1)

= (ar + 1) s−
ar

2
(r − 1)

dot operations. We also see from (51) that a single f (r)(y) involves y + 1 dot operations,

so that f (r)(1), ..., f (r)(s) will add
∑s

y=1 (y + 1) =
s (s+ 1)

2
+s to the number above. This

gives rise to a total of
1

2
s2 +

(
ar +

5

2

)
s−

ar

2
(r − 1)

dot operations. Finally, we have to add the dot operations for the evaluation of the
convolutions g∗ki . Hence, for the r-th order De Pril approximation we need a total amount
of dot operations given by

a (r − 1)

2

[
s2 − (r − 1) s+

(r − 2) r

3

]
+
1

2
s2 +

(
ar +

5

2

)
s−

ar

2
(r − 1)

=
a (r − 1) + 1

2
s2 +

[(

r −
(r − 1)2

2

)

a+
5

2

]

s+
ar (r − 1) (r − 5)

6
. (52)

Here, we should add about abr dot operations for the evaluation of the A(i, k), i =
1, ..., a, k = 1, ..., r and b for evaluating qj/pj for each j.
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4.1.4 Conclusions for the unbounded case

The results in the previous subsections indicate that the evaluation of the distribution
function of S up to value s requires a number of dot operations depending on s2 for all
three algorithms. We will now compare the three methods, mainly based on comparing
the respective coefficients of s2.

Notice that for the convolution method, we will consider the number of dot operations
(48) related with the ’best scenario’ as explained earlier.

Since the algorithm of De Pril is in fact an approximative one, whereas the two others
are exact, we will indicate for what values of r De Pril’s approximation method requires
less dot operations than the exact methods.

1. Convolutions versus Dhaene-Vandebroek. Taking into consideration (49) and
(48), it is easy to see that the Dhaene-Vandebroek algorithm requires less dot op-
erations when

∏

i,j

nij > 4ab+1. This inequality indicates that for a fixed number

of classes, i.e. for a fixed value of a and b, increasing the number of members in
the different classes will lead to a better performance of the Dhaene-Vandebroek
algorithm, relative to the convolution method. This implies that a sufficient level of
homogeneity in the portfolio, in the sense that n is large compared to ab, improves
the performance of the Dhaene-Vandebroek algorithm. This conclusion could be
expected from (12) and (13) which indicate that the Dhaene-Vandebroek method
benefits from having several members in one cell, while this is not the case for the
convolution method.

2. Convolutions versus De Pril. From (48) and (52) we can conclude that De
Pril performs better compared to the straightforward convolution method provided

r ≤ b + 1 −
2

a
+
1

2a
log2

(
∏

i,j

nij

)

. For r sufficiently small, this condition will be

satisfied.

3. Dhaene-Vandebroek versus De Pril. Comparing (49) and (52), we see that
De Pril performs better when r ≤ 2b + 1 − a−1, which will be satisfied when r is
sufficiently small. This supports the conclusion of Dhaene & Vandebroek (1995).

We can conclude that under reasonable assumptions (i.e. for n large enough), when
evaluating the distribution function, the convolution method will require a larger number
of dot operations than the other two methods.

4.2 The individual life model

Next, we consider the individual life model (22) presented in Section 2.2. Let ni+ =
b∑

j=1

nij

be the number of policies with severity distribution gi. Since gi is only strictly positive
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for a single value ci, i = 1, ..., a, we have that s can only take values between 0 and c+,

where c+ =
a∑

i=1

cini+.

Depending on the particular values of the ci, it is possible for the aggregate claims
probabilities to be zero for some values between 0 and c+. This may give rise to a reduction
of the required number of dot operations. However, we will not take into account this
reduction. Hence, we will count the number of operations as if p was non-zero for all values
in {0, , 1, 2, ..., c+}. In particular, this will be the case when all ci equal 1. Further, we
will also restrict to the case when s = c+. Hence, we will count the dot operations needed
to evaluate the entire aggregate claims distribution.

4.2.1 The convolution method

In order to determine p, we will use the optimal method as described in Section 4.1.1.
Hence, consider a generic function h defined on {0, c, ...,mc}. In order to evaluate h∗2 (0),
h∗2 (c), ..., h∗2 (2mc), we need all the products h (xc) h (yc) for 0 ≤ x ≤ y ≤ m. This
gives rise to a number of dot operations equal to

m∑

y=0

(y + 1) =
(m+ 1) (m+ 2)

2
.

Let us now assume that f is defined on the support {0, c}. In order to evaluate f ∗u (0) , f ∗u (c) , ...,
f ∗u (cu), where u = 2l, and using the relation f ∗2

i

= f ∗2
i−1
∗f∗2

i−1
, i = 1, ..., l, as in Section

4.1.1, we find that the number of required dot operations is given by

l∑

i=1

(2i−1 + 1) (2i−1 + 2)

2
=

l∑

i=1

4i−1 + 3 · 2i−1

2
+ l =

4l − 1

6
+
3
(
2l − 1

)

2
+ l

=
u2

6
+
3u

2
+ log2 u−

5

3
.

Applying this result to all h
∗nij
ij (0), h

∗nij
ij (ci), ..., h

∗nij
ij (cinij), i = 1, ..., a, j = 1, ..., b, we

obtain a minimum number of dot operations given by

1

6

a∑

i=1

b∑

j=1

n2ij +
3

2
n+ log2

(
∏

i,j

nij

)

−
5

3
ab.

We still have to count the required dot operations for determining p =
a
∗
i=1

b
∗
j=1

h
∗nij
ij . For

two generic probability functions f and g, where f is defined on {0, 1, ..., n1} and g on
{0, c, ..., cn2}, we have that the evaluation of (f ∗ g) (0), ..., (f ∗ g) (n1 + cn2) will involve
all the products f (x) g (cy), x = 0, ..., n1, y = 0, ..., n2. This will require (n1 + 1) (n2 + 1)
dot operations. Applying this reasoning to p, we find that

a∑

i=1

b∑

j=1

(nij + 1)

(

c1n1+ + ...+ ci−1ni−1+ + ci

j−1∑

k=1

nik + 1

)

− (n11 + 1)
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dot operations are required. Adding this number to the number of operations obtained
above, the total number of dot operations is found to be

a∑

i=1

b∑

j=1

n2ij
6
+
3n

2
+log2

(
∏

i,j

nij

)

−
5ab

3
+

a∑

i=1

b∑

j=1

(nij + 1)

(
i−1∑

k=1

cknk+ + ci

j−1∑

k=1

nik + 1

)

−n11−1.

(53)
The value (53) is minimal when a = 1 and c1 = 1. We will restrict to this case in the
remainder of this subsection. In order to simplify the notations, we denote n1j by nj for
any j = 1, ..., b. Then, (53) reduces to

1

6

b∑

j=1

n2j +
∑

1≤k<i≤b

nink +
b∑

i=2

i−1∑

k=1

nk +
5

2
n− n1 + log2

(
b∏

i=1

ni

)

−
2

3
b− 1 (54)

=
1

6
n2 +

5

2
n+

2

3

∑

1≤k<i≤b

nink +
b∑

i=2

i−1∑

k=1

nk + log2

(
b∏

i=1

ni

)

− n1 −
2

3
b− 1.

4.2.2 The Dhaene-Vandebroek recursion

We start counting the number of dot operations by considering formula (12), which has
to be performed for s = 1, 2, ..., c+. This leads to (1 + ab) c+ dot operations.

For fixed values of i and j, formula (25) has to be performed for s = ci, ci + 1, ..., c+.
This leads to 2 (c+ − ci + 1) dot operations. For all i = 1, ..., a, j = 1, ..., b, we obtain a
total of

2b
a∑

i=1

(c+ − ci + 1) = 2abc+ − 2b
a∑

i=1

ci + 2ab

dot operations. The total number of dot operations required for the Dhaene-Vandebroek
recursion for the individual life model is then given by

(1 + 3ab) c+ − 2b
a∑

i=1

ci + 2ab+ b, (55)

where the evaluation of qj/pj for each j, leads to additional number of b dot operations.
In the particular case when a = 1 and c1 = 1, we notice that c+ = n1+ = n, and (55)

reduces to
(1 + 3b)n+ b. (56)

4.2.3 De Pril’s r-th order approximation

For the individual risk model, the r-th order recursion (23) reduces to

p(s) =
1

s

a∑

i=1

min{r,[s/ci]}∑

k=1

a(i, k) p(s− kci), s = 1, 2, . . . , c+, (57)
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with a (i, k) given in (24).
Starting with the evaluation of qj/pj for each j and of all a(i, k), a total number of

about b + ab + abr dot operations will be required. For a fixed i, the number of dot
operations involved in the second sum of (57) depends on the value of s. In particular, we
find:

1. For 1 ≤ s < ci, the second sum is
∑0

k=1 = 0.

2. For each s, ci ≤ s < 2ci, the second sum is
∑1

k=1, hence one dot operation.

3. For each s, 2ci ≤ s < 3ci, the second sum is
∑2

k=1, hence 2 dot operations.

...

4. For each s, rci ≤ s ≤ c+, the second sum is
∑r

k=1, hence r dot operations.

Then, for a fixed i, the second sum in (57) requires

ci + 2ci + ...+ (r − 1) ci + r (c+ − rci + 1) =
r (r − 1)

2
ci + rc+ + r (1− rci)

dot operations. Summing for all i = 1, ..., a, this gives rise to

arc+ +

[
r (r − 1)

2
− r2

] a∑

i=1

ci + ar

dot operations. In addition, we have c+ more dot operation from the multiplications with
1/s.

We can conclude that calculating all p (s), s = 1, 2, . . . , c+, will involve a number of
dot operations equal to

(1 + ar) c+ −
r (r + 1)

2

a∑

i=1

ci + ar (1 + b) + (a+ 1) b. (58)

In the special case that a = 1 and c1 = 1, this relation reduces to

(1 + r)n−
r (r + 1)

2
+ r (1 + b) + 2b. (59)

4.2.4 Conclusions for the individual life model

From (53), (55) and (58) we see that for n sufficiently large, the number of required
dot operations in the convolution method is the largest since (53) depends on n2, while

the other relations only depend on c+ =
a∑

i=1

cini+. We can can conclude that when the

number of policies involved is large enough, the convolution method will require more dot
operations than any of the other methods.
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Comparing (55) and (58), we have that the number of dot operations required by
the Dhaene-Vandebroek recursion for the individual life model is larger than the number
required by De Pril’s r-th order method if

(1 + 3ab) c+ − 2b
a∑

i=1

ci + 2ab+ b > (1 + ar) c+ −
r (r + 1)

2

a∑

i=1

ci + ar (1 + b) + (a+ 1) b,

which is equivalent to

(3b− r) ac+ −

[
2b−

r (r + 1)

2

] a∑

i=1

ci > ar (1 + b)− ab. (60)

Rewriting c+ as

c+ =
a∑

i=1

cini+ =
a∑

i=1

ci +
a∑

i=1

ci (ni+ − 1) ,

the condition (60) becomes

(3b− r) a
a∑

i=1

ci+(3b− r) a
a∑

i=1

ci (ni+ − 1)−

[
2b−

r (r + 1)

2

] a∑

i=1

ci−a [r + b (r − 1)] > 0,

or, equivalently,

[
(3b− r) a− 2b+

r (r + 1)

2

] a∑

i=1

ci +

[

(3b− r)
a∑

i=1

ci (ni+ − 1)− r − b (r − 1)

]

a > 0.

(61)
A sufficient condition for this inequality to hold is that each term in (61) is positive. The
first term is positive when

(3b− r) a− 2b+
r (r + 1)

2
> 0⇔ 2b (3a− 2) > r (2a− r − 1) .

As 2a− r − 1 < 3a− 2 always holds, a sufficient condition is that r < 2b.
Further, since r < 2b implies r < 3b, we have that the second term of (61) is positive for
n sufficiently large.

To conclude, the condition r < 2b implies that the r-th order approximation method
of De Pril outperforms the Dhaene-Vandebroek algorithm.

We will now have a closer look at the particular case a = 1, c1 = 1. The following
comparison is approximative.

1. Convolutions versus Dhaene-Vandebroek. In order to compare both meth-
ods, in (54) and (56), we only retain the terms in n and n2.We find that Dhaene-
Vandebroek is to be preferred in case 1

6
n2 + 5

2
n > (1 + 3b)n, or equivalently,

18b < n+ 9.

This condition will be satisfied for large n.
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2. Convolutions versus De Pril. Only retaining the terms in n and n2, from (54)
and (59), we find that De Pril’s r-th order method outperforms the direct convolu-
tion method in case 1

6
n2 + 5

2
n > (1 + r)n or

r <
n+ 9

6
.

This condition will also be satisfied for large n.

3. Dhaene-Vandebroek versus De Pril. From (56) and (59), we see that De Pril
requires less dot operations than Dhaene-Vandebroek if

(1 + r)n−
r (r + 1)

2
+ r (1 + b) + 2b < (1 + 3b)n+ b,

or, equivalently,

(r + 1) b−
r (r − 1)

2
< (3b− r)n.

A sufficient condition for this to hold is that r < 3b.

5 Final remarks

In this paper, we presented and compared several exact and approximative recursive
methods that have been presented in the actuarial literature for calculating the aggregate
claims distribution in the individual risk model. We complemented the work of Dhaene &
Vandebroek (1995) by comparing the number of dot operations involved in each method.

The general conclusion is that if an exact procedure is required, the Dhaene-Vandebroek
algorithm will have to be preferred over straightforward convolution in case the portfolio
is not too heterogenous, in the sense that the number of policies n is large compared to the
number of cells ab. The reason is that the former algorithm benefits from having different
policies in the same class (i, j) while this is not the case for the convolution method.

When an approximative method is allowed, De Pril’s r-th order method will have to
be preferred, provided r is sufficiently small. Notice, that from a computational point of
view De Pril’s first order method is equivalent with a compound Poisson approximation
for the individual risk model.

The one-dimensional recursions and error bounds presented in this paper can be gener-
alized to the multivariate case arising from introducing multivariate severities, see Sundt
(2000b).

A central assumption we made in this paper is that mutual independence of the claims
related to the different policies in the portfolio. This assumption is relaxed in Ribas,
Marín-Solano & Alegre (2003), where bivariate dependencies are taken into account.
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