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Na het invoeren van de nieuwe boekhoudstandaarden (IFRS), althans voor 
het beursgenoteerde verzekeringsbedrijf, dienen straks in heel Europa de 
verzekeraars zich voor hun prudentiele controle te schikken naar de nieuwe 
Solvency 2 standaarden.  
 
Deze ontwikkelingen hebben als gemeenschappelijke noemer dat de 
buitenwereld, in de eerste plaats toezicht- , aandeel- en polishouders, een 
veel beter inzicht zullen én moeten krijgen in de verschillende risico’s die een 
verzekeraar loopt en de manier waarop deze beheerd worden.  
 
Het is daarom geen verrrassing te noemen dat de CEO’s van 
verzekeringsondernemingen, al dan niet van harte, ‘risk measurement’ en 
‘risk management’ hoog op de agenda hebben gezet: het zijn gouden tijden 
voor econometristen, actuarissen en andere risk professionals. 
 
Er rijzen uiteraard een aantal fundamentele en practische vragen ivm het 
voeren van een goed ‘risicobeleid’ en ook de academische wereld speelt 
volop in op het stringente streven naar een betere definiëring, quantificatie en 
beheersing van de risico’s. 
 
In het bestek van dit artikel zullen we een aantal recente ontwikkelingen en 
beschouwingen uit de actuariele wetenschappen aanhalen die een 
hulpmiddel bieden om met een aantal van deze topics om te gaan .  
 
De stuwende kracht van IFRS… 
 
De aandeelhouder van een verzekeraar heeft altijd al aan de 
boekhoudkundige rapportering van de maatschappij en meer bepaald aan de 
winst en verlies rekening alsook de ‘statement of cash-flows’ een belangrijk 
instrument gehad om de performantie van zijn investering van nabij op te 
volgen. 
 
Daar waar een verzekeraar tot voor kort nog verschillende ‘smoothing’ 
mechanismen kon gebruiken om het niveau en, hetgeen misschien nog 
belangrijker is, de volatiliteit  van de balansposten en de winst- en verlies 
rekening te sturen, heeft IFRS ervoor gezorgd dat de boekhouding meer dan 
ooit aansluiting zoekt bij  de economische werkelijkheid.  
 
Aangezien de economische omgeving voortdurend in beweging is, gedreven 
door veranderingen in financiële en sociaal-economische risicofactoren, zal, 
indien er geen actie wordt ondernomen om de risico’s te beheren, de 
volatiliteit van de jaarlijks gerapporteerde winsten en  balansgegevens  enorm 
toenemen.  
 



Deze volatiliteit weegt op de markperceptie en -waardering van de 
verzekeraar en het is dus uiterst belangrijk dat de verzekeraar deze volatilitiet 
goed beheert. 
 
 

…En deze van Solvency 2. 

Door het invoeren van Solvency 2 gaan de toezichthouders en alle andere 
belanghebbenden straks veel meer inzicht krijgen in de solvabiliteitspositie 
van verzekeraars en kunnen deze ook beter vergeleken worden met elkaar. 
 
Bovendien dient de verzekeraar zijn toezichthouder ervan te overtuigen dat hij 
zijn risico’s adequaat meet en beheert. Indien de toezichthouder de 
risicobeheersing onvoldoende vindt, kan hij eisen dat extra kapitaal wordt 
aangehouden. 
 
Het is zonneklaar dat de invoering van deze nieuwe regelgeving inzake 
kapitaalsvereisten de verzekeraar een bijkomende dwingende incentive geeft 
om zijn risico’s in kaart te brengen, te meten en vervolgens ook efficient te 
beheren.  
 
 
Actuariaat en het meten van risico’s. 
 
Actuarissen zijn door de aard van hun beroep uiteraard begaan met het 
begrip risico en de verschillende maatstaven i.e. de risicomaten. die gebruikt 
worden voor het meten ervan.  
 
Dergelijke risicomaten zijn een erg waardevol hulpmiddel in het hele 
beslissingsgebeuren. Ze vatten immers alle informatie over het risico X 
samen in één enkel getal ρ[X] en bestaan al van oudsher in het actuariaat,  
o.m. bij het bepalen van premieprincipes, het aanleggen van provisies of nog 
het bepalen van solvabiliteitsmarges.  
 
We merken op dat de idees van IFRS en Solvency 2 ook neerkomen op het 
samenballen van informatie over risico’s in telkens een getal, i.e. de 
riscomaat.  Het hoeft daarom geen verwondering te wekken dat in aanloop 
van deze recente iniatieven de studie van risicomaten een hernieuwe 
belangstelling kreeg: We verwijzen de geïnteresseerde lezer naar werk van 
Goovaerts, De Vylder & Haezendonck (1984) of meer recentelijk naar Denuit 
et al (2005).  
 
Eigenschappen waaraan risicomaten vaak worden getoest zijn monotonie, 
positieve homogeniteit, translatie-invariantie, subadditiviteit, superadditiviteit 
en additiviteit. Ze worden gedefinieerd als volgt: 
 
 
o Monotonie: Als elke realisatie van het risico X kleiner is dan deze van Y, 

i.e. X ≤ Y, dan volgt hieruit dat ρ[X] ≤ ρ[X]. 



o Positieve homogeniteit: Voor elk risico X en elke constante a >0 heeft men 
dat ρ[aX]=aρ[X]. 

 
o Translatie invariantie: Voor elk risico X en elke constante b heeft men dat 

ρ[X+b]=ρ[X]+b. 
 
o Subadditiviteit: Voor risico’s X & Y heeft men dat ρ[X+Y] ≤ ρ[X]+ρ[Y]. 
 

o Superadditiviteit: Voor risico’s X & Y heeft men dat ρ[X+Y] ≥ ρ[X]+ρ[Y]. 
 
o Additiviteit: Voor onafhankelijke risico’s X & Y heeft men dat ρ[X+Y] = 

ρ[X]+ρ[Y]. 
 
 
We merken op dat sommige collega-onderzoekers menen dat risicomaten 
altijd aan de eerste vier genoemde eigenschappen dienen te voldoen, m.a.w 
dat deze eigenschappen axioma’s dienen te zijn.  
 
 
Risicometing en het gebruik van Value at Risk 
 
We menen echter dat de ‘juistheid’ van een risicomaat geen absoluut 
gegeven is maar veeleer afhangt van de precieze doelstelling – pricing, 
solvabiliteit, reservering,... – waarvoor ze gebruikt wordt.  
 
Het is a priori sowieso al niet erg redelijk om aan te nemen dat dergelijk 
verschillende en complexe vraagstukken steeds zouden passen in steeds 
eenzelfde  set van slechts enkele axioma’s.  
 
Illustratief in dit verband is dat de zogenaamde Value-at-Risk risicomaat, die 
met verre voorsprong de meest gebruikte risicomaat in het risk management 
gebeuren is,  niet subadditief is en dus volgens velen ‘niet bruikbaar’.  
 
Voor de meer technisch georienteerde lezer herhalen we eerst nog even dat 
voor een gegeven betrouwbaarheidsinterval p, de Value-at-Risk geassocieerd 
aan een risico X en genoteerd als VaRp(X), formeel gedefineerd wordt als: 
 
VaRp[X] = inf{x, Prob([X≤x]≥p}        (1) 
 
De VaR geeft m.a.w. ruwweg aan hoeveel men maximaal kan verliezen 
binnen een gegeven betrouwbaarheidsinterval en het is niet zo moeilijk om 
aan te tonen dat VaR niet subadditief is. 
 
Met betrekking tot het dominante practische gebruik ervan in de industrie kan 
men alvast een goede practische reden hiervoor aanhalen: het betreft immers 
een relatief eenvoudig concept dat doorheen de verschillende gelederingen 
van een verzekeringsmaatschappij kan begrepen worden met bijhorende 
gunstige invlioed op de acceptatie ervan.  
 



Daarnaast menen we echter dat, tenminste inzake het bepalen van 
solvabiliteit, er ook ruimte is voor een theoretische onderbouwing van de VaR.  
 
Solvabiliteit weerspiegelt de financiële capaciteit van verzekeraars om aan 
haar toekomstige verplichtingen over een bepaalde periode? te voldoen in de 
eerste plaats de polishouders die in ruil voor het betalen van premies de 
belofte hebben gekregen dat ze later, bij het voorvallen van de verzekerde 
gebeurtenis, financieel vergoed zullen worden.  
 
De toezichthouder zal met het oog op de bescherming van de polishouders 
(en andere schuldeisers) een minimum vereist kapitaal, zeg ρ[X] , moeten 
aanleggen waarbij X bijvoorbeeld de stochast is die de mogelijke 
economische waarde en de kans hierop van het actief min het passief 
weerspiegelt op het einde van de éénjarige projectiehorizon. 
 
De toezichthouder is hierbij vooral en in de eerste plaats geinteresseerd in het  
(residueel) shortfall risico R dat de polishouders lopen en dat formeel 
gedefineerd kan worden als:  
 
R = Max(X- ρ[X],0)          (2) 
 
In principe wil de toezichthouder dat R zo klein mogelijk is, of beter nog dat de 
risicomaat die hij gebruikt om R te meten zo klein mogelijk wordt. Het is 
duidelijk dat, indien men aanvaardt dat meer kapitaal tot meer veiligheid leidt, 
het risico geassocieerd aan R minimaal gemaakt wordt door door ρ[X] 
maximaal te maken.  
 
Anderzijds zal indien de verzekeraar werkelijk een excessief kapitaal dient 
aan te houden de bijhorende kost ervan uiteindelijk ook op één of andere 
manier doorgerekend worden aan de polishouders. 
 
De toezichthouder kan het aanhouden van ‘te veel’ kapitaal vermijden door de 
kost ervan mee expliciet af te wegen. Meer specifiek zou hij de 
kapitaalsvereiste,  K, kunnen bepalen als zijnde het getal ρ[X] waarvoor de 
volgende kostenfunctie C geminimaliseerd wordt: 
  
 
C= E[Max(X-ρ[X], 0] +ρ[X]*i.        (3) 
 
Waarbij E de wiskundige notatie voor een verwactingswaarde voorstelt en ‘i’ 
de aangerekende kost per eenheid van risico-kapitaal -weerspiegelt . 
 
Het is niet moeilijk om aan te tonen dat de optimale kapitaalsvereiste K = 
VaRp(X)  
 
Bovenstaande argumentatie rechtvaardigt tot op zekere hoogte het gebruik 
van Value-at-Risk voor het bepalen van solvabiliteitsvereisten.  
Merk echter op dat we hier niet trachten te argumenteren dat Value-at-Risk 
‘altijd’ gebruikt kan worden maar wel dat het verschijnt als een optimale 



oplossing, onder bepaalde assumpties, voor het specifieke probleem van het 
bepalen van de solvabilitieit.  
 
Risicometing en het stochastisch verdisconteren van toekomstige cash 
flows 
 
Vele financiële vraagstukken komen er ultiem op neer dat toekomstige cash 
flows stochastisch verdisconteerd of opgerent worden en dat er vervolgens 
een risicomaat van de som van deze waarden moet bepaald worden, maw 
dat we een risicmaat moeten nemen van volgend type som S:. 
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waarbij Yi de toekomstige betaling op tijdstip i betreft (al dan niet stochastisch) 
en Xi de gecumuleerde stochastische verdisconteringsfactor is over de 
periode [0,i] (of de oprentingsfactor over de periode [i,n] in geval van 
oprenting). 
 
Indien we de betalingen Yi  deterministisch nemen en de Xi als zijnde 
stochastische oprentingsfactoren dan hebben we inderdaad precies de setting 
die nodig is voor de waardering van Aziatische of Basket opties. Onder de 
afwezigheid van arbitragemogelijkheden kan men vervolgens argumenteren 
dat de prijs ,afgezien van een constate factor, neerkomt op het bepalen van 
een verwachtingswaarde (in dit geval de risicomaat) van (een stop-loss 
transformatie van) S (gebruikmakende van zogenaamde risiconeutrale 
kansen).  
 
Merk op dat onder IFRS de accounting principieel gebeurt volgens deze 
prijsprincipes zodat het beschouwen van dergelijke S niet alleen voor pure 
pricing doeleinden maar ook voor de IFRS boekhoudstandaarden practische 
relevant is.  
 
Anderzijds zal ook de bepaling van het wettelijk vereist kapitaal volgens de 
nieuwe Solvency 2 standaarden zich herleiden tot het bepalen van de 
gepaste risicomaat voor kansvariabelen S: Hierbij zullen de Xi de 
stochastische verdisconteringsfactoren voorstellen. 
 
Een actuariële techniek als hulpmiddel: Comonotonie 
 
De moeilijkheidsgraad van het evalueren van risicomaten geassocieerd aan S 
is dat men niet dient om te gaan met één kansvariabele maar met een som 
van meerdere afhankelijke kansvariabelen en dat dus ook de 
afhankelijkheidsstructuur tussen de verschillende risico’s moet in rekening 
gebracht worden.. 
 
Er bestaan in de financiële wereld vaak wel bevredigende methodes om de 
individuele kansvariabelen Xi en Yi accuraat te beschrijven. Het moeilijke punt 
is de afhankelijkheidsstructuur tussen de verschillende Xi en Yi vaak té 



complex is om in kaart te kunnen brengen, ofwel dat deze wel beschreven 
kan worden, maar niet toelaat om het probleem ook rekentechnisch efficiënt 
op te kunnen lossen: Comonotonie biedt een hulpmiddel om hiermee om te 
gaan. 
 
 
Comonotonie aan de hand van een sprekend voorbeeld: 
pensioensparen. 
 
We zullen de idee en de kracht van “comonotonie” uitleggen aan de hand van 
een sprekend voorbeeld. Dezelfde idee kan echter ook toegepast worden bij 
de pricing van meer complexe afgeleide producten (zoals Aziatische & Basket 
opties) en geeft ook een snelle en accurate manier om om te gaan met 
solvabiliteitsvereisen volgens Solvency 2. 
 
Beschouwen we het probleem waarbij een 25-jarige jaarlijks een bedrag 
spaart voor zijn pensioen en waarbij hij zoekt naar de voor hem optimale 
beleggingsstrategie, bijvoorbeeld degene die hem met de grootste kans een 
jaarlijks rendement van, laat ons zeggen, 5% oplevert. 
  
De opgerente waarde (op pensioenleeftijd 65 jaar) van zijn jaarlijkse 
betalingen, van bijvoorbeeld 1000 Euro elk, die telkens belegd worden in een 
beleggingsfonds, kan uitgedrukt worden als een som S = X1+X2+...+ X39+X40  

waarbij elke individuele kansvariabele Xi nu de onzekere waarde beschrijft 

van een belegging van 1000 Euro die aanvangt binnen i−1 jaar en eindigt na 
precies 40 jaar. 
  
Het punt hierbij is niet zozeer het accuraat beschrijven van de individuele 
kansvariabelen Xi en de afhankelijkheden ertussen. Het is inderdaad zo dat 
voor dergelijke langetermijn-problematiek de veronderstelling van 
lognormaliteit voor de Xi’s alsook het gebruik van een (Pearson) 
correlatiematrix voor het beschrijven van de afhankelijkheidsstructuur goed 
onderbouwd kan worden.  
 
De moeilijkheid waaraan we dank zij comonotonie het hoofd kunnen bieden is 
dat de som S niet goed kan beschreven worden omdat de 
afhankelijkheidsstructuur tussen de opeenvolgende Xi, zelfs al is deze bekend 
zoals hier, toch té ingewikkeld is om de som S rekentechnisch efficiënt te 
kunnen beschrijven. 
  
Het basisidee van comonotoniciteit is de observatie dat indien 1000 Euro 
belegd tussen nu en 40 jaar een positieve return genereert, het 
“waarschijnlijk” is dat ook de andere returns positief zijn, met andere woorden 
dat de Xi’s de sterke neiging hebben om in “dezelfde richting” te bewegen.   
 
 
Een eerste comonotone benadering... 
 
De eerste comonotone benadering bestaat er in om deze “neiging tot het 
samen stijgen of samen dalen van de Xi”, i.e. het “common monotonic” 



karakter, wiskundig uit te buiten door op te leggen dat de risico’s áltijd in 
dezelfde richting bewegen. 
  
Eigenlijk betekent dit, dat als we één Xi kunnen beschrijven, en dat kunnen 
we zoals hierboven beschreven, we dan vanzelf ook de som S= X1+X2+...+ 
X39+X40 redelijk goed kunnen beschrijven, of anders gezegd, comonotonie 
reduceert een (vaak te) ingewikkeld n-dimensionaal probleem tot een 
oplosbaar één-dimensionaal probleem. 
 
Het gebruik van de nieuwe comonotone som, genoteerd met Sc, die de 
originele som S vervangt, heeft dus eerst en vooral het zeer belangrijke 
voordeel dat de meeste risicomaten, zoals bijvoorbeeld de kwantielen, zeer 
eenvoudig en analytisch bepaald kunnen worden en men dus geen beroep 
hoeft te doen op tijdrovende simulaties.  
 
...en een “best-practice” comonotone benadering. 
 
Het heeft ook zin om de exacte som S te vervangen door een andere 
kansvariable Sl, die verkregen wordt door alle originele risico’s Xi te 
vervangen door de conditionele verwachtingswaarde van de Xi met betrekking 

tot een conditioneringsvariabele, genoteerd door E(Xi|Λ). In dit geval ontstaat 
door deze in-se projectietechniek meestal ook een comonotone som, waarvan 
opnieuw de verschillende relevante grootheden eenvoudig bepaald kunnen 
worden. 
 
Uitgebreide numerieke testen hebben echter uitgewezen dat de risicomaten 
van Sl praktisch gezien niet onderscheiden kunnen worden van de exacte (via 
uitgebreide simulaties verkregen) risicomaten van de originele variabele S,  
 
 
Om het verhaal van pensioenprobleem af te maken, heeft bovenstaande als 
gevolg dat dankzij de comonotone techniek het praktisch kinderspel wordt om 
alle beleggingsmixen af te gaan en diegene te bepalen waarvoor de som 
X1+X2+...+X39+X40  zodanig is dat de kans om 5% rendement te halen 
maximaal wordt.  
 
Met elke hedendaagse laptop zijn deze antwoorden binnen enkele seconden 
te vinden.  Het goede nieuws is daarmee nog niet helemaal afgelopen. Het is 
immers zo dat de berekeningen niet alleen duizelingwekkend snel verlopen: 
ze zijn ook erg precies, zelfs zo precies dat een doorgedreven simulatie 
practisch gesproken geen enkel verschil aan het licht brengt. 
 
Conclusie 
 
In dit artikel geven we aan dat IFRS en Solvency 2 stuwende krachten zijn 
voor het voeren van een doordacht risk management beleid. We brachten dit 
vervolgens in verband met enkele recente ontwikkelingen binnen Actuariële 
Wetenschappen. 
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