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Abstract

In the Lee-Carter framework, future survival probabilities are random variables with an in-
tricate distribution function. In large homogeneous portfolios of life annuities, Value-at-Risk
or Conditional Tail Expectation of the total yearly payout of the company are approximately
equal to the corresponding quantities involving random survival probabilities. This paper
aims to derive some bounds in the increasing convex (or stop-loss) sense on these random
survival probabilities. These bounds are obtained with the help of comonotonic upper and
lower bounds on sums of correlated random variables.
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1 Introduction and Motivation

During the 20th century, the human mortality globally declined. These mortality improve-
ments pose a challenge for the planning of public retirement systems as well as for the private
life annuities business. When long-term living benefits are concerned, the calculation of ex-
pected present values (for pricing or reserving) requires an appropriate mortality projection
in order to avoid underestimation of future costs. Actuaries have therefore to resort to
life tables including a forecast of the future trends of mortality (the so-called projected life
tables).

Different approaches for building projected life tables have been developed so far; see e.g.,
Piracco (2004) and WoNG-Fupuy & HABERMAN (2004) for a review. LEE & CARTER
(1992) proposed a simple model for describing the secular change in mortality as a function
of a single time index. The main statistical tool of LEE & CARTER (1992) is least-squares
estimation via singular value decomposition of the matrix of the log age-specific observed
forces of mortality together with Box-Jenkins modelling for time series. For a review of
recent applications of the Lee-Carter methodology, we refer the interested readers to LEE
(2000).

The future lifetimes are all influenced by the same time index in the Lee-Carter frame-
work. Since the future path of this index is unknown and modelled as a stochastic process,
the policyholders’ lifetimes become dependent on each other. When the Lee-Carter model
applies, life annuity present values are correlated random variables, contrarily to the stan-
dard actuarial assumptions. Consequently, the risk does not disappear as the size of the
portfolio increases: there always remains some systematic risk, that cannot be diversified,
whatever the number of policies. This unexpected feature of the Lee-Carter model has been
studied in DENUIT & FROSTIG (2005).

This paper aims to apply the concept of comonotonicity (reviewed in details by DHAENE
ET AL. (2002a,b)) to obtain approximations for stochastic survival probabilities in the Lee-
Carter framework. The main contribution of this paper is that it provides a new application
of the concept of comonotonicity, which deviates away from the natural financial applications
of this theory (see, e.g., DHAENE ET AL. (2005) and VANDUFFEL ET AL. (2005) for
illustrations). As such, it further extends the scope and the applicability of this theory.

The paper is organized as follows. Section 2 briefly reviews the basic features of the
Lee-Carter model for mortality projections. Section 3 describes the survival probabilities in
the Lee-Carter framework. Because they depend on the future trajectory of the time index,
these probabilities are random variables. It is shown that computing their distribution
function amounts to determine the distribution function of a sum of correlated LogNormal
random variables. This allows us to derive stop-loss upper and lower bounds on the survival
probabilities. It is shown in DENUIT & FROSTIG (2005) that risk measures (like Value-
at-Risk or Conditional Tail Expectation, for instance) of the insurer’s annual payout for
an homogeneous portfolio of life annuities are related to corresponding quantities involving
survival probabilities. It is therefore important to be able to evaluate quantiles or conditional
expectations of survival probabilities in the Lee-Carter model. This is the purpose of Section
4 where approximations for quantiles and bounds on conditional expectations are derived.
Moreover, stop-loss lower and upper bounds on the number of survivors are proposed. The
final Section 5 concludes.



2 Lee-Carter Stochastic Modelling for Dynamic Mor-
tality

2.1 Notation and assumption

We analyze the changes in mortality as a function of both age x and time ¢. Henceforth,
T,(t) is the remaining lifetime of an individual aged = on January the first of year ¢; this
individual will die at age « + T, (¢) in year ¢t + T,(t). The mortality force at age = during
calendar year ¢, denoted as i, (t), is defined as

p To(t — ) < AT (¢ —
a(t) = lim rlr < To(t x)_Z+ | Ty(t — x) > ]

As pointed out by DAHL (2004), actuaries have traditionally been calculating premiums and
reserves using a deterministic mortality intensity. Here, as in the paper by DAHL (2004),
. (t) will be described by a stochastic process.

In this paper, we assume that the age-specific mortality rates are constant within bands
of age and time, but allowed to vary from one band to the next. Specifically, given any
integer age x and calendar year ¢, it is supposed that

Pote(t +7) = py(t) for 0 < &7 < 1. (2.1)

Under (2.1), we have for integer age x and calendar year ¢ that

px(t) = Pr[T,(t) > 1] = exp(—p.(t)). (2.2)

2.2 Lee-Carter model

Let us recall the basic features of the classical Lee-Carter approach. The model proposed by
LEE & CARTER (1992) is in essence a relational model assuming that

In . (t) = g + Buky. (2.3)

Interpretation of the parameters involved in model (2.3) is quite simple. The value of «,, is an
average of In yi,(t) over time t so that exp a, is the general shape of the mortality schedule.
The actual forces of mortality change according to an overall mortality index x; modulated
by an age response (3,. The shape of the (3, profile tells which rates decline rapidly and
which slowly over time in response of change in ;. The time factor k; is intrinsically viewed
as a stochastic process and Box-Jenkins techniques are then used to model and forecast k;.

2.3 Stochastic modelling of the time index

To forecast, LEE & CARTER (1992) assume that the a,’s and 3,’s remain constant over time
and forecast future values of k; using a standard univariate time series model. After testing
several specifications, they found that a random walk with drift was the most appropriate
model for their data. They made clear that other ARIMA models might be preferable for



different data sets, but in practice the random walk with drift model for x; is used almost
exclusively. According to this model, the x;’s obey to

Ke = k1 + 0 + & with iid & ~ Nor (0, 0?), (2.4)

where 6 is known as the drift parameter and Nor(0,0?) stands for the Normal distribution
with mean 0 and variance 0. We will retain the model (2.4) throughout this paper. Note
that since the ;s obey to the dynamics (2.4), the p.(t)’s given in (2.3) are not constant but
develop over time following a stochatic process.

We will assume in the remainder of this paper that the values x4, ..., ky, are known but
that the ry,1x’s, k = 1,2, ..., are unknown and have to be projected from (2.4). To forecast
the time index at time ¢y + £ with all data available up to ty, we use the representation

k
Rto+k — Rt -+ k@ + Z §t0+j-

j=1
The point estimate of the stochastic forecast is thus
E[Hto+k|/€17 Cey /‘ito] = Ry, + kO

which follows a straight line as a function of the forecast horizon k, with slope 6. The
conditional variance of the forecast is

V(ktgi k|1, - - -, Fgy] = ko>

Therefore, the conditional standard errors for the forecast increase with the square root of
the distance to the forecast horizon k.

3 Comonotonic Bounds

3.1 The d-year survival probability

For any non-negative integer d, let ;F,, be the d-year survival probability for an individual
aged xo in year ty, given the trajectory of the time index k. More specifically, 4P, =
Pr[T,,(to) > d|k], where k stands for the random vector (K¢, . .., Ktgtw—a0)s Where w is the
ultimate age of the life table. In the Lee-Carter framework and for integer d, this probability
writes

d—1
dPxO = proJrj(tO + j)
=0
d—1
= exp <— Z o+ (to + ]))
=0
d—1
= exp <— Z €Xp (Oéa:oJr]' + ﬁonrj’%tOJrj)) :
=0



Note that 4F,, is a random variable since it involves the ry,;’s obeying to (2.4).

As shown by DENUIT & FROSTIG (2005), standard risk measures in large portfolios are
functions of the survival probabilities. It is therefore interesting to derive the distribution of
dPa:o~

3.2 Distribution of the d-year survival probability

Clearly,
aPry = exp(—5Sq) (3.1)
with
d—1 d—1
Si = ) exp <Oézo+j + 5mo+j'fto+j) = djexp(X;),
=0 =0

where §; = exp(ay,4;) > 0 and X; = By 4jk+;. Conditional upon ky,, we have that
Xj ~ Nor(u;,0%) with

= on—i-j(/fto +j9) and sz = (ﬁ$0+j)2j02> (32)

with the convention that a normally distributed random variable with zero variance is con-
stantly equal to the mean.
The distribution function Fj of 4P, is given by

Fy(p) = Pr[gPy, <p] =Pr[Sq > —Inp], 0<p <1,

where Sy is a linear combination of correlated LogNormal random variables. The analytical
computation of F, is difficult and numerical alternatives must be contemplated. A conve-
nient procedure consists in simulating the X;’s (from the dynamics (2.4) for the x;’s) to
approximate the distribution function of the Sy’s. In Section 5, we derive several accurate
approximations for Fy and related quantities.

3.3 Some stochastic order relations

In the next section, we derive bounds on 4P, in the stop-loss (or increasing convex) sense.
Here, we recall some definitions. For more details, the readers are referred, e.g., to DENUIT
ET AL. (2005). Consider two random variables X and Y. Then, X is said to be smaller than
Y in the stop-loss order, henceforth denoted by X <4 Y, if E[(X —d),] < E[(Y —d)] for all
d € R, that is, if their corresponding stop-loss premiums are ordered for all possible levels
d of the deductible. In probability theory, the stop-loss order is usually referred to as the
increasing convex order, since X =<4 Y < E[g(X)] < E[g(Y)] for all the non-decreasing and
convex functions g for which the expectations exist. A usual strengthening of the stop-loss
order is obtained by requiring in addition that the means of the random variables to be
compared are equal. More precisely, X is said to be smaller than Y in the convex order,
henceforth denoted by X <. Y (or sometimes by X <y _ Y in the actuarial literature), if
E[X] =E[Y] and X <4 Y. The term “convex” is used since X <. Y < E[g(X)] < E[g(Y)]
for all convex functions g for which the expectations exist.
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The supermodular order is based on the comparison of expectations of supermodular
functions. A real-valued function ¥ : R” — R is called supermodular if the inequality

\If(max{xl, yl}a max{xQ, y2}7 ceey maX{xna yn}>+w<mln{xla yl}a min{x% y2}7 s 7min{xn7 yn})

> U(xy, o,y n) + V(Y1, Y2, -, Yn), (3.3)
holds for all x1,x9,..., %0, y1,Y2,...,Yn € R. If U has second partial derivatives then it is
supermodular if, and only if, 8:(3%51; - > 0 for all ¢ # j. Then, given two random vectors

10

(X1, Xo, ..., Xp) and (Y1,Ys,...,Y,), (X1, Xo, ..., X,) is said to precede (Y7,Ys,...,Y,) in
the supermodular order, denoted as (X1, Xo,..., X)) Zem (Y1, Y5, ..., Y,), if the inequality

E[T(X,, Xo. ..., X,)] <E[U(Y,,Ys,...,Y,)] (3.4)

holds for all the supermodular functions ¥ : R” — R for which the expectations in (3.4)
exist. It is worth to mention that two random vectors ordered in the supermodular sense
necessarily have the same univariate marginals, that is, X; and Y; are identically distributed
fori=1,2,...,n.

3.4 Upper bound on ;7

We are now in a position to derive an upper bound on 4FP,, in the =<y-sense, based on a
comonotonic version of the X;’s. To this end, let us first establish the next property, which
is similar to Proposition 6.3.9 in DENUIT ET AL. (2005).

Property 3.1. Let (X1, Xs,...,X,,) and (Y1,Ys,...,Y,) be two random vectors, and con-
sider a non-increasing, twice-differentiable supermodular function ¥ : R™ — R. Then,

(X1, Xoy ooy, Xp) Bem (Y1, Yo, ..., Y,) = U(Xy, Xo, ., Xp) g U(YL, Yo, o Y0,

Proof. To establish this statement, we need to show that, given any non-decreasing and
convex function g, g o ¥ is supermodular. From DENUIT & MULLER (2002), we know
that it is enough to consider a twice differentiable function g. Then, a straightforward
computation of the second mixed derivative of g o W gives for ¢ # j

0? 0 0
v = "ol x — W
aZL‘Z‘aZL‘ng afL’Z (g ° % afL’j >
2
= ¢ oW x a\lei\IJ—l—g'o\le 9 v >0,
Ti x, O0z;0x;
which ends the proof. O

From (3.1), we see that 4P, can be expressed as W(Xi,...,X4-1), with
U(zy,...,x4-1) = exp <— Zj;é d; exp(xj)> fulfills the assumptions of Property 3.1. From
DHAENE ET AL. (2002a), we know that

(Xl, c. 7Xn) jsm (,ul —|—O'12, ceey Md—1 + O'dflz) where Z NNOT'(O, 1)



Let us define S as

d—1
Sy = Z(Sj exp <,uj + 0, Z), with Z ~ Nor(0,1),
7=0

where £1; and o; are given in (3.2). We then have that Sy <.« Sy and 4P, =4 exp(—=SY).
The distribution function of Sj can be determined from the following algorithm: denoting
as ® the distribution function of Z, Fgu(x) = ®(v,), with v, determined by

d—1
Z d; exp (uj + 0, ux) = x.

J=0

Note that the derivation of a convex upper bound on 4P,, (which would be “closer”
to 4P,,, sharing the same mean) requires the computation of E[;F,,], which amounts to
perform a (d — 1)-dimensional integration. As pointed out by VANDUFFEL, HOEDEMAKERS
& DHAENE (2005) in a different context, this would outweigh one of the main features of
the comonotonicity-based bounds, namely that the actuarial quantities of interest can easily
be determined analytically.

Property 3.1 can also be used to determine a lower bound on 4P, as follows. The k;’s
obeying to (2.4) are associated, i.e. they satisfy Cov[¥;(k), Vo(k)] > 0 for all the non-
decreasing functions ¥; and Wy such that the covariance exists. The X;’s are therefore also
associated. We know from CHRISTOPHIDES & VAGGELATOU (2004) that (Xi, ..., X7 ;) =em
(X1,...,X41), where (X{-,..., X7 ) is a vector made of independent components, with the
same univariate marginals as the original (X1,..., X4 1). Defining S = Z?;(l) d; eXp(le),
we get exp(—S7) =g ¢Ps,. Unfortunately, computing quantities involving exp(—S;) requires
approximately the same effort than computing them directly with 4F,,. In the next section,
we derive a lower bound on 4F,,, as simple as the upper one derived above.

3.5 Lower bound on 4P,

From Theorem 1 in DHAENE ET AL. (2002), we know that there exists a lower bound S,
in the convex sense on S, that is obtained by conditioning S; on some random variable A
(since we know from Strassen’s theorem that S} = E[S4|A] < Sq). Following KAAS ET AL.

(2000), we take
d—1

A= b exp(p)X;.

=0
The lower bound E[Sy|A] is then given by

-1
1
Si= d;exp <uj + 10,2 + 5(1 - T?)U?) Zex Sd
=0

where r;, 2 =0,...,d — 1, is the correlation coefficient between A and X;, that is,
. _ Cov[Xi Al _ >0 8 exp(1;)Cov[ X;, X,
TON g[Sy Sy 030k exD (s + 15) B Ok min{ . k}o?
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where
Cov[ Xy, X;] = BugriBeerj min{i, j}o?.
Then, we have exp(—S4) =q ¢ Pu,-

In the application we have in mind, 3;,+; and 3;,4; typically have the same sign so that
all the r;’s are non-negative. Then, S} is the sum of d comonotonic random variables, which
makes the derivation of its distribution function easy: this distribution function is given by
Fg (z) = ®(vz) where v, is the root of the equation

d—1
1

E J; exp (,U/j +rjoiv, + 5(1 - 7"]2-)0]2.) =z

=0

4 Some Approximations and Bounds

As mentioned in the introduction, DENUIT & FROSTIG (2005) proved that standard risk
measures for the aggregate claim amounts are well approximated in large portfolios by the
corresponding quantity for the random survival probabilities. This is why approximations
for VaR’s or CTE’s of 4P,, are of interest. The derivation of such approximations is the
topic of this section.

4.1 Approximation for the VaR
It is clear that the quantiles of ;P,, are related to the quantiles of S; through the formula

Fr(e) = exp ( . st(e))

We do not have bounds on FSle(e), but the quantile functions of S} and S% can be used as
an approximation of it. It turns out that the lower bound outperforms the upper one as far
as approximation of Fg, '(¢) is concerned. Therefore, we can use the approximation

d

Fgl(e) = Fl(e) =)

-1
J=0

1 _
0; (Mj + 5 (1 =)0 +rjo;® 1(6)) :

4.2 Bounds on CTE

Recall that the Conditional Tail Expectation of X at probability level € is defined as
CTE[X; €] = E[X|X > Fy'(e)]. As 4P,, possesses as continuous distribution function Fy,
the Conditional Tail Expectation of 4F,, agrees with a <y-ranking and we have

Bi(e) < CTE[4Py,; €] < Bu(e)

where

Bi(e) = CTE[eXp (—Sh); e],

and

B, (e) = CTE[eXp (—5%); 6].



4.3 Stop-loss bounds on the number of survivors

Let Ny be the number of survivors at time ¢y + d from an initial group of n policyholders
aged xg at time ty. Given k, Ny obeys to the Binomial distribution with exponent n and
parameter 4P, .

Considering the extremal numbers of survivors N and N, with respective probability
distributions

n

1
Pr[N; = k] = ( k )/0 pP(1—p)" *dPr[S}, > —Inp], k=0,1,...,

and

1
Pr[szk:]z(Z)/ pP(1 —p)" *dPr[Sy > —Inp], k=0,1,...,
0

we have
N; =<q Ny =4 N

Natural candidates for defining the benefits of longevity bonds or reinsurance treaties
covering portfolios of life annuities involve the excess of the actual number of survivors to
that expected from a reference life table. If the expected number of survivors at time to + d
is 74 then the payoff could be related to (Ng — 74),. Bounds on E[(N; — 74)4] are then
obtained by substituting N; and N for N,.

5 Discussion

In this paper, we have derived some bounds (in the <y-sense) on the random survival prob-
abilities in the Lee-Carter framework. We considered that the trajectory of the time index
was adequately described by a random walk with drift. The approach remains nevertheless
valid for any Gaussian process.

Of course, one could imagine many other stochastic processes for modelling the behavior
of the time index k;. For instance, good candidates could be processes allowing for jumps.
The idea is to modify (2.4) into

ki = Koy + 0 + & + 1,7, with & iid Nor(0,0%),

where [; is a sequence of independent Bernoulli random variables with mean p indicating
whether a jump occured in period ¢, and Z; is a real valued random variable representing
the size of the jump. In this setting, a positive jump corresponds to a catastrophe, like an
epidemic, increasing suddenly the mortality in year ¢, whereas a negative jump means that a
considerable improvement has been achieved, for instance thanks to the availability of a new
medical treatment. The approach developed in this paper could be adapted to this case.

The determination of an optimal choice for the conditioning variable A used to define
the lower bound on the random survival probability remains an open question. Recently,
VANDUFFEL, HOEDEMAKERS & DHAENE (2005) took for A the linear combination of the
X,’s maximizing a first order approximation to the variance of the lower bound (making it
intuitively speaking as close as possible to S;). This maximal variance lower bound proposed
could also be used to derive approximations for the survival probabilities in the Lee-Carter
framework.
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