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Abstract

In the Lee-Carter framework, future survival probabilities are random variables with an in-
tricate distribution function. In large homogeneous portfolios of life annuities, Value-at-Risk
or Conditional Tail Expectation of the total yearly payout of the company are approximately
equal to the corresponding quantities involving random survival probabilities. This paper
aims to derive some bounds in the increasing convex (or stop-loss) sense on these random
survival probabilities. These bounds are obtained with the help of comonotonic upper and
lower bounds on sums of correlated random variables.
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1 Introduction and Motivation

During the 20th century, the human mortality globally declined. These mortality improve-
ments pose a challenge for the planning of public retirement systems as well as for the private
life annuities business. When long-term living benefits are concerned, the calculation of ex-
pected present values (for pricing or reserving) requires an appropriate mortality projection
in order to avoid underestimation of future costs. Actuaries have therefore to resort to
life tables including a forecast of the future trends of mortality (the so-called projected life
tables).

Different approaches for building projected life tables have been developed so far; see e.g.,
Pitacco (2004) and Wong-Fupuy & Haberman (2004) for a review. Lee & Carter

(1992) proposed a simple model for describing the secular change in mortality as a function
of a single time index. The main statistical tool of Lee & Carter (1992) is least-squares
estimation via singular value decomposition of the matrix of the log age-specific observed
forces of mortality together with Box-Jenkins modelling for time series. For a review of
recent applications of the Lee-Carter methodology, we refer the interested readers to Lee

(2000).
The future lifetimes are all influenced by the same time index in the Lee-Carter frame-

work. Since the future path of this index is unknown and modelled as a stochastic process,
the policyholders’ lifetimes become dependent on each other. When the Lee-Carter model
applies, life annuity present values are correlated random variables, contrarily to the stan-
dard actuarial assumptions. Consequently, the risk does not disappear as the size of the
portfolio increases: there always remains some systematic risk, that cannot be diversified,
whatever the number of policies. This unexpected feature of the Lee-Carter model has been
studied in Denuit & Frostig (2005).

This paper aims to apply the concept of comonotonicity (reviewed in details by Dhaene

et al. (2002a,b)) to obtain approximations for stochastic survival probabilities in the Lee-
Carter framework. The main contribution of this paper is that it provides a new application
of the concept of comonotonicity, which deviates away from the natural financial applications
of this theory (see, e.g., Dhaene et al. (2005) and Vanduffel et al. (2005) for
illustrations). As such, it further extends the scope and the applicability of this theory.

The paper is organized as follows. Section 2 briefly reviews the basic features of the
Lee-Carter model for mortality projections. Section 3 describes the survival probabilities in
the Lee-Carter framework. Because they depend on the future trajectory of the time index,
these probabilities are random variables. It is shown that computing their distribution
function amounts to determine the distribution function of a sum of correlated LogNormal
random variables. This allows us to derive stop-loss upper and lower bounds on the survival
probabilities. It is shown in Denuit & Frostig (2005) that risk measures (like Value-
at-Risk or Conditional Tail Expectation, for instance) of the insurer’s annual payout for
an homogeneous portfolio of life annuities are related to corresponding quantities involving
survival probabilities. It is therefore important to be able to evaluate quantiles or conditional
expectations of survival probabilities in the Lee-Carter model. This is the purpose of Section
4 where approximations for quantiles and bounds on conditional expectations are derived.
Moreover, stop-loss lower and upper bounds on the number of survivors are proposed. The
final Section 5 concludes.

1



2 Lee-Carter Stochastic Modelling for Dynamic Mor-

tality

2.1 Notation and assumption

We analyze the changes in mortality as a function of both age x and time t. Henceforth,
Tx(t) is the remaining lifetime of an individual aged x on January the first of year t; this
individual will die at age x + Tx(t) in year t + Tx(t). The mortality force at age x during
calendar year t, denoted as µx(t), is defined as

µx(t) = lim
∆→0

Pr[x < T0(t − x) ≤ x + ∆|T0(t − x) > x]

∆
.

As pointed out by Dahl (2004), actuaries have traditionally been calculating premiums and
reserves using a deterministic mortality intensity. Here, as in the paper by Dahl (2004),
µx(t) will be described by a stochastic process.

In this paper, we assume that the age-specific mortality rates are constant within bands
of age and time, but allowed to vary from one band to the next. Specifically, given any
integer age x and calendar year t, it is supposed that

µx+ξ(t + τ) = µx(t) for 0 ≤ ξ, τ < 1. (2.1)

Under (2.1), we have for integer age x and calendar year t that

px(t) = Pr[Tx(t) > 1] = exp(−µx(t)). (2.2)

2.2 Lee-Carter model

Let us recall the basic features of the classical Lee-Carter approach. The model proposed by
Lee & Carter (1992) is in essence a relational model assuming that

ln µx(t) = αx + βxκt. (2.3)

Interpretation of the parameters involved in model (2.3) is quite simple. The value of αx is an
average of ln µx(t) over time t so that exp αx is the general shape of the mortality schedule.
The actual forces of mortality change according to an overall mortality index κt modulated
by an age response βx. The shape of the βx profile tells which rates decline rapidly and
which slowly over time in response of change in κt. The time factor κt is intrinsically viewed
as a stochastic process and Box-Jenkins techniques are then used to model and forecast κt.

2.3 Stochastic modelling of the time index

To forecast, Lee & Carter (1992) assume that the αx’s and βx’s remain constant over time
and forecast future values of κt using a standard univariate time series model. After testing
several specifications, they found that a random walk with drift was the most appropriate
model for their data. They made clear that other ARIMA models might be preferable for
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different data sets, but in practice the random walk with drift model for κt is used almost
exclusively. According to this model, the κt’s obey to

κt = κt−1 + θ + ξt with iid ξt ∼ N or(0, σ2), (2.4)

where θ is known as the drift parameter and N or(0, σ2) stands for the Normal distribution
with mean 0 and variance σ2. We will retain the model (2.4) throughout this paper. Note
that since the κt’s obey to the dynamics (2.4), the µx(t)’s given in (2.3) are not constant but
develop over time following a stochatic process.

We will assume in the remainder of this paper that the values κ1, . . . , κt0 are known but
that the κt0+k’s, k = 1, 2, . . ., are unknown and have to be projected from (2.4). To forecast
the time index at time t0 + k with all data available up to t0, we use the representation

κt0+k = κt0 + kθ +
k
∑

j=1

ξt0+j.

The point estimate of the stochastic forecast is thus

E[κt0+k|κ1, . . . , κt0 ] = κt0 + kθ

which follows a straight line as a function of the forecast horizon k, with slope θ. The
conditional variance of the forecast is

V[κt0+k|κ1, . . . , κt0 ] = kσ2.

Therefore, the conditional standard errors for the forecast increase with the square root of
the distance to the forecast horizon k.

3 Comonotonic Bounds

3.1 The d-year survival probability

For any non-negative integer d, let dPx0
be the d-year survival probability for an individual

aged x0 in year t0 given the trajectory of the time index κ. More specifically, dPx0
=

Pr[Tx0
(t0) > d|κ], where κ stands for the random vector (κt0 , . . . , κt0+ω−x0

), where ω is the
ultimate age of the life table. In the Lee-Carter framework and for integer d, this probability
writes

dPx0
=

d−1
∏

j=0

px0+j(t0 + j)

= exp

(

−
d−1
∑

j=0

µx0+j(t0 + j)

)

= exp

(

−
d−1
∑

j=0

exp
(

αx0+j + βx0+jκt0+j

)

)

.
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Note that dPx0
is a random variable since it involves the κt0+j ’s obeying to (2.4).

As shown by Denuit & Frostig (2005), standard risk measures in large portfolios are
functions of the survival probabilities. It is therefore interesting to derive the distribution of

dPx0
.

3.2 Distribution of the d-year survival probability

Clearly,

dPx0
= exp(−Sd) (3.1)

with

Sd =

d−1
∑

j=0

exp
(

αx0+j + βx0+jκt0+j

)

=

d−1
∑

j=0

δj exp(Xj),

where δj = exp(αx0+j) > 0 and Xj = βx0+jκt0+j. Conditional upon κt0 , we have that
Xj ∼ N or(µj, σ

2
j ) with

µj = βx0+j(κt0 + jθ) and σ2
j = (βx0+j)

2jσ2, (3.2)

with the convention that a normally distributed random variable with zero variance is con-
stantly equal to the mean.

The distribution function Fd of dPx0
is given by

Fd(p) = Pr[dPx0
≤ p] = Pr [Sd ≥ − ln p] , 0 ≤ p ≤ 1,

where Sd is a linear combination of correlated LogNormal random variables. The analytical
computation of Fd is difficult and numerical alternatives must be contemplated. A conve-
nient procedure consists in simulating the Xj ’s (from the dynamics (2.4) for the κt’s) to
approximate the distribution function of the Sd’s. In Section 5, we derive several accurate
approximations for Fd and related quantities.

3.3 Some stochastic order relations

In the next section, we derive bounds on dPx0
in the stop-loss (or increasing convex) sense.

Here, we recall some definitions. For more details, the readers are referred, e.g., to Denuit

et al. (2005). Consider two random variables X and Y . Then, X is said to be smaller than
Y in the stop-loss order, henceforth denoted by X �sl Y , if E[(X −d)+] ≤ E[(Y −d)+] for all
d ∈ R+, that is, if their corresponding stop-loss premiums are ordered for all possible levels
d of the deductible. In probability theory, the stop-loss order is usually referred to as the
increasing convex order, since X �sl Y ⇔ E[g(X)] ≤ E[g(Y )] for all the non-decreasing and
convex functions g for which the expectations exist. A usual strengthening of the stop-loss
order is obtained by requiring in addition that the means of the random variables to be
compared are equal. More precisely, X is said to be smaller than Y in the convex order,
henceforth denoted by X �cx Y (or sometimes by X �sl,= Y in the actuarial literature), if
E[X] = E[Y ] and X �sl Y . The term “convex” is used since X �cx Y ⇔ E[g(X)] ≤ E[g(Y )]
for all convex functions g for which the expectations exist.
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The supermodular order is based on the comparison of expectations of supermodular
functions. A real-valued function Ψ : Rn → R is called supermodular if the inequality

Ψ(max{x1, y1}, max{x2, y2}, . . . , max{xn, yn})+Ψ(min{x1, y1}, min{x2, y2}, . . . , min{xn, yn})

≥ Ψ(x1, x2, . . . , xn) + Ψ(y1, y2, . . . , yn), (3.3)

holds for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R. If Ψ has second partial derivatives then it is
supermodular if, and only if, ∂2Ψ

∂xi∂xj
≥ 0 for all i 6= j. Then, given two random vectors

(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn), (X1, X2, . . . , Xn) is said to precede (Y1, Y2, . . . , Yn) in
the supermodular order, denoted as (X1, X2, . . . , Xn) �sm (Y1, Y2, . . . , Yn), if the inequality

E[Ψ(X1, X2, . . . , Xn)] ≤ E[Ψ(Y1, Y2, . . . , Yn)] (3.4)

holds for all the supermodular functions Ψ : Rn → R for which the expectations in (3.4)
exist. It is worth to mention that two random vectors ordered in the supermodular sense
necessarily have the same univariate marginals, that is, Xi and Yi are identically distributed
for i = 1, 2, . . . , n.

3.4 Upper bound on dPx0

We are now in a position to derive an upper bound on dPx0
in the �sl-sense, based on a

comonotonic version of the Xj’s. To this end, let us first establish the next property, which
is similar to Proposition 6.3.9 in Denuit et al. (2005).

Property 3.1. Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two random vectors, and con-

sider a non-increasing, twice-differentiable supermodular function Ψ : R
n → R. Then,

(X1, X2, . . . , Xn) �sm (Y1, Y2, . . . , Yn) ⇒ Ψ(X1, X2, . . . , Xn) �sl Ψ(Y1, Y2, . . . , Yn).

Proof. To establish this statement, we need to show that, given any non-decreasing and
convex function g, g ◦ Ψ is supermodular. From Denuit & Müller (2002), we know
that it is enough to consider a twice differentiable function g. Then, a straightforward
computation of the second mixed derivative of g ◦ Ψ gives for i 6= j

∂2

∂xi∂xj

g ◦ Ψ =
∂

∂xi

(

g′ ◦ Ψ ×
∂

∂xj

Ψ

)

= g′′ ◦ Ψ ×
∂

∂xi

Ψ ×
∂

∂xj

Ψ + g′ ◦ Ψ ×
∂2

∂xi∂xj

Ψ ≥ 0,

which ends the proof.

From (3.1), we see that dPx0
can be expressed as Ψ(X1, . . . , Xd−1), with

Ψ(x1, . . . , xd−1) = exp
(

−
∑d−1

j=0
δj exp(xj)

)

fulfills the assumptions of Property 3.1. From

Dhaene et al. (2002a), we know that

(X1, . . . , Xn) �sm (µ1 + σ1Z, . . . , µd−1 + σd−1Z) where Z ∼ N or(0, 1).
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Let us define Su
d as

Su
d =

d−1
∑

j=0

δj exp
(

µj + σj Z
)

, with Z ∼ N or(0, 1),

where µj and σj are given in (3.2). We then have that Sd �cx Su
d and dPx0

�sl exp(−Su
d ).

The distribution function of Su
d can be determined from the following algorithm: denoting

as Φ the distribution function of Z, FSu
d
(x) = Φ(νx), with νx determined by

d−1
∑

j=0

δj exp
(

µj + σj νx

)

= x.

Note that the derivation of a convex upper bound on dPx0
(which would be “closer”

to dPx0
, sharing the same mean) requires the computation of E[dPx0

], which amounts to
perform a (d− 1)-dimensional integration. As pointed out by Vanduffel, Hoedemakers

& Dhaene (2005) in a different context, this would outweigh one of the main features of
the comonotonicity-based bounds, namely that the actuarial quantities of interest can easily
be determined analytically.

Property 3.1 can also be used to determine a lower bound on dPx0
as follows. The κt’s

obeying to (2.4) are associated, i.e. they satisfy Cov[Ψ1(κ), Ψ2(κ)] ≥ 0 for all the non-
decreasing functions Ψ1 and Ψ2 such that the covariance exists. The Xj ’s are therefore also
associated. We know from Christophides & Vaggelatou (2004) that (X⊥

1 , . . . , X⊥

d−1) �sm

(X1, . . . , Xd−1), where (X⊥

1 , . . . , X⊥

d−1) is a vector made of independent components, with the

same univariate marginals as the original (X1, . . . , Xd−1). Defining S⊥

d =
∑d−1

j=0
δj exp(X⊥

j ),

we get exp(−S⊥

d ) �sl dPx0
. Unfortunately, computing quantities involving exp(−S⊥

d ) requires
approximately the same effort than computing them directly with dPx0

. In the next section,
we derive a lower bound on dPx0

, as simple as the upper one derived above.

3.5 Lower bound on dPx0

From Theorem 1 in Dhaene et al. (2002), we know that there exists a lower bound Sl
d

in the convex sense on Sd that is obtained by conditioning Sd on some random variable Λ
(since we know from Strassen’s theorem that Sl

d = E[Sd|Λ] �cx Sd). Following Kaas et al.

(2000), we take

Λ =
d−1
∑

j=0

δj exp(µj)Xj.

The lower bound E[Sd|Λ] is then given by

Sl
d =

d−1
∑

j=0

δj exp
(

µj + rjσjZ +
1

2
(1 − r2

j )σ
2
j

)

�cx Sd

where ri, i = 0, . . . , d − 1, is the correlation coefficient between Λ and Xi, that is,

ri =
Cov[Xi, Λ]

σiσΛ

=

∑d−1

j=0
δj exp(µj)Cov[Xi, Xj]

σi

√

∑d−1

j=0

∑d−1

k=0
δjδk exp(µj + µk)βx0+jβx0+k min{j, k}σ2
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where
Cov[Xi, Xj] = βx0+iβx0+j min{i, j}σ2.

Then, we have exp(−Sl
d) �sl dPx0

.
In the application we have in mind, βx0+i and βx0+j typically have the same sign so that

all the ri’s are non-negative. Then, Sl
d is the sum of d comonotonic random variables, which

makes the derivation of its distribution function easy: this distribution function is given by
FSl

d
(x) = Φ(νx) where νx is the root of the equation

d−1
∑

j=0

δj exp
(

µj + rjσjνx +
1

2
(1 − r2

j )σ
2
j

)

= x.

4 Some Approximations and Bounds

As mentioned in the introduction, Denuit & Frostig (2005) proved that standard risk
measures for the aggregate claim amounts are well approximated in large portfolios by the
corresponding quantity for the random survival probabilities. This is why approximations
for VaR’s or CTE’s of dPx0

are of interest. The derivation of such approximations is the
topic of this section.

4.1 Approximation for the VaR

It is clear that the quantiles of dPx0
are related to the quantiles of Sd through the formula

F−1

d (ǫ) = exp
(

− F−1

Sd
(ǫ)
)

.

We do not have bounds on F−1

Sd
(ǫ), but the quantile functions of Sl

d and Su
d can be used as

an approximation of it. It turns out that the lower bound outperforms the upper one as far
as approximation of F−1

Sd
(ǫ) is concerned. Therefore, we can use the approximation

F−1

Sd
(ǫ) ≈ F−1

Sl
d

(ǫ) =

d−1
∑

j=0

δj

(

µj +
1

2
(1 − rj)

2σ2
j + rjσjΦ

−1(ǫ)

)

.

4.2 Bounds on CTE

Recall that the Conditional Tail Expectation of X at probability level ǫ is defined as
CTE[X; ǫ] = E[X|X > F−1

X (ǫ)]. As dPx0
possesses as continuous distribution function Fd,

the Conditional Tail Expectation of dPx0
agrees with a �sl-ranking and we have

Bl(ǫ) ≤ CTE[dPx0
; ǫ] ≤ Bu(ǫ)

where
Bl(ǫ) = CTE

[

exp
(

− Sl
d

)

; ǫ
]

,

and
Bu(ǫ) = CTE

[

exp
(

− Su
d

)

; ǫ
]

.
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4.3 Stop-loss bounds on the number of survivors

Let Nd be the number of survivors at time t0 + d from an initial group of n policyholders
aged x0 at time t0. Given κ, Nd obeys to the Binomial distribution with exponent n and
parameter dPx0

.
Considering the extremal numbers of survivors N+

d and N−

d with respective probability
distributions

Pr[N−

d = k] =

(

n

k

)
∫ 1

0

pk(1 − p)n−kd Pr[Sl
d ≥ − ln p], k = 0, 1, . . . ,

and

Pr[N+

d = k] =

(

n

k

)
∫ 1

0

pk(1 − p)n−kd Pr[Su
d ≥ − ln p], k = 0, 1, . . . ,

we have
N−

d �sl Nd �sl N+

d .

Natural candidates for defining the benefits of longevity bonds or reinsurance treaties
covering portfolios of life annuities involve the excess of the actual number of survivors to
that expected from a reference life table. If the expected number of survivors at time t0 + d

is νd then the payoff could be related to (Nd − νd)+. Bounds on E[(Nd − νd)+] are then
obtained by substituting N−

d and N+

d for Nd.

5 Discussion

In this paper, we have derived some bounds (in the �sl-sense) on the random survival prob-
abilities in the Lee-Carter framework. We considered that the trajectory of the time index
was adequately described by a random walk with drift. The approach remains nevertheless
valid for any Gaussian process.

Of course, one could imagine many other stochastic processes for modelling the behavior
of the time index κt. For instance, good candidates could be processes allowing for jumps.
The idea is to modify (2.4) into

κt = κt−1 + θ + ξt + ItZt with ξt iid N or(0, σ2),

where It is a sequence of independent Bernoulli random variables with mean p indicating
whether a jump occured in period t, and Zt is a real valued random variable representing
the size of the jump. In this setting, a positive jump corresponds to a catastrophe, like an
epidemic, increasing suddenly the mortality in year t, whereas a negative jump means that a
considerable improvement has been achieved, for instance thanks to the availability of a new
medical treatment. The approach developed in this paper could be adapted to this case.

The determination of an optimal choice for the conditioning variable Λ used to define
the lower bound on the random survival probability remains an open question. Recently,
Vanduffel, Hoedemakers & Dhaene (2005) took for Λ the linear combination of the
Xj’s maximizing a first order approximation to the variance of the lower bound (making it
intuitively speaking as close as possible to Sd). This maximal variance lower bound proposed
could also be used to derive approximations for the survival probabilities in the Lee-Carter
framework.
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