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ABSTRACT

In an actuarial or financial context one often encounters the calculation of risk
measures of random variables of the type S = 2; X;. In many applications, the

individual risks X; are not mutually independent, for example because their
outcomes are all influenced by the same economic or physical environment.
Comonotonicity, which is an extremal form of positive dependence, can be used
to determine easy to compute and accurate upper and lower bounds for the dis-
tribution of S, and hence, also for risk measures related to S.
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I. AGGREGATING NON-INDEPENDENT RISKS

In an actuarial or financial context one often encounters a random
variable (r.v.) S of the type

S=i){le (1)
i=1

For example, for an insurer the different X; may represent the claims
from individual policies over a specified time horizon and § repre-
sents the aggregate risk related to the entire insurance portfolio. In
another context, the X; denote the risks of a particular business line and
S is then the aggregate risk across all business lines. In a pension fund
context, random variables of this type appear when determining pro-
visions and related optimal investment strategies. Another field of
application concerns personal finance problems where a decision
maker faces a series of future consumptions and looks for optimal
saving and investment strategies. In option pricing random variables
of this type appear to describe the pay-offs of Asian and basket
options. Finally, they also appear in a capital allocation or capital
aggregation context. Roughly speaking, these applications amount to
the evaluation of risk measures related to the cumulative distribution
function (cdf) Fg(x) = Pr[S < x] of the random variable S. We refer
the interested reader to (Dhaene e.a. (2002); (2005); (2006) and Simon
e.a. (2000)) for more details on these applications.

It is well-known that Monte Carlo simulations may be helpful in the
evaluation of S but since these are often computationally intensive,
there is space for analytical (approximate) solutions as well. For exam-
ple, financial institutions evaluate the ‘fair value’ of their balance sheet
which involves the use of so-called ‘risk neutral probabilities’ and then
project how this value can evolve stochastically over a given time frame
(often one year) requiring ‘physical probabilities’ (i.e. the probabilities
in the real world). In this case Monte Carlo simulations require the
combination of risk neutral and physical scenarios which will dramat-
ically increase the number of scenarios that are needed to obtain accu-
rate answers. Even modern computers will often not be able to handle
this efficiently. In contrast, comonotonicity can be used to evaluate the
part that involves ‘risk neutral scenarios’ in conjunction with Monte
Carlo simulations for the ‘physical scenarios’.

In order to avoid technical complications we will assume that
the expectations of the X; exist. We denote the random vector
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X, X, ..., X,) by X. Let U=(U,, U,, ..., U,) be a random vector of
uniformly (0,1) distributed random variables U; such that:

X (R (0), (U)o B (U,) )

- . . d
Here, Fy' denotes the quantile function of the r.v. X; and ‘=" stands
for ‘equality in distribution’. Hence,

Fy(x) = Fy(Fy, (), Fy (5,),.., Fy (%), (3)

which means that the cdf Fy of X= (X}, X,, ..., X)) is completely spec-
ified by the marginal cdf’s F, of the X; and by the cdf F'; of U. The
function Fy is called a ‘copula function’. For more details on this
decomposition of a multivariate distribution into its marginal distrib-
utions and a copula function, see for example (Nelsen (1999)).

From (1) and (2), we find that the distribution of S can be charac-
terized as follows:

54 ZF;(U,.). (4)

It is convenient to assume that the random variables U, are mutu-
ally independent, as in this case the distribution of S can be computed
using the technique of convolution. Powerful and accurate exact or
approximate recursive computation methods such as De Pril’s recur-
sion and Panjer’s recursion can also be applied in this case. We refer
to (Panjer (1981)), (De Pril (1989)) and (Dhaene e.a. (2006)). When
S represents the aggregate claims of an insurance portfolio the
assumption of independence is sometimes realistic. Moreover, the
existence of an insurance industry, where risks are pooled between a
large number of insureds, is mainly based on the fact that the risks X;
associated with the individual policies can be assumed to be mutually
independent.

However, in many other actuarial and financial applications the indi-
vidual risks JX; in the sums S cannot be assumed to be mutually inde-
pendent, for instance because all X; are influenced by the same eco-
nomic or physical environment. The independence assumption is then
violated and as a consequence it is not straightforward to determine
the cdf of S. In the case of non-independent risks the problem of deter-
mining the cdf of S is often further complicated by the fact that the
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copula connecting the marginals F, is unknown or too cumbersome
to work with. '

A sum § of non-independent risks may occur for instance when
considering the aggregate claims amount of a non-life insurance risk
portfolio or a credit portfolio where the insured risks are subject to
some common factors such as geography or economic environment.
Another example concerns the aggregate payments of a pension fund
when the insured parties are working in the same company. These peo-
ple work at the same location and may use the same transport facili-
ties which will result in some positive dependency between their mor-
tality rates.

II. COMONOTONICITY

Let us consider the situation where the individual risks X; of the ran-
dom vector X are subject to the same claim generating mechanism in
the sense that

X< (212,22, ..., 8A2)), (5)

for some common random variable Z and non-decreasing functions
g:. In this case, the random vector X is said to be ‘comonotonic’ and
the distribution of X is called the ‘comonotonic distribution’. Notice
that all g,(Z) are monotonic increasing functions of the random vari-
able Z, which explains the word comonotonic (common monotonic).

Intuitively, it is clear that comonotonicity corresponds to an extreme
form of positive dependency between the individual risks involved.
Indeed, increasing the outcome z of the common source of risk Z is
tied to a simultaneous increase in the different outcomes g;(z).

One can prove that the comonotonicity of X can also be character-
ized by

X2 (FU),F U, (U)) (6)

which means that the representation (2) for the distribution function
of X holds true with U, =U,=... U,=U. Hence, the n-dimensional
stochastic nature of a general random vector X reduces to a single
dimension in the case of comonotonicity. This aspect of comonoto-
nicity implies that simulating outcomes of a comonotonic random
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vector reduces to simulating outcomes of a univariate uniform (0, 1)
r.v. U.
It is straightforward to prove that comonotonicity of X is equivalent to

Fy(x)=min [Fy (x), Fy, (%,),.... Fy. (x,)] (7)

It is known since Hoeffding (Hoeffding (1940)) and Fréchet (Fréchet
(1951)) that the function [Fy (x,), Fy, (x,),...., Fy (x,)] is the multi-
variate cdf of a random vector which has the same marginal distribu-
tions as the random vector X.

Let us denote the sum of the components of the comonotonic ran-
dom vector (F;(U), F);l(U),. . .,F)}:(U)) by S¢:

SC= Fy (). (®)
i=1
. o n d o
Comonotonicity of X implies that S = 21.21 X =5
Several important actuarial quantities of S§¢ such as quantiles and
stop-loss premiums exhibit an additivity property in the sense that

they can be expressed as a sum of corresponding quantities of the
marginals involved. For the quantiles, we have that

FS:I(p):gF;(p), 0<p<l 9)

Let us now assume that the marginal cdf’s F, are strictly increas-
ing. In this case, one can prove that

[5°-d] = i[F;(U)—d;‘L (10)
i=1
for any d such that 0 < Fy(d) <1, and with the d;" given by
d; = Fy'(Fy.(d)). (11)

Notice that 2?:161’; =d. Taking expectations of both sides of (10)
leads to the following additive relation for the stop-loss premiums of S¢:

E[sc -d] =iE[Xi—di*] . (12)
+ 0 +
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The expressions (10), (11) and (12) can be generalized to the case of
general distribution functions, see (Dhaene e.a. (2000)) and (Kaas e.a.
(2000)) for more details. Expressions similar to (10) and (12) can also
be found in (Jamshidian (1989)) where it is proven that in the Vasicek
(Vasicek (1977)) model, a European call option on a portfolio of zero
coupon bonds (in particular, an option on a single coupon paying bond)
decomposes into a portfolio of European call options on the individual
zero coupon bonds in the portfolio. This holds true because in the
Vasicek model, the prices at a future date of all zero coupon bonds
involved are decreasing functions of the random spot rate at that date.

III. A COMONOTONIC UPPER BOUND APPROXIMATION

As opposed to the case of independent or comonotonic rv’s .X;, it is in
general not straightforward to determine the cdf of S. In the general
case it may be helpful to find a dependency structure for the random
vector (X}, X, ..., X,) that leads to a ‘less favorable’ or ‘more danger-
ous’ sum for the marginal terms X; and such that the cdf of this sum
is easier to determine. Making decisions based on the ‘less favorable’
distribution will lead to prudent or conservative decisions.

In order to define what we mean by ‘less favorable’ we have to decide
how to order risks. In this respect it is convenient to consider convex
ordering: A r.v. X is smaller than a r.v. Y in convex order if E[X]=E[Y]
and E[(X—d),] £ E[(X—d),] for all real d. In this case, we write

X<, ¥ (13)

In von Neumann & Morgenstern’s (von Neumann e.a. (1947))
‘Expected Utility Theory’, as well as in Yaari’s (Yaari (1987)) ‘Dual
Theory of Choice under Risk’, convex order represents the common
preferences of risk averse decision makers between risks with equal
expectations. See for example (Wang e.a. (1998)).

When X and Y represent losses or future payments, X <. Y means
that every risk averse decision maker prefers paying X above paying Y.
Hence, replacing (the distribution of) the real loss X by (the distribu-
tion of) the loss ¥ and making decisions based on (the distribution of)
Y can be considered as a prudent strategy. On the other hand, when X
and Y represent gains or incomes, X <. Y means that every risk averse

decision maker prefers gaining X to gaining Y. For more details on
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ordering (distributions of) r.v.’s, we refer to (Shaked e.a. (1997)). Actu-
arial applications of stochastic ordering concepts are described in
detail in (Kaas e.a. (2001)) and (Denuit e.a. (2005)).

One can prove that for any random vector (X, X5, ..., X)), the fol-
lowing ordering relation holds:

i){i <. Z Fy'(U). (14)
i=1

This means that replacing (the distribution function of) S by (the dis-
tribution function of) §¢ and making decisions based on the latter dis-
tribution function can be considered as a prudent strategy in the frame-
work of expected utility theory as well as Yaari’s dual theory of choice
under risk. Moreover, quantiles and stop-loss premiums of S° can eas-
ily be determined from (9) and (12). The comonotonic upper bound
approximation Fg will be ‘close’ to the exact cdf Fg. when the differ-
ent U; in (4) possess a strong positive dependency structure. An
insightful geometric proof of (14) can be found in (Kaas e.a. (2002)).
Earlier references to closely related results are (Meilijson e.a. (1979)),
(Riischendorf (1983)) and (Miiller (1997)).

As S <., 8¢ implies that E[S]=E[S], it follows that the cdf’’s of S and
S¢ must cross at least once. Hence, apart from the case that S= St we
find that it is impossible that £g!(p) is an upper bound for F§'(p) for all
0<p<1. This implies that the quantile risk measure is not subadditive.

Several actuarial and financial problems that we mentioned in the
previous section involve the evaluation of the net present value or the
accumulated value of future cash flows, which can be expressed as a
sum S as in (1) where the r.v.s X; are given by

X, =ae" (15)

Here, the a; are deterministic real numbers and (Y}, Y5, ..., Y,) is a
random vector.

The accumulated value at time » of a series of future deterministic sav-
ing amounts ¢, can be written in this form, where Y; denotes the cumu-
lative logreturn over the period [i, n]. Similarly, the present value of a
series of future deterministic payments a; can be written in this form
where now e’ denotes the random discount factor over the period [0, i].

In both cases (compounding and discounting), the random vector
(X, X5, ..., X,) will not be comonotonic, although neighboring
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components X; and X; will be rather strongly dependent random vari-
ables. This is because there is a natural overlapping process when com-
pounding (or discounting) over the different time periods. In case of
discounting, the random variable S can be considered as the stochastic
present value of an n-year term annuity. A continuous version (with pay-
ments continuously spread over time) is considered in (Defresne (1990)).

Let us now assume that the .X; are given by X;=ga, e" with ¢,>0.
We also assume that any random variable Y; is normally distributed.
We find that

SC — zaieE[Yi]JrUY.q)il(U)’ (16)
i=1

where @ is the standard normal cdf. In this case the quantiles and the
stop-loss premiums of S¢ are given by

F\(p)= S ae o™ g pay, (17)
i=1
and
E|se-d| =

Y e (o, ~07(F (a)))-d(1-Fy (@), 0<d <o,

i=1

(18)

respectively. The quality of this upper bound approximation is inves-
tigated in (Dhaene e.a. (2002)), (Huang e.a. (2004)) and (Vanduffel e.a.
(2005)).

For a general random vector (X, X,,...,X,) and real d and
d;(i=1,2,...n) such that Zled,. =d we have that

[i){i —d} <Y[x,-d]. (19)
i=1 =

It can be proven that the minimum of the expectation of the right
hand side in (19), taken over all d; such that z:;ldl. =d, is given by
E[S¢—d].. Hence, in the case of strictly increasing cdf’s Fy , we find
from (12) that this minimum is obtained for the d;" as defined in (11).
This result can be generalized to the case of general cdf’s F) .
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When the X; represent asset prices at some future date, say ¢, then

the r.v.

zi: X —d ]+ can be interpreted as the pay-off of a European

type basket call option at expiration date #, whereas each of the terms
[X;—d;]; can be interpreted as the pay-off of a European call option on
the i-th asset involved at the same expiration date. The inequality (19)
provides an infinite number of ways to super-replicate the pay-off of the
basket option in terms of the individual asset options involved. The super-
hedging strategy consisting of buying the » European calls with respec-
tive exercise prices d; corresponds to a cheapest super-replicating
hedging strategy for the basket option under consideration. Similar results
hold for Asian options. For more details, we refer to (Dhaene e.a. (2002)),
(Simon e.a. (2000)), (Albrecher e.a. (2005)), (Hobson e.a. (2005)),
(Vanmaele e.a. (2006)), (Teynaerts e.a. (2006)) and (Chen e.a. (2007)).

IV. COMONOTONIC LOWER BOUND APPROXIMATIONS

In the previous section, we introduced an approximation for the cdf F
by keeping the marginal cdf’s F, unchanged while replacing the
‘real’ dependency structure by the comonotonic one. The crucial fea-
ture of comonotonicity is that only a one-dimensional randomness is
involved. As a consequence, comonotonic sums have convenient addi-
tivity properties for quantiles and stop-loss premiums. In this section,
we will look for less crude and hence better approximations for F
without losing the convenient properties of the comonotonic upper
bound approximation. The technique of taking conditional expecta-
tions will help us to achieve this goal.

For an appropriate random variable A, we consider the conditional
expectations £ [S| A = A] for all outcomes 4 of A. Now, we propose
to approximate the cdf of S by the cdf of S’, which is defined by

s'=£[s |A]= X[,

Al (20)

This approximation allows us to move from the multivariate ran-
domness of the vector (X}, X, ..., X,) to the univariate randomness of
the conditioning random variable A. Notice that a continuous version
of this technique applied to Asian option pricing is considered in
(Rogers e.a. (1995)).
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Let us now assume that all £ [X;| A] are increasing in A. In this
case, we find that S is a comonotonic sum. As a consequence, we
have that

§= Z ox, 14| 1)

where the random variable U is uniformly distributed on the unit inter-
val. Furthermore, the quantiles and the stop-loss premiums related
with §' can be expressed as a sum of corresponding quantities for the
individual terms £ [X;| A].

Concerning an appropriate choice for A, notice that when A is cho-
sen equal to S, we find that S’ = S. Therefore, intuitively it is clear that
the ‘closer’ A is to S, the better the approximation S’ will perform.
However, for the A to be useful it must enable an explicit expression
for the different E [X;| A].

The most prominent case which leads to closed form expressions for
quantiles and stop-loss premiums of &' is the one where X,=a, e",
with all ¢;>0 and (Y}, Y5, ..., ¥,) a multivariate normally distributed
random vector. In this section, we will further concentrate on this par-
ticular case.

We choose A to be a linear combination of the Y}, 1, ..., V:

A=357, (22)
i=1

for appropriate choices of the coefficients y;. In the literature, several
choices for these coefficients have been proposed. In (Kaas e.a. (2000))
it is proposed to determine A such that it can be interpreted as a first-
order approximation for the original sum S. In (Vanduffel e.a. (2005))
the conditioning r.v. A is chosen such that a first-order approximation
for the variance of §' is is maximized. In (Vanduffel e.a. (2006)) it is
argued that both choices for A in some sense provide an overall good-
ness of fit for the cdf of S, based on ', and one can further improve
the choice for A when concentrating on a particular neighborhood of
the distribution function such as the extreme lower or upper tails.
For the general A as considered in (22), we find that

a o rUAE[M
SI:Za,»e[]+[l Jo, +ro , (23)

i=1
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where the r; are the correlations between the ¥; and A:
Z j:lzk: j Yk

| 2

\fiijl(qu Tk )

From (23), we see that §' is a comonotonic sum when all correla-
tion coefficients 7; are non-negative. Notice that the particular choices
for the y; as proposed in (Kaas e.a. (2000)) and in (Vanduffel e.a.
(2005)) lead to non-negative r;. In the comonotonic case the quantiles
of § are given by

= (24)

i

_ Z 1= |o? +r0, @'
Fy(p)= 3o I 0l g par, as)

i=1

whereas the stop-loss premiums are given by

'] -

iaieﬁ[xh;a; (D(rio'Y, - q)—‘( Fy (d))) (26)
i=1

—d(1-Fy (d)), 0<d <o,

As mentioned above the expressions (23)-(26) hold when all cash
flows a; and correlations r; are positive. These results can be general-
ized. In (Vanduffel e.a. (2005)) a particular pattern of cash flows with
mixed signs of the a; is considered, whereas in (Deelstra e.a. (2006))
the case that some of the 7; are negative is dealt with.

Using Jensen’s inequality, one can prove that
S'<., S, (27)

which means that S’ is ‘less dangerous’ than S. At first sight, it seems
counter-intuitive for a risk-averse decision maker to make his deci-
sions based on the ‘less dangerous’ S'. However, numerical com-
parisons reveal that, at least when X,=a, e and assuming the
(Y, Y, ..., 7Y, to be multivariate normally distributed, the risk mea-
sures of ' can, statistically speaking, barely be distinguished from the
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risk measures of the random variable S, obtained by simulation, pro-
vided an appropriate choice is made for the conditioning r.v. A., see
for example (Albrecher e.a. (2005)). This observation may outweigh
the fact that the lower bound &' is ‘less dangerous’ and the cdf of &
may generically be considered to be an accurate approximation for the
cdf of S.

V. DEPENDENCIES IN A NON-GAUSSIAN WORLD

In the previous two sections, we considered the problem of how
to determine comonotonic lower and upper bounds for sums of r.v.’s.
We illustrated the technique by deriving explicit expressions for
sums of lognormal r.v.’s. The latter case can directly be applied for
the discounting and compounding applications described above, pro-
vided the investment returns can be described by a lognormal
process. It is well-known that daily returns are correlated and exhibit
fat tails, which implies that they cannot be adequately modelled
through normal random variables. However, several of the applica-
tions we encountered concern long time investments horizons (typi-
cally some decades) and hence, also the time unit will be expressed
in months or years. As soon as the time unit is sufficiently long,
assuming a Gaussian model for the (Y}, Y5, ..., ¥,) seems to be appro-
priate in many cases, see for instance (Cesari, e.a. (2003)) and (Levy
(2004)).

The theoretical developments concerning the comonotonic lower
and upper bounds continue to hold for non-Gaussian random vectors.
The comonotonic upper bound can readily be applied in the general
case. For sums of logelliptical r.v.’s, we refer to (Valdez e.a. (2003)).
The performance of the upper bound in case Lévy processes are
involved is investigated in (Albrecher e.a. (2005)) and (Valdez e.a.
(2003)).

The comonotonic lower bound results are more difficult to use for
general distribution functions, mainly because closed form expres-
sions for £ [X;| A] are in general not available. In (Dhaene e.a. (2005)),
the lower bound based on the conditioning technique is investigated
for sums consisting of a combination of lognormal and normal r.v.’s.
The case of sums of logelliptical r.v.’s is considered in (Valdez e.a.
(2003)). They illustrate that in the general logelliptical case, no closed-
form expressions for S are readily available.
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