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1.  Introduction 

 

In this paper we discuss some of the issues proposed in QIS3. In particular, we comment 

on and discuss the “AISAM-ACME study on non-life long-tail liabilities; reserve risk and 

risk margin assessment under Solvency II”. In the latter paper, the reserve risk calculation 

of non-life long-tail insurers is investigated based on a sample of 45 supervised insurance 

companies. In Section 2, we define the different risk measures used in a solvency 

environment. In Section 3, we show that the proposed Value-at-Risk measure is the 

solution of a general optimisation problem.  

In Section 4, we confirm the findings in the AISAM-ACME study that a loading for 

solvency by 15% of the reserves might be too high. Because the basic idea of QIS3 is to 

find a VaR for determining a loading on the calculated reserve (best estimate), a 

probabilistic approach is needed and mechanical methods or parameter-free methods 

cannot give information about the tail of the distribution. Hence the remark in the AISAM-

ACME study concerning the non-applicability of the methods is correct. 

The one-year volatility concept is discussed in Section 5. In Section 6, the relationship 

between a long-term VaR and the corresponding short-term VaR is explored. In Section 7, 

we give some simple illustrations of the fact that a long-tail business should in many cases 

lead to a lower solvency capital requirement than a short-tail business with a comparable 

amount of liabilities. Section 8 concludes the paper. 

 

 



 

2.  Risk Measures 

 

We define S as the sum of claims to be paid out over the reference period and the 

provisions to be set up at the end of the reference period, minus the sum of provisions 

available at the beginning of the reference period. The valuation principles on whose basis 

the value of the assets (represented by the available provisions, the premiums received and 

investment income generated) and, in particular, the liabilities (represented by the 

provisions to be set up and the claims to be paid out) is determined are left unspecified in 

this paper; our setup is compatible with any particular valuation basis. 

A portfolio might run into problems in the case its loss S is positive. In this case, the 

obligations to the policyholders cannot be completely covered. Solvency reflects the 

financial capacity of a particular risky business to meet its contractual obligations. To 

protect policyholders from insolvency, the regulatory authority imposes a solvency capital 

requirement ρ[S], which means that the available capital in the company has to be at least 

equal to ρ[S]. This capital can be employed when premiums and provisions, together with 

the investment income, turn out to be insufficient to cover the policyholders' claims. In 

principle, ρ[S] will be chosen such that one can be “fairly sure” that the event “S>ρ[S]” will 

not occur. 

The base probability measure could be the “physical probability measure”, but could also 

be another (for example, subjective or risk-neutral) probability measure. Two well-known 

risk measures used for setting solvency capital requirements are the Value-at-Risk and the 

Tail-Value-at-Risk1. For a given probability level p, they are denoted by VaRp (or Qp) and by 

TVaRp, respectively. They are defined by 

 { }VaR [ ] [ ] inf [ ] 0 1,p pS Q S x | P S x p ,   p= = = = < <  (1) 

and  

 [ ] [ ]
11TVaR 0 1.

1p q
p

S Q S  dq,   p
- p

= < <∫  (2) 

The shortfall of the portfolio with loss S and solvency capital requirement ρ[S] is defined 

by: 

 [ ]( ) [ ]( )max 0,S - S S - S .ρ ρ
+

≡  (3) 



The shortfall can be interpreted as that part of the loss that cannot be covered by the 

insurer. It is also referred to as the residual risk, the insolvency risk or the policyholders' deficit. 

As is well-known (see e.g. Dhaene et al. (2004)), TVaRp [S] can be expressed as a linear 

combination of the corresponding quantile and its expected shortfall: 

 [ ] [ ] [ ]( )1TVaR VaR E  ,
1p p pS S S Q S

p +
⎡ ⎤= + −⎣ ⎦−

 (4) 

where the expectation is taken with respect to the base probability measure P. 

The properties of risk measures have been investigated extensively; see e.g., Goovaerts et 

al. (1984) and Denuit et al. (2006). 

The desirability of the subadditivity property of risk measures has been a major topic for 

research and discussion; also see Section 3 of this paper. As is well-known, Value-at-Risk in 

general does not satisfy the subadditivity property (although it does in various particular 

cases), whereas for any p the Tail-Value-at-Risk measure is subadditive.  

In general, the properties that a risk measure should satisfy depend on the risk 

preferences in the economic environment under consideration. 

 

3.  Optimality of VaR 

 

This section is based on the ideas set out in Dhaene et al. (2008). Consider a portfolio with 

future loss X. As explained above, the regulator wants the solvency capital requirement 

related to X to be sufficiently large so as to ensure that the shortfall risk is sufficiently 

small. We suppose that, to achieve this goal, the regulator introduces a risk measure for the 

shortfall risk, which we will denote by φ: 

 [ ]( )X - Xϕ ρ
+

⎡ ⎤ .⎣ ⎦  (5) 

From equation (5), we see that two different risk measures are involved in the process of 

setting solvency capital requirements: the risk measure ρ that determines the solvency 

capital requirement and the risk measure φ that measures the shortfall risk. 

We will assume that φ satisfies the following condition: 

 [ ]( ) [ ]( )1 2 1 2[X] [X]  ,X - X X - Xρ ρ ϕ ρ ϕ ρ
+ +

⎡ ⎤ ⎡ ⎤≤ ⇒  ≥  ⎣ ⎦ ⎣ ⎦  (6) 

which means that an increase of the solvency capital requirement implies a reduction of the 

shortfall risk as measured by φ. A sufficient condition for (6) to hold is that φ is monotonic. 

                                                                                                                                               
1 Of these two, Value-at-Risk is currently by far the most popular risk measure in practice among both 



    Assumption (6) implies that the larger the capital, the better from the viewpoint of 

minimising [ ]( )X - Xϕ ρ
+

⎡ ⎤ ⎣ ⎦ . The regulator wants [ ]( )X - Xϕ ρ
+

⎡ ⎤ ⎣ ⎦  to be sufficiently 

small. However, holding capital ρ[X] involves a capital cost ρ[X] i, where i denotes the 

required excess return on capital. To avoid imposing an excessive burden on the insurer, 

the regulator should take this capital cost into account. For a given risk X, a given risk 

measure φ and a given number ε, 0 < ε < 1, we consider the cost function C(X, ρ[X]) given 

by  

 [ ]( ) [ ]( ) [ ],  -  ,C X X X X Xρ ϕ ρ ρ ε
+

⎡ ⎤= +⎣ ⎦  (7) 

which takes into account the shortfall risk and the capital cost. For convenience, we 

suppress in the notation the dependence of C on φ and ε. Here, ε can be interpreted as a 

measure for the extent to which the capital cost is taken into account. The regulatory 

authority can decide to let ε be company-specific or risk-specific. The optimal capital 

requirement ρ[X] can now be determined as the smallest amount d that minimises the cost 

function C(X, d). In the limiting case that ε = 0, the capital cost is not taken into account at 

all and an optimal solvency capital [ ] ( ){ }inf | 0X d X dρ ϕ
+

⎡ ⎤= − =⎣ ⎦  arises. Here, we use 

the convention that { }inf .φ = ∞  

Increasing the value of ε means that the regulator raises the relative importance of the 

cost of capital. This will result in a decrease of the optimal capital requirement. 

In the remainder of this section we will use the expectation to measure the shortfall risk, 

hence φ[X] = E[X]. 

    Clearly, the choice φ[X] = E[X] satisfies condition (6). In this case, the shortfall risk 

measure can be interpreted as the net stop-loss premium that has to be paid to reinsure the 

insolvency risk. We state the following result: 

 

Theorem 1  The smallest element in the set of minimisers to the cost function C(X, d) defined by 

 ( ) ( ), ,    0 1,C X d E X d dε ε
+

⎡ ⎤= − + < <⎣ ⎦  (8) 

is given by 

 [ ] [ ]1- .X Q Xερ =  (9) 

Proof: See Dhaene, Laeven, Vanduffel, Darkiewicz & Goovaerts (2008).  ■ 

                                                                                                                                               
regulators and risk managers; see, for example, Jorion (2001). 



 

For values of [ ]1d Q Xε−≥ , the marginal increase of the capital cost exceeds the marginal 

decrease of the expected shortfall. For values of [ ]1d Q Xε−≤ , the opposite holds. 

Remark 1   From (4) it follows that the minimal value of the cost function in (8) can be expressed as: 

 [ ]( ) [ ]( ) [ ] [ ]1 1 1 1, E TVaR .C X Q X X Q X Q X Xε ε ε εε ε− − − −+
⎡ ⎤= − + =⎣ ⎦  (10) 

Theorem 1 provides a theoretical justification for the use of Value-at-Risk to set solvency 

capital requirements. Hence, to some extent the theorem supports the current regulatory 

regime for banking supervision established by the Basel Capital Accord and the Solvency II 

regulatory regime under construction. Indeed, both have put forward a Value-at-Risk-based 

capital requirement approach. 

 

4.  Estimation of volatility using IBNR reserves 

4.1. Introduction 

 
Figure 1: Run-off Triangle 

 

An important problem in insurance, especially in the non-life, long-tail business, is to 

determine, at the end of an insurance period, how much provisions and how much capital 

should be set aside for claims already incurred but not reported yet (hence IBNR), or not 

fully paid. The past data used to construct estimates consist of numbers ijX , where i is the 



risk year and j the development year,  0,1,2,j = … By the end of calendar year n, the 

known data are ijX  for i ≤ n and   0,1, 2, ,j n i= −… . The purpose is to complete this 

run-off triangle to a square, and even to a rectangle if estimates are required pertaining to 

development years for which no data are recorded in the run-off triangle at hand. One 

method to do this is the traditional chain ladder method which can be described most 

easily as follows. Estimate the numbers iα  and jβ , denoting the total amount paid for risk 

year i and the fraction of it paid in development year j, respectively, in such a way that the 

recorded data ijX ,  i j n+ ≤  and their estimated values ˆˆi jα β  have the same row and 

column sums. Then the numbers ˆˆi jα β , i + j > n are used to complete the square, and next, 

extrapolated values ˆ
jβ  serve as the basis for completing the required rectangle. A general 

treatment can be performed using GLIM-models (see Antonio (2007)). 

As a particular case one finds the loglinear cross-classified claims reserving methods as 

described, for instance, in Redant & Goovaerts (2000). These models recognise that there 

are influences at work which tend to make claim sizes vary by year of origin as well as by 

year of payment. The ( ),i j -element in the run-off triangle is modelled by 

 ij i j i jX α β γ +≈ × ×   

The parameters iα  and jβ  are as above; the additional parameter i jγ +  denotes the calendar 

year effect (combining the effects of monetary inflation and changing jurisprudence). 

Techniques for solving the statistical problem of estimating these parameters are 

widespread since it is a standard generalised linear model in the sense of Nelder and 

Wedderburn (1972). Many statistical programmes can compute maximum likelihood 

estimates under various assumptions about the stochastic nature of the observations, using 

a logarithmic link between the mean of the observations and the linear predictor 

( )log i j i jα β γ +× × . For a description of the IBNR-model, giving the statistical 

development of a lognormal model along the three time dimensions (i, j and i + j) of the 

model, we refer to Doray (1996) and Goovaerts et al. (1990). In fact, we assume one has 

found estimators for the following multiplicative model for (non-cumulative) loss figures:  

 ,ij i j i j ijX i j nα β γ ε+≈ × × × + ≤  

Using lognormal error terms ijε , a linear model can be solved to obtain values for ˆiα , ˆ
jβ  

and î jγ + . 



4.2. Distribution function of reserve 

 

In order to find the distribution of the provision for all accident years in the triangle or for 

one accident year or calendar year we have to find the distribution for a sum of risks whose 

(lognormal) marginal distribution have been determined from the previous section (the 

risks in this sum represent payments made on different times in the future). Suppose we 

want to determine the distribution of the total IBNR-reserve at the end of the last accident 

year, let us say at time 0t 0= . Suppose also that the payment ijX  ( i j n+ > ) is performed at 

time t i j n+ − . Define t ti j−  as the difference in years between time t i  and time t j . In order 

to find the distribution for the discounted sum we have to specify a return for our assets. 

Let us define ( )0,  r t and ( )0,  s t , respectively, as the mean yearly expected return and the 

mean yearly volatility on the return between time 0 and time t. The actual value 0X  of a 

stochastic payment Xt  (depending on actuarial risk factors and not on the return) made on 

time t is determined as follows: 

 ( )
0X X ,X t

te
−=  

where 

 ( ) ( ) ( )0,
( ) ~ 0, , 0,

2
s t

X t N r t t t s t
⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

The IBNR reserve nR  can now be written as follows: 

 ( ) ,X i j n
n ij

i j n
R X e− + −

+ >

= ∑  

with  ( )2,ij ij ijX LogN μ σ∼ and the ( )X t  are normally distributed as defined above. 

Stated in a somewhat more straightforward way, we have to find a distribution for a sum 

of risks V, with V equal to 

 

 (1) (2) ( )
1 2

X X X n
nV X e X e X e− − −= + + +…  

where iX  is the risk which belongs to a cell in the loss-development array. In the model 

the marginal distribution function iF  of iX  is lognormal. The return process ( )X t   is 

normally distributed, as defined before. 



Because the dependencies between the risks iX  cannot easily be measured and because 

there is a strong positive dependency between the risks ( )X t  we will replace V by the 

comonotonic upper bound W  (see Goovaerts, Dhaene and De Schepper (2000)): 

( ) ( )( )
1

1

1
X i

i

n

X e
i

W F U F V−
−

=

−= ∑  

where U en V are mutually independent uniformly distributed random variables. 

This approximation has a distribution function which is, in the sense of convex order, an 

upper bound for the original distribution. Once we have found the comonotonic upper 

bound for the IBNR reserve we can determine all the characteristics of the distribution, 

including the Values-at-Risk and stop-loss premiums. For more information concerning the 

theoretical background, the reader is referred to Goovaerts, Dhaene, De Schepper (2000). 

In the loglinear case the residuals of the regression model are estimated in each cell. It 

follows that on the relevant diagonal of the triangle the IBNR reserve can be expressed as a 

sum over loglinear, weighted random variables, where the induced variances 2
ijσ  are 

different for each (i,j). 

For the one-year distribution, along the diagonal (as explained in the AISAM-ACME 

study on non-life, long-tail liabilities (2007)), one obtains a distribution of a sum of 

lognormal variates. The Value-at-Risk at level 1 - ε (denoted as 1VaR ε− ) of such a sum 

cannot be written as the sum of the separate Values-at-Risk: 

 
2 2

( 1) ( 1)2 2
1 1VaR VaR .

ij ij
X i j X i j

e ij ij
i j n i j n

X e e X e e
σ σ

ε

− −
− + − − + −

− −
+ > + >

⎛ ⎞
⎜

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎟ ≠
⎜
⎝ ⎠ ⎠

⎟
⎝

∑ ∑  

Denote 
2

( 1) 2
ij

X i j
ij

i j n
E X e e

σ

μ
−

− + −

+ >

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
∑  

and 
2

2 ( 1) 2Var .
ij

X i j
ij

i j n
X e e

σ

σ
−

− + −

+ >

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
∑  

Using these notations we can rewrite the inequality as follows: 

 
( )

2 2
1

( 1) 2 2
1 1VaR VaR

ij ij UX i j
e ij e

i j n
X e e e

σ σ
σ

μ
−− −

+ Φ− + −
− −

+ >

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  



with U a uniformly distributed random variable on the unit interval. However, the right-

hand side of the last inequality is exactly what the QIS3 report is setting up by introducing 

the unnecessarily complicated formula (4.258). In this case, no diversification of the risk is 

taken into account. 

The ( )1VaR  nRε− has to be determined by 

( )( )1Pr VaRn nR Rε ε−≥ =  

Hence the distribution function of nR  has to be approximated or simulated. This is the 

argumentation used in order to confirm the findings in the AISAM-ACME study that the 

loading for solvency by 15% of the reserves might be too high. Because the basic idea of 

QIS3 is finding a VaR for determining a loading on the calculated reserve (best estimate), a 

probabilistic approach is needed and mechanical methods or parameter-free methods 

cannot give information about the tail of the distribution. Accordingly, the remark in the 

AISAM-ACME study concerning the non-applicability of the methods is correct. The basic 

solvency loading is applied to the reserves at the beginning of the year. One is using the 

best estimate but no definition is given for this best estimate. 

In all practical situations one uses a safety loading in the calculation of a best estimate. A 

problem might arise when using the following formula: 

( )1 1 ,n n n
n n

n

R P RR R solvency loading
R
+ +− −

× = ×  

using estimates for nR , 1nR +  and 1nP + . In case a company applies a different estimation 

procedure, and for example reduces its reserve by 10% this would still lead to the same 

solvency loading: 

1 1 1 10.9 0.9 0.9
0.9

n n n n n n

n n

R P R R P R
R R
+ + + +− − − −

=  

However, the additional solvency margin for reaching the one-year 99.5% level is reduced 

by 10%. Hence an adequate, more appropriate estimation of the reserve is needed 

containing a more realistic safety loading. In all actuarial practice this is realised. We will 

apply a 0.75VaR  to define the best estimate. 

 



 

4.3. Application to reserve risk 

 

We can use the methodology described above to obtain an assessment of the reserve risk. 

Let nR  denote the total IBNR-reserve at current time 31.12.N. Let nP  denote the random 

amount representing the losses to be paid over the coming year or, in other words, the 

reserve for the (n+1)-th calendar year. As explained in the previous paragraph, we can 

determine the distribution function, and hence quantiles, of both nR  and nP . For simplicity 

reasons, we will ignore the effect of interest rates and not use a return process in our 

examples by assuming that r(0,t) and s(0,t) are equal to zero. 

Typically the regulator imposes a long-term provision requirement amounting to the 75% 

Value-at-Risk of the reserve nR . We can assess the relative cost price of the one-year 

solvency requirement, with a probability of ruin of 0.5%, using the following formula:  

[ ] [ ]
[ ]

99.5% 75%

75%

VaR VaR
VaR

n n

n

P P
R

−
 

The nominator is the difference between the amount of money needed to be able to cover 

all losses over the coming year with a probability of 99.5%, and the amount which would 

be set aside to cover these losses in case of the typical long-term solvency requirement. 

Applying this to two example data sets leads to the following results: 

 [ ]99.5%VaR nP  [ ]75%VaR nP  [ ]75%VaR nR  Relative Cost 

Company 1 78,203 44,120 679,132 5.02% 

Company 2 36,699 14,439 458,900 4.85% 

 

 

 

5.  The one-year volatility concept 

 

Let nR  denote the reserve at current time 31.12.N. This amount is known, and hence 

deterministic. Let nP  denote the random amount representing the losses to be paid over 

the coming year [01.01.N+1, 31.12.N+1] and 1nR +  the reserve to set up at 31.12.N+1. At 

current time the amount 1n nP R ++  is unknown, and hence random. 



Ignoring the effect of interest rates, the amount 1n nP R ++  is the amount we will need at 

time 31.12.N+1. This amount can be expressed as follows: 

( )1n n n
n n

n

P R R
R R

R
++ −

+  

        ( )1 ,n n nR R X R X= + = +  

with X defined as the relative increase of the reserve over the coming year: 

( )1 . n n n

n

P R R
X

R
++ −

=  

To describe the reserve risk, we have to find an estimate of the volatility [ ]Xσ  of this 

relative increase X. 

In case the one-year solvency requirement is set as a 99.5% VaR of nR X ,  we find that it 

is given by 

[ ] [ ]99.5% 99.5%VaR VaR . n nR X R X=  

For simplicity, let us assume that X is normally distributed. In this case we find: 

[ ] [ ] [ ] ( )( )1
99.5%VaR E  0.995 .n nR X R X Xσ −= + Φ  

Notice that E[X] and [ ]Xσ  can be estimated from historical data. 

It is important to note that on page 15 of the report, what is called “historical volatility” 

could be better called the “historical relative increase E[X] of the reserve”. Notice that 

E[X] might be close to 0, or even negative in the case of a conservative setting of the 

reserves, whereas [ ]Xσ  might be large.  

This could explain the significant difference between the “volatility” estimated in the 

study and the “volatility” proposed in the QIS3 exercise. 

 

6.  The one-year VaR versus the run-off VaR 

 

Since the study deals with long-term liabilities, it is important to draw a distinction between 

short-term and long-term certainty levels. Suppose a given insurer has liabilities over a 

period of 40 years. In order to calculate the Value-at-Risk over the entire run-off period of 

40 years, one has to decide on an appropriate choice of the long-term certainty level p. To 

do this, these long-term certainty levels, which correspond to survival over the entire run-



off period where liabilities are due (in our example 40 years), have to be “translated” into 

short-term, yearly probability levels. 

The following approximate rule can be applied to calculate the yearly probability yearlyp  

associated with a long-term survival probability over n years np : 

( )n

yearly np p=  

Using this formula, a safety level of 70% over a period of 40 years corresponds e.g. to a 

yearly certainty level of 99.11%. The yearly survival probabilities related to a range of 

different long-term certainty levels p are given below: 

 

certainty level 40p  yearly certainty level 

over a 40-year period yearlyp  

65% 98.929% 

70% 99.112% 

75% 99.283% 

80% 99.444% 

81.83% 99.500% 

85% 99.595% 

90% 99.737% 

95% 99.872% 

 

From these figures, we see for example that calculating the Value-at-Risk at 81.83%, taking 

into account the liabilities over the entire run-off period, corresponds to a yearly certainty 

level of 99.50% or, in other words, the typical short-term ruin probability of 0.5%.  

 

7.  Long-term versus short-term liabilities 

 

We will compare two situations. Suppose in Situation 1 we have a single liability of 100 in 

one year. On the other hand, in Situation 2 we have a liability of 10 each year over the next 

10 years. In other words, the total amount of liabilities is the same in both cases, but the 

horizon over which they are due differs. Suppose we can invest in assets with an expected 

yearly return of 10%, and an expected yearly volatility of 15%. 

 



EXAMPLE 1 

In this example we will compute for the two cases mentioned above the minimal required 

amount of assets to be able to fulfil the future liabilities, with a yearly ruin probability of 

0.5%. Note that, as explained in the previous section, this yearly certainty level of 99.5% 

corresponds in Situation 2 to a certainty level over the run-off period of 10 years equal 

to ( )10
10 99.5% 95.11%p = = . We get the following results: 

 Required assets 

Situation 1 134.7 

Situation 2 101.5 

 

From the Table we see that the required assets in Situation 1 are significantly higher than in 

Situation 2. 

 

EXAMPLE 2 

Now suppose we have an amount of 100 as available assets. In this example, we compute 

the survival probability in the two aforementioned situations: given the available assets of 

100, we determine the probability that all future liabilities can be fulfilled. This leads to the 

following results: 

 Survival probability 

 entire run-off yearly 

Situation 1 72% 72% 

Situation 2 94% 99.38% 

 

The results in the table show that the survival probability in the second situation is much 

higher than in the first. 

These two examples provide simple but clear illustrations of the fact that a long-tail 

business should in many cases lead to a lower solvency capital requirement than a short-tail 

business with a comparable amount of liabilities. Example 1 shows that the long-tail 

business requires significantly fewer assets to fulfil future liabilities, while taking the same 

yearly risk. Example 2 shows that the certainty level that can be achieved for a given 

amount of available assets is much higher when we consider the long-tail business. 

 



8.  Conclusion 

 

This paper considers the problem of determining appropriate solvency capital requirements 

to be set by a regulatory authority. We have shown that Value-at-Risk arises as the “most 

efficient” solvency capital requirement in an intuitive minimisation problem with a cost 

function that balances the expected shortfall and the capital cost. 

From a theoretical point of view, we have argued that a probabilistic method has to be 

used for calculating the provisions within the framework of liability risks in a long-tail 

business. We stressed the importance of defining the best estimate for the provision by 

means of a probabilistic model to obtain a solvency loading for the next year, based on 

Value-at-Risk. In our empirical results we used a 75% VaR for calculating the provision on 

two confidential run-off triangles for professional liabilities. In two real life cases, we find 

as a result that approximately 5% calculated on the best estimate is realistic for these types 

of portfolios. 
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