SOME COMMENTS ON QIS3

J. Dhaene “? M. Goovaerts K. Van Weert

(1) K.U. Leuven, Dept. Accountancy, Finance and Insurance,
Naamsestraat 69, B-3000 Leuven, Belgium.
(2) University of Amsterdam, Dept. of Quantitative Economics,

Roetersstraat 11, 1018 WB Amsterdam, The Netherlands.

1. Introduction

In this paper we discuss some of the issues proposed in QIS3. In particular, we comment
on and discuss the “AISAM-ACME study on non-life long-tail liabilities; reserve risk and
risk margin assessment under Solvency II”. In the latter paper, the reserve risk calculation
of non-life long-tail insurers is investigated based on a sample of 45 supervised insurance
companies. In Section 2, we define the different risk measures used in a solvency
environment. In Section 3, we show that the proposed Value-at-Risk measure is the
solution of a general optimisation problem.

In Section 4, we confirm the findings in the AISAM-ACME study that a loading for
solvency by 15% of the reserves might be too high. Because the basic idea of QIS3 is to
find a VaR for determining a loading on the calculated reserve (best estimate), a
probabilistic approach is needed and mechanical methods or parameter-free methods
cannot give information about the tail of the distribution. Hence the remark in the AISAM-
ACME study concerning the non-applicability of the methods is correct.

The one-year volatility concept is discussed in Section 5. In Section 06, the relationship
between a long-term VaR and the corresponding short-term VaR is explored. In Section 7,
we give some simple illustrations of the fact that a long-tail business should in many cases
lead to a lower solvency capital requirement than a short-tail business with a comparable

amount of liabilities. Section 8 concludes the paper.



2. Risk Measures

We define § as the sum of claims to be paid out over the reference period and the
provisions to be set up at the end of the reference period, minus the sum of provisions
available at the beginning of the reference period. The valuation principles on whose basis
the value of the assets (represented by the available provisions, the premiums received and
investment income generated) and, in particular, the liabilities (represented by the
provisions to be set up and the claims to be paid out) is determined are left unspecified in
this paper; our setup is compatible with any particular valuation basis.

A portfolio might run into problems in the case its loss ' is positive. In this case, the
obligations to the policyholders cannot be completely covered. Solvency reflects the
financial capacity of a particular risky business to meet its contractual obligations. To
protect policyholders from insolvency, the regulatory authority imposes a solvency capital
requirement g[S], which means that the available capital in the company has to be at least
equal to g[S]. This capital can be employed when premiums and provisions, together with
the investment income, turn out to be insufficient to cover the policyholders' claims. In
principle, g[$] will be chosen such that one can be “fairly sure” that the event “S>p[S]” will
not occut.

The base probability measure could be the “physical probability measure”, but could also
be another (for example, subjective or risk-neutral) probability measure. Two well-known
risk measures used for setting solvency capital requirements are the Value-at-Risk and the
Tail-Value-at-Risk'. For a given probability level p, they are denoted by VaR, (or Q) and by
TVaR,, respectively. They are defined by

VaR [S]=Q,[S]=inf {x|P[S=x]=p}, 0<p<], 1)
and
1 1
TVaRp[S]zﬁJ;Qq[S]dq, 0<p<L )

The shortfall of the portfolio with loss § and solvency capital requirement g[S] is defined
by:

max (0,8 - p[8])= (S - p[S]), - ©



The shortfall can be interpreted as that part of the loss that cannot be covered by the
insurer. It is also referred to as the residual risk, the insolvency risk ot the policybolders' deficit.
As is well-known (see e.g. Dhaene et al. (2004)), TVaR, [§] can be expressed as a linear

combination of the corresponding quantile and its expected shortfall:
1
TVaR,[S]=VaR, [S]+EE[(S -Q,[8]).|.

where the expectation is taken with respect to the base probability measure P.

The propertties of risk measures have been investigated extensively; see e.g., Goovaerts et
al. (1984) and Denuit et al. (20006).

The desirability of the subadditivity property of risk measures has been a major topic for
research and discussion; also see Section 3 of this paper. As is well-known, Value-at-Risk in
general does not satisfy the subadditivity property (although it does in various particular
cases), whereas for any p the Tail-Value-at-Risk measure is subadditive.

In general, the properties that a risk measure should satisfy depend on the risk

preferences in the economic environment under consideration.

3. Optimality of VaR

This section is based on the ideas set out in Dhaene et al. (2008). Consider a portfolio with
future loss X. As explained above, the regulator wants the solvency capital requirement
related to X to be sufficiently large so as to ensure that the shortfall risk is sufficiently
small. We suppose that, to achieve this goal, the regulator introduces a risk measure for the

shortfall risk, which we will denote by ¢:

o[ (x-p[X]), ] ©

From equation (5), we see that two different risk measures are involved in the process of
setting solvency capital requirements: the risk measure g that determines the solvency
capital requirement and the risk measure ¢ that measures the shortfall risk.

We will assume that ¢ satisfies the following condition:

plX1< pX]1= 0| (X-p[X]) |20 (X-2:[X]). ], ©)
which means that an increase of the solvency capital requirement implies a reduction of the

shortfall risk as measured by ¢. A sufficient condition for (6) to hold is that ¢ is monotonic.

! Of these two, Value-at-Risk is currently by far the most popular risk measure in practice among both

)



Assumption (6) implies that the larger the capital, the better from the viewpoint of
minimising go[(x -p[X])J. The regulator wants ¢|:(X -p[X])J to be sufficiently

small. However, holding capital g[X] involves a capital cost g[X] 7, where 7 denotes the
required excess return on capital. To avoid imposing an excessive burden on the insurer,
the regulator should take this capital cost into account. For a given risk X, a given risk

measure ¢ and a given number ¢, 0 < & < 1, we consider the cost function C(X, g[X]) given
by

C(X, p[X])=0[(X-p[X]), ]+ o[X] )
which takes into account the shortfall risk and the capital cost. For convenience, we
supptess in the notation the dependence of C on ¢ and ¢ Here, ¢ can be interpreted as a
measure for the extent to which the capital cost is taken into account. The regulatory
authority can decide to let ¢ be company-specific or risk-specific. The optimal capital

requirement g[X] can now be determined as the smallest amount 4 that minimises the cost

function C(X d). In the limiting case that ¢ = 0, the capital cost is not taken into account at

all and an optimal solvency capital p[X ] =inf {d |(0[(X —d )J = 0} arises. Here, we use

the convention that inf {¢} = o0,

Increasing the value of ¢ means that the regulator raises the relative importance of the
cost of capital. This will result in a decrease of the optimal capital requirement.

In the remainder of this section we will use the expectation to measure the shortfall risk,
hence ¢[X] = E[X].

Cleatly, the choice ¢[X] = E[X] satisfies condition (6). In this case, the shortfall risk
measure can be interpreted as the net stop-loss premium that has to be paid to reinsure the

insolvency risk. We state the following result:

Theorem 1 The smallest element in the set of minimisers to the cost function C(X, d) defined by

C(X,d)=E[(X-d), |+de, 0<e<L ®)
is given by
P[X]=Q.[X]
Proof: See Dhaene, Lacven, Vanduffel, Darkiewicz & Goovaerts (2008). "

regulators and risk managers; see, for example, Jorion (2001).



For values of d >2Q,_, [X ], the marginal increase of the capital cost exceeds the marginal

decrease of the expected shortfall. For values of d <Q, , [X ] , the opposite holds.

Remark 1 From (4) it follows that the minimal valne of the cost function in (8) can be expressed as:
C(X,Qu [X])=E[(X-Q.[X]), |+Q..[X]e=£TVaR, [X].  (10)

Theorem 1 provides a theoretical justification for the use of Value-at-Risk to set solvency
capital requirements. Hence, to some extent the theorem supports the current regulatory
regime for banking supervision established by the Basel Capital Accord and the Solvency 11
regulatory regime under construction. Indeed, both have put forward a Value-at-Risk-based

capital requirement approach.

4. Estimation of volatility using IBNR reserves

4.1. Introduction
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Figure 1: Run-off Triangle

An important problem in insurance, especially in the non-life, long-tail business, is to
determine, at the end of an insurance period, how much provisions and how much capital
should be set aside for claims already incurred but not reported yet (hence IBNR), or not

fully paid. The past data used to construct estimates consist of numbers X; , where 7is the

ij >



risk year and ; the development year, j = 0,1,2,... By the end of calendar year », the
known data are X; for 7/ < » and j = 0,12,...,n—i. The purpose is to complete this
run-off triangle to a square, and even to a rectangle if estimates are required pertaining to
development years for which no data are recorded in the run-off triangle at hand. One
method to do this is the traditional chain ladder method which can be described most

easily as follows. Estimate the numbers ¢; and f3;, denoting the total amount paid for risk
year 7 and the fraction of it paid in development year j, respectively, in such a way that the

recorded data X, i+J<n and their estimated values @5, have the same row and

column sums. Then the numbers &, i» 7+ j > nare used to complete the square, and next,

extrapolated values ,é ; serve as the basis for completing the required rectangle. A general

treatment can be performed using GLIM-models (see Antonio (2007)).
As a particular case one finds the loglinear cross-classified claims reserving methods as
described, for instance, in Redant & Goovaerts (2000). These models recognise that there

are influences at work which tend to make claim sizes vary by year of origin as well as by

year of payment. The (i, j) -element in the run-off triangle is modelled by

Xy max B xy,
The parameters @; and f3; are as above; the additional parameter ,,; denotes the calendar

year effect (combining the effects of monetary inflation and changing jurisprudence).
Techniques for solving the statistical problem of estimating these parameters are
widespread since it is a standard generalised linear model in the sense of Nelder and
Wedderburn (1972). Many statistical programmes can compute maximum likelihood
estimates under various assumptions about the stochastic nature of the observations, using

a logarithmic link between the mean of the observations and the linear predictor
|0g(0{i>< B %, +j)' For a description of the IBNR-model, giving the statistical

development of a lognormal model along the three time dimensions (7 7 and 7 + ) of the
model, we refer to Doray (1996) and Goovaerts et al. (1990). In fact, we assume one has
found estimators for the following multiplicative model for (non-cumulative) loss figures:
i+j<n

Xy R X B, X7, X &

Using lognormal error terms &, a linear model can be solved to obtain values for a, B i

and 7,,;.



4.2. Distribution function of reserve

In order to find the distribution of the provision for all accident years in the triangle or for
one accident year or calendar year we have to find the distribution for a sum of risks whose
(lognormal) marginal distribution have been determined from the previous section (the
risks in this sum represent payments made on different times in the future). Suppose we

want to determine the distribution of the total IBNR-reserve at the end of the last accident

year, let us say at time t, = 0. Suppose also that the payment X (i+]j>n) is performed at

time t.

irjn- Define t; —1; as the difference in years between time t; and timet;. In order

to find the distribution for the discounted sum we have to specify a return for our assets.
Let us define r (0, t) and S (O,t) , respectively, as the mean yearly expected return and the
mean yeatly volatility on the return between time 0 and time # The actual value X, of a

stochastic payment X, (depending on actuarial risk factors and not on the return) made on

time #is determined as follows:

X, =Xe 0,

X(t)~N Hr(O,t)—@]t,ts(O,t)}

The IBNR reserve R, can now be written as follows:

_ =X (i+]j-n)
R, = Z X;e ,

i+j>n

where

with  X; ~ LogN ( Ly O'ijz)and the X (t) are normally distributed as defined above.

Stated in a somewhat more straightforward way, we have to find a distribution for a sum

of risks 17, with 1 equal to

V=Xe P+ X,e @y 4+ X e
where X; is the risk which belongs to a cell in the loss-development array. In the model
the marginal distribution function F of X; is lognormal. The return process X (t) is

normally distributed, as defined before.



Because the dependencies between the risks X; cannot easily be measured and because

there is a strong positive dependency between the risks X (t) we will replace 17 by the

comonotonic upper bound IV (see Goovaerts, Dhaene and De Schepper (2000)):

W=YF, (U)F, (V)

where U en " are mutually independent uniformly distributed random variables.

This approximation has a distribution function which is, in the sense of convex order, an
upper bound for the original distribution. Once we have found the comonotonic upper
bound for the IBNR reserve we can determine all the characteristics of the distribution,
including the Values-at-Risk and stop-loss premiums. For more information concerning the
theoretical background, the reader is referred to Goovaerts, Dhaene, De Schepper (2000).

In the loglinear case the residuals of the regression model are estimated in each cell. It

follows that on the relevant diagonal of the triangle the IBNR reserve can be expressed as a
sum over loglinear, weighted random variables, where the induced variances O'ij2 are
different for each (7).

For the one-year distribution, along the diagonal (as explained in the AISAM-ACME

study on non-life, long-tail liabilities (2007)), one obtains a distribution of a sum of
lognormal variates. The Value-at-Risk at level 1 - ¢ (denoted as VaR,_,) of such a sum
cannot be written as the sum of the separate Values-at-Risk:
. —o:2
ij 1
~X(i+j-Dpa 2 —X(i+j-Dpa 2
VaR,,| > XeX®Pe 2 1 Y var, | X e X e 2|
i+j>n i+j>n
Denote
— -X(+j-Dgq 2
u=E Z X;e e
i+j>n

and

Using these notations we can rewrite the inequality as follows:

2 2
-5

VaR, | > Xe*®Pe 2 1xVaR, | pe ?

i+j>n

+o0 (V)



with U a uniformly distributed random variable on the unit interval. However, the right-
hand side of the last inequality is exactly what the QIS3 report is setting up by introducing
the unnecessatily complicated formula (4.258). In this case, no diversification of the risk is

taken into account.

The VaR,_, (R,) has to be determined by
Pr(R,2VaR,,(R,))=¢

Hence the distribution function of R, has to be approximated or simulated. This is the

argumentation used in order to confirm the findings in the AISAM-ACME study that the
loading for solvency by 15% of the reserves might be too high. Because the basic idea of
QIS3 is finding a VaR for determining a loading on the calculated reserve (best estimate), a
probabilistic approach is needed and mechanical methods or parameter-free methods
cannot give information about the tail of the distribution. Accordingly, the remark in the
AISAM-ACME study concerning the non-applicability of the methods is correct. The basic
solvency loading is applied to the reserves at the beginning of the year. One is using the
best estimate but no definition is given for this best estimate.

In all practical situations one uses a safety loading in the calculation of a best estimate. A
problem might arise when using the following formula:

R -P.,-R
X—

n ,El— n1 =R x(solvency loading),

n

R

using estimates forR,, R, and P

) .1+ 1n case a company applies a different estimation

procedure, and for example reduces its reserve by 10% this would still lead to the same

solvency loading:

R, -P

n+l _ " 'n n+l

0.9R, —0.9P,_ —0.9R
0.9R R

-R

n+l

n
However, the additional solvency margin for reaching the one-year 99.5% level is reduced
by 10%. Hence an adequate, more appropriate estimation of the reserve is needed

containing a more realistic safety loading. In all actuarial practice this is realised. We will

apply a VaR ;s to define the best estimate.



4.3. Application to reserve risk

We can use the methodology described above to obtain an assessment of the reserve risk.
Let R, denote the total IBNR-resetve at current time 31.12.N. Let P, denote the random
amount representing the losses to be paid over the coming year or, in other words, the
reserve for the (#+1)-th calendar year. As explained in the previous paragraph, we can
determine the distribution function, and hence quantiles, of both R, and P,. For simplicity
reasons, we will ignore the effect of interest rates and not use a return process in our
examples by assuming that 7(0,t) and 5(0,t) are equal to zero.

Typically the regulator imposes a long-term provision requirement amounting to the 75%
Value-at-Risk of the reserve R, . We can assess the relative cost price of the one-year

solvency requirement, with a probability of ruin of 0.5%, using the following formula:

VaR, ., [ P ] —-VaR,, [ P, ]
VaR g, [ R, ]

The nominator is the difference between the amount of money needed to be able to cover
all losses over the coming year with a probability of 99.5%, and the amount which would
be set aside to cover these losses in case of the typical long-term solvency requirement.

Applying this to two example data sets leads to the following results:
VaR, ., [ P, ] VaR ., [ P, ] VaR ., [ R, ] Relative Cost

Company 1 78,203 44,120 679,132 5.02%
Company 2 36,699 14,439 458,900 4.85%

5. The one-year volatility concept

Let R, denote the reserve at current time 31.12.N. This amount is known, and hence
deterministic. Let P, denote the random amount representing the losses to be paid over
the coming year [01.01.N+1, 31.12N+1] and R, the reserve to set up at 31.12.N+1. At

current time the amount P, +R,,; is unknown, and hence random.



Ignoring the effect of interest rates, the amount P, +R_,, is the amount we will need at

time 31.12.N+1. This amount can be expressed as follows:

(Pn + Rn+l)_ Rn
R

n

R,+R,

=R, +R X =R, (1+X),
with X defined as the relative increase of the reserve over the coming year:

X = (Pn+Rn+1)_Rn.
R

n

To describe the reserve risk, we have to find an estimate of the volatility G[X] of this
relative increase X.

In case the one-year solvency requirement is set as a 99.5% VaR of R X, we find that it
is given by

VaR, ., [Rn X ] =R, VaR ., [X ]
For simplicity, let us assume that X is normally distributed. In this case we find:
VaR g5y [R, X ] =R, (E[X]+c[X] ©7(0.995)).

Notice that E[X] and O'[X ] can be estimated from historical data.

It is important to note that on page 15 of the report, what is called “historical volatility”
could be better called the “historical relative increase E[X] of the reserve”. Notice that

E[X] might be close to 0, or even negative in the case of a conservative setting of the
reserves, whereas O'[X] might be large.

This could explain the significant difference between the “volatility” estimated in the

study and the “volatility” proposed in the QIS3 exercise.

6. The one-year VaR versus the run-off VaR

Since the study deals with long-term liabilities, it is important to draw a distinction between
short-term and long-term certainty levels. Suppose a given insurer has liabilities over a
petiod of 40 years. In order to calculate the Value-at-Risk over the entite run-off period of
40 years, one has to decide on an appropriate choice of the long-term certainty level p. To

do this, these long-term certainty levels, which correspond to survival over the entire run-



off period where liabilities are due (in our example 40 years), have to be “translated” into

short-term, yearly probability levels.

The following approximate rule can be applied to calculate the yeartly probability P,

associated with a long-term survival probability over # years p,,:

n
(pyearly) = pn
Using this formula, a safety level of 70% over a period of 40 years corresponds e.g. to a

yearly certainty level of 99.11%. The yeatly survival probabilities related to a range of

different long-term certainty levels p are given below:

certainty level P, yeatly certainty level
over a 40-year period Pyeary
65% 98.929%
70% 99.112%
75% 99.283%
80% 99.444%
81.83% 99.500%
85% 99.595%
90% 99.737%
95% 99.872%

From these figures, we see for example that calculating the Value-at-Risk at 81.83%, taking
into account the liabilities over the entire run-off period, corresponds to a yearly certainty

level of 99.50% or, in other words, the typical short-term ruin probability of 0.5%.

7. Long-term versus short-term liabilities

We will compare two situations. Suppose in Situation 1 we have a single liability of 100 in
one year. On the other hand, in Situation 2 we have a liability of 10 each year over the next
10 years. In other words, the total amount of liabilities is the same in both cases, but the
horizon over which they are due differs. Suppose we can invest in assets with an expected

yearly return of 10%, and an expected yearly volatility of 15%.



EXAMPLE 1

In this example we will compute for the two cases mentioned above the minimal required
amount of assets to be able to fulfil the future liabilities, with a yearly ruin probability of
0.5%. Note that, as explained in the previous section, this yearly certainty level of 99.5%

corresponds in Situation 2 to a certainty level over the run-off period of 10 years equal
to Py = (99.5%)10 =95.11%. We get the following results:
Required assets

Situation 1 134.7
Situation 2 101.5

From the Table we see that the required assets in Situation 1 are significantly higher than in

Situation 2.

EXAMPLE 2

Now suppose we have an amount of 100 as available assets. In this example, we compute
the survival probability in the two aforementioned situations: given the available assets of
100, we determine the probability that all future liabilities can be fulfilled. This leads to the

following results:

Survival probability
entire run-off yearly
Situation 1 72% 72%
Situation 2 94% 99.38%

The results in the table show that the survival probability in the second situation is much
higher than in the first.

These two examples provide simple but clear illustrations of the fact that a long-tail
business should in many cases lead to a lower solvency capital requirement than a short-tail
business with a comparable amount of liabilities. Example 1 shows that the long-tail
business requires significantly fewer assets to fulfil future liabilities, while taking the same
yearly risk. Example 2 shows that the certainty level that can be achieved for a given

amount of available assets is much higher when we consider the long-tail business.



8. Conclusion

This paper considers the problem of determining appropriate solvency capital requirements
to be set by a regulatory authority. We have shown that Value-at-Risk arises as the “most
efficient” solvency capital requirement in an intuitive minimisation problem with a cost
function that balances the expected shortfall and the capital cost.

From a theoretical point of view, we have argued that a probabilistic method has to be
used for calculating the provisions within the framework of liability risks in a long-tail
business. We stressed the importance of defining the best estimate for the provision by
means of a probabilistic model to obtain a solvency loading for the next year, based on
Value-at-Risk. In our empirical results we used a 75% VaR for calculating the provision on
two confidential run-off triangles for professional liabilities. In two real life cases, we find
as a result that approximately 5% calculated on the best estimate is realistic for these types

of portfolios.
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