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Abstract

Tasche (1999) introduces a capital allocation principle where the capital allocated
to each risk unit can be expressed in terms of its contribution to the conditional tail
expectation (CTE) of the aggregate risk. Panjer (2002) derives a closed-form expression
for this allocation rule in the multivariate normal case. Landsman & Valdez (2003)
generalise Panjer’s result to the class of multivariate elliptical distributions.

In this paper we provide an alternative and simpler proof for the CTE based alloca-
tion formula in the elliptical case. Furthermore, we derive accurate and easy computable
closed-form approximations for this allocation formula for sums that involve normal
and lognormal risks.

1 Introduction

Evaluating the total capital requirement of a financial conglomerate as well as the allocation
of this capital to its various business units is an important risk management issue. Recently,
several authors have proposed the Conditional Tail Expectations as an appropriate risk
measure for setting aggregate capital requirements of a financial institution, see for instance
Wang (2002). For a given probability level p, the Conditional Tail Expectation CTE,, [X] of
the random variable (rv) X is defined by

CTE, [X]=E[X | X > Q,[X]], 0<p<l, (1)
where Q,, stands for the quantile function:
Q, [X] =inf {z | Fx(z) > p}, 0<p<l1 (2)

Note that in this paper, expectations of rv’s are assumed to exist when required. For a dis-
cussion on the suitability of CTE,, [ X] to set capital requirements in a one-period framework,
see e.g. Dhaene et al. (2004).

Various capital allocation techniques have been proposed in the literature. Dhaene et
al. (2005a) introduce a general capital allocation rule which is the solution of a distance
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minimisation problem. Several well-known allocation principles turn out to be special cases
of this general allocation rule, and hence can be seen as solutions of a particular optimisation
problem.

By the additivity property of the expectation operator, the CTE allows for a natural
allocation of the aggregate capital attributed to S = X; + ... + X,, among its various

constituents X, £ =1,2,...,n. Indeed, based on the observation that
CTE, [S] = Y E[X4|S > Q, (S]], (3)
k=1

it appears ‘natural’ to consider the CTE based allocation rule where the amount F[X|S >
@, [S]] is attributed to the k-th risk.

Tasche (1999, 2004) obtains the CTE based allocation rule by a marginal cost argument.
Denault (2001) finds this allocation rule within a game theoretical framework. Panjer (2002)
provides a closed-form expression for this allocation rule when the risks are multivariate
normally distributed, and Landsman & Valdez (2002) extend Panjer’s result to the case
where the risks are multivariate elliptically distributed. The proof of their result is rather
technical and in this paper we give an elegant and shorter proof. Furthermore, we derive
closed-form approximations for the CTE based allocation rule for sums that involve normal
and lognormal risks. In the final section we provide a numerical example to illustrate the
accuracy of the approximations.

2 The CTE based allocation rule for elliptical distrib-
utions

2.1 Elliptical distributions

In this section we recall some definitions and results concerning multivariate elliptical dis-
tributions. An extended reference to this class of distributions is Fang et al. (1990).

Definition 2.1 (Multivariate elliptical distributions). Consider the vector p = (i1, ..., fin)"
and the positive semidefinite matriz X with elements oy (k,l =1,2,...,n). The random vec-
tor X=(Xq,... ,Xn)T is said to have an elliptical distribution with parameters p and X if

its characteristic function E [exp (z'zTX )} 1S expressed as

Eexp (it" X)] = exp (it" 1) ¢ (%f&) , tr = (ty,ty,... 1), (4)

for some scalar function ¢.

The function ¢ is called the characteristic generator of X. If X is elliptically distributed
as defined above we write X~ F,, (Ev 2, gb). Note that the moments of X~F,, (ﬁ, 2, <z§) do not
necessarily exist. However, in case the means exist, they are given by



The existence of the covariances is equivalent to the existence of ¢’ (0) and in this case we
find that
COV [Xk,Xl] = _¢/ (0) Okl (6)

From (4) it follows that each component X of X~FE, (ﬂ, 2, gb) is also elliptically distributed
with the same characteristic generator:

XkNEl (Mk70z7¢) ) k: 17"'7”7 (7)

and with ai = 0. Furthermore, the rv S defined by

S=).% (8)
j=1
is elliptically distributed with the same characteristic generator:
S~ El (,usﬂg', ¢) ) (9)
and with parameters p5 and 0% given by
ps =Y pjand og = Y oy, (10)
j=1 j=1 k=1

respectively. For the rv’s X and S one can prove the following regression result:

BIX|S = 5] = e+ 25" (s = us). (11)
S

provided o% > 0 and with oy g given by

Uk,S:ZUkj~ (12)
j=1

Not every multivariate elliptical distribution has a probability density function (pdf). The
following well-known theorem gives necessary and sufficient condition for the existence of an
elliptical density.

Theorem 2.1 (Elliptical densities). Consider the random vectorY . ThenY ~E, (Ev 2, (;5)
and has a density if and only if the pdf of Y is given by

el = o 5 )" 27 () 19

Gn
VIET L2

for some non-negative function g, satisfying the condition
0< / 2 g (2)dz < oo, (14)
0
a normalising constant ¢, given by

Cp = 1(;(:){33 [/000 z”/21gn(z)dz} _1, (15)

and with Y positive definite.




The function g, is called the density generator. When n = 1 we will often use the notations
g and c instead of g; and ¢y, respectively. One sometimes write Y ~F), (E’Zv gn) to indicate
n-dimensional elliptical distributions generated from the function g,. A detailed proof of
these results, using spherical transformations of rectangular coordinates, can be found in
Landsman & Valdez (2002).

In the following example we consider multivariate normal distributions which are an
important subclass of elliptical distributions.
Example 2.1 (Multivariate normal distribution). Consider the vector p = (p1, ..., fin)?
and the positive semidefinite matrix 3. The n-dimensional random vector X has the multi-
variate normal distribution with parameters i and X, notation X~N,, (H,Z), if its charac-
teristic function is given by

E [exp (iLTX)] = exp (z’ﬁTﬂ) exp (—%ﬁT&) ) (16)

From (4) we see that N, (H,Z) 15 an elliptical distribution with characteristic generator i
given by
o(t) =e . (17)

Since ¢'(0) = —% the matriz ¥ in (16) is the covariance matriz of X.
In case % is positive definite, the random vector X ~N, (Ev Z) has a pdf which is given by

fx(e) =~ exp [-4 (@) 7 (). (18)

CLERVID

Comparing (13) and (18) we find that the density generator g, and the normalising constant
cn of Ny, (Ev Z) are given by

gn(u) =¢e* (19)
and
1
Cn = 7 (20)
(2m)®
respectively.

In the following example we consider multivariate Laplace distributions which provide
another subclass of elliptical distributions.

Example 2.2 (Multivariate Laplace distribution). Following Andersen (1992), the n-
dimensional random vector X is said to have a Multiwariate Laplace pdf with mean vector u
and positive definite variance-covariance matriz X if the pdf has the form

2
(2m)? /[

Here, v = (2 — n)/2, while K,(u) is the modified Bessel function of the 3" kind, see
Abramovich € Stequn (1965, p. 376 ). We write X~La, (p,X) . Comparing (13) and (21)

o) - O e ) R T e



we find that X 1s elliptically distributed with density generator g, and normalising constant
cn given by

gn(u) = 202K, (2y/u),  u>0 (22)

and ]
Cp = —. 23
(2m)2 (23)

When n = 1 we have that

Kijo(x) = \/%exp(—:c), x>0 (24)

and we obtain the Laplace (or double exponential) pdf:

1 sl —p
fx(x)—\/ﬁo_eXp( V2 - (25)

The characteristic function of X~La, (H’ Z) is given by
1
E [exp (it" X)] = exp (it" ) (1 + St"2) 7, (26)
which tmplies that the characteristic generator ¢ is given by

(27)

o0 =

Note that since ¢'(0) = —1 the matriz X in (21) is indeed a covariance matrix.

We refer to Fang et al. (1990) for an extended list of examples of multivariate elliptical
distributions. Actuarial applications of elliptical distributions are considered in Landsman &
Valdez (2003) and Valdez & Dhaene (2004), amongst others. In the remainder of the paper
we will only consider rv’s with a finite mean.

2.2 CTE’s and the CTE based allocation rule for elliptical distri-
butions

Let X ~ Ey(u,0?, g) with 02 > 0. Landsman & Valdez (2003) prove that its Conditional
Tail Expectations are given by

c o
CTE,  X]|=u+o / g(x) dx, 0<p<l, 28
X T Sy ?® (28)

with ¢ being the appropriate normalising constant as defined in (15).
In the following two examples we derive expressions for the conditional tail expectations
of normally and Laplace distributed rv’s.



Example 2.3 (CTE’s of a normal random variable). Assume that X ~ N(u,o?) with
02 > 0. From (28) we find the well-known expressions for the CTE’s of X :

o'(27 (p))
1-p
where & denotes the cumulative distribution function (cdf) and ®' the related pdf of the

standard normally distributed rv Z ~ N(0,1). Furthermore, ®~! is the quantile function of
the standard normal cdf.

CTE,X]=p+o 0<p<l, (29)

Example 2.4 (CTE’s of a Laplace random variable). Assume that X ~ La(u,0?) with
0% > 0. Using (24) and (23), we find from (28) that

CTEp [X] =u+ m /_;Q%[X_&] exp(—2\/ﬂ)du

o

After some straightforward calculations this expression transforms into

—V2ATND) /2
e
— (== + A 1
where A and A' denote the cdf and the related quantile function Q,[X] of the standard
Laplace distributed rv Z ~ La(0,1). One can prove that

CTE, X]=p+0o

— In(2p) 0<p<i

A (p) = V2 — 31

(») { Hm2(1-p) f<p<l (31)

Landsman & Valdez (2003) derived a closed-form expression of the CTE based allocation

rule for elliptical rv’s. In the following theorem we restate their result and we give an elegant
and short proof.

Theorem 2.2 (The CTE based allocation rule for elliptical random variables). Let
X~ FE, (H’ 2, (;5) andlet S = X1+...+X,, with og > 0. Then we have that the contribution
E[Xk|S > Q,[5]] of the k-th risk, k = 1,2,...,n to CTE,[S] is given by
E[Xi]S > Qy[S]] = i+ 725 (OTE,[S] —ps).  0<p<L, (32)
0%
with ps, og and oys giwen by (10) and (12).

Proof. From the Law of Total Probability we find that

EIXIS > Q18] = [ ELXIS =] dFs(s] S > Q,[S). (33)
QplS]
Substituting the expression (11) for E[X|S = s] in (33) leads to (32). O

From the proof of Theorem 2.2 we find that relation (32) can be rewritten as
BIXiIS > Q, S]] = BIEIXS]IS > @, 8], 0<p<1. (34)
In the following examples we apply Theorem 2.2 to the classes N, (,u, ) and La, (,u, E)
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Example 2.5 (CTE based allocation for normal random variables). In case X ~
N, (1, X) with X positive definite we have that S ~ Ny (us, 0%) with 0% > 0, see (9). From
(29) and (32) we find that E[X;|S > @, [S]] is given by

BIXWS > @ [S]] = e+ 268 ZETW@) gy (35)
gs 1 —p

This expression can be found in Panjer (2002).

Example 2.6 (CTE based allocation for Laplace random variables). In case X ~
La, (H>Z) with X positive definite, we have that S ~ Lay (us, %) with 0% > 0, see (9). From
(30) and (32) we find that E[X;|S > Q,[S]] is given by

V247 0) (/2
Ok,S (& 1
ElX Q = g + — +A 1.
[(Xk|S > Qp [S]] = o X 21— p) (2 (p)); 0<p< (36)

From (32) we see that CTE based allocation rule for elliptical distributions is embedded
in a mean- (co-)variance framework. This is due to the properties of elliptical distributions,

see e.g. Embrechts et al. (2002), Landsman (2006), Landsman & Tsanakas (2006), Tsanakas
(2007) and Landsman & Neslehovd (2007).

3 Approximations for the CTE based allocation rule

3.1 The CTE based allocation rule for comonotonic risks

In the previous section we derived an explicit expression (32) for the contributions E[X}|S >Q, [S]]
in the multivariate elliptical case. Unfortunately such an explicit formula for the E[X|S >Q, [5]]
is often not available for general types of distributions, and in this case we suggest to con-
sider approximations for these conditional expectations based on the theory of comonotonic-

ity. In order to derive the approximations we first have to consider the case where X is a
comonotonic random vector.

Comonotonicity of the random vector X means that there exist non-decreasing functions
fi, f2,- -+, fo and a rv Z such that

XL (fi(2), foZ),..., }ul2)), (37)

where ‘%’ stands for ‘equality in distribution’. Equivalently, comonotonicity can be charac-
terised as

X £ (QyXi),QuXe],..., QX)) (38)

where U is an uniformly distributed rv over the unit interval (0,1). For more details on
the notion of comonotonicity and some of its applications in insurance and finance we refer
to Dhaene et al. (2002a,b). Hereafter, we will restrict to comonotonic random vectors with
continuous marginal cumulative distribution functions.



Theorem 3.1 (The CTE based allocation rule for comonotonic random variables).
Let X be a comonotonic random vector with continuous marginal cdf’s Fx, (x) = Pr[X} < z].
The contribution E[X;|S > @, [S]] of the k-th risk, k = 1,...,n, to the Conditional Tail
Ezxpectation CTE, [S] of S = X1 + ...+ X,, is given by

E[XS > Q,[9] = CTE,[X)], 0<p<L. (39)

Proof. In case X is comonotonic we have that Q,[S] = > ;_;Q, [Xs]. Furthermore, the
continuity of the marginal cdf’s implies that each Q, [X}] is a strictly increasing function in
p, 0 < p < 1. Combining these results the following equivalence relations hold for each k:

ZQU[XJ] > ZQp[Xj] S U>pe QuXi >Q, [Xi].

Hence,
E[Xy |5 > Qp[5]]
= F |Qu[X4] ‘iQU [X5] > iQp ]
= E [Qu [ X4 |($;1[Xk] > Q, [;(;ﬁ

= CTE,[X].

(]

From Theorem 3.1 we can conclude that for a comonotonic random vector X with con-

tinuous marginals, The CTE based rule for allocating CT E,[S] comes down to allocating to
each component X}, its Conditional Tail Expectation CT E, [ X].

For a general random vector X and its sum S = X; + ... + X,,, it may be difficult to
determine E[X}|S > @, [S]]. This problem can sometimes be solved by considering approxi-
mations for the contribution of the k-th risk to CTE, [S]. As in Kaas et al. (2000) we propose
to approximate the rv S by the rv S’ defined by

SL=E[S|A] = Z E[X), | Al. (40)

Here A is some appropriately chosen conditioning rv in the sense that the rv E[S | A] is
sufficiently ‘close’ to the rv S and explicit expression can be obtained for it. Note that
E[S | A] = S when taking A = S but this ideal choice for A is not feasible because it
does not allow explicit calculations. Since E[S | A] essentially predicts S based on A, hereby
eliminating the randomness of S that cannot be explained by A, one intuitively expects the
conditional expectation E[S | A] to be ‘less variable’ than S and this idea will be used to
derive an optimal choice for A. In fact it can be proven that

Var[E[S|A]] < Var[S], (41)

and also that
CTE, [E[S|A]] < CTE, 9], for any p € (0,1), (42)
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see e.g. Denuit et al. (2005) or Dhaene et al. (2006). In equations (41) and (42) an equality
will occur when A = S in which case E[S | A] = S. Hence we find that a good conditioning
rv A could be defined as one that allows explicit calculations for E[S | A] whilst obtaining as
large as possible values for Var[E[S | A]] or, alternatively, for CTE, [E[S|A]] .Note that the
latter approach is more focusing on finding optimal approximations for S in case S takes
large values whereas the former intends to provide a global optimal fit to S. We refer to
Vanduffel et al. (2006) for a more detailed discussion on the topic of appropriately choosing
the conditioning rv A.
Next, we propose to approximate E[X; | S > @, [S]] by E[X}, | S' > @, [S']] :

EX,|S>Q, S|~ EX,|5>Q,[9], 0<p<Ll (43)

From the above reasoning it becomes clear that this approximation will perform well provided
E[S | A] is a good approximation for S, especially for large values of S (i.e. when S exceeds
@Qp [S]). In the final section a numerical example will further demonstrate the accuracy of
the approximations. Note that the approximation (43) can also be written as

EX,|S>Q, S|~ E[EX,|A|S">Q,[S]], 0O<p<l. (44)

Let us now assume that the conditioning rv A is such that (E[X; | A], E[ Xy | A], ..., E[X, | A])
is a comonotonic random vector with continuous marginal cdf’s. Combining (43) and Theo-
rem 3.1 we find the following approximation for the k-th contribution to CTE, [S]:

ElXy|S>Q,[S)| ~ CTE, [E[Xy | Al], 0<p<l. (45)

This result will be used in Section 3.3 to derive approximations for the the CTE based
allocation rule for sums that involve (log)normal risks.

3.2 Lognormal and logelliptical distributions

For any n-dimensional vector x = (z1,. .. ,:cn)T with positive components x;, we define
Inx = (lnxl,lnxg,...,lnxn)T. (46)

The random vector X is said to have a multivariate logelliptical distribution if In X has a
multivariate elliptical distribution. We denote In X ~ FE, (H’Z’ gb) as X ~ LE, (E’Z’ gb).
Similar notations hold for the class of lognormal and logLaplace distributions.

Let In X ~ B (1,02, ¢) with 02 > 0 and assume that there exists a § > "—22 such that the
characteristic generator ¢(u), which is actually defined on [0, c0), can be positively extended
to the interval [—d, 00). Then, the following expression can be derived for the Conditional
Tail Expectations of X:

et

CTE, [X] = ;=0 <—";) Pr(z">Q,[Z]]. O0<p<l, (47)

where Z = lnXT*“ and Z* is a rv with pdf given by



see Valdez & Dhaene (2004)). In the next two examples we make use of (47) to derive
expressions for the CTE’s of lognormal and loglLaplace distributions.

Example 3.1 (CTE’s of a lognormal random variable). When X ~ LN;(u,0?) with
2

o? >0, we find from (17) that ¢ (—%2) = e and hence that Z* ~ N(o,1). From (47), we

find that the CTE’s are given by

et T

CTE, [X] = ®(oc— 2 (p), 0<p<l. (49)

l—p

where, as before, ® and ®~'denote the standard normal cdf and its associated quantile func-
tion respectively.

Example 3.2 (CTE’s of a log-Laplace random variable). When X ~ LLa;(p, o) with
o? > 0, we find from (27) that ¢ (—U—;) = 1_%_2, which is positive when o < \/2. From (25)
and (48), we find that fz-(x) is given by i
1 - 02/2 _\/§| |
(1) = ——=—e7" VAT o< V2. 50

From (81) and (47) we find the following expression for the CTE’s of the logLaplace distri-
bution if o < V2:

CTE, [X] = % ¢ (‘;2) L—0"/2 /(:Z} exp((0 — V2)z)da,

1—p V2
(2p)7/ Vet . 1
— 2p(1-p)(2—v20)  ° O<p<s3 (51)
\/5 et .1 < <1 ’
2P/ V(o) 2P
3.3 The CTE based allocation rule for (log)normal sums
In this section we consider the random vector X = (X3, ..., X,,) given by
(X1, ..., Xo) = (Y1, ..., Y, e¥m e, (52)

where Y = (V7,...,Y,) ~ N, (,u, ) As before, we denote the elements of the vector p by
1, and the elements of the positive definite assumed matrix X by oy, k,1 = 1,2,....,n. The
aggregate risk is denoted by S:

S:iYH Zn: ek, (53)
k=1 k=m+1

As it is not possible to derive an analytical expression for E[X} | S > @, [S]] in this case,
we propose to approximate the rv S by the rv S’ defined by

S'=E[S|A] = ZEYHA+Z ¥ | A, (54)

k=m+1
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where the conditioning rv A is given by

A= "BV (55)
k=1
Let us denote the correlation between Y, and A by r:
1 n
= Yi, Al = kE=1,2,..
r, = corr [V, A] o o ;ﬁl Okl 325 ey Ty (56)

with o3 given by

oy = ZZﬁk B O (57)

k=1 1=1
As far as the choice for A is concerned, we make the following general suggestion for the
coefficients [ :
1 ck=1,2,...,m,
Bl_{e“k ck=m+1,,..,n. (58)

Indeed, we notice that this choice makes A a linear transformation of a first-order approxi-
mation to the sum S. This can be easily deduced from the following computation:

S = iyk + i etk +(Yi—pk)

k=1 k=m+1
n

A Vit Y e+ Y — )

k=1 k=m+1
m n

RCH+Y Vit Y e, (59)

with C' an appropriate constant. Consequently, this choice for A ensures that E[Var[S | A]]
will become ‘small’. Since Var[S] =E[Var[S | A]] +Var[E[S | A]] this is equivalent to saying
that Var[E[S | A]] becomes ‘large’, see e.g. Kaas et al. (2000) or Vanduffel et al. (2006).

Next, as in (43) we propose to approximate E[X}, | S > Q, [S]] by E[X; | S' > @, [S']].
In the following theorem, we derive a closed-form expression for this approximation of the
k-th contribution to CTE, [S] in case all correlations 7, are positive.

Theorem 3.2 (CTE based allocation for sums of (log)normal random variables).
Using the notations and assumptions introduced in Subsection 3.3 and assuming that all
correlations ry are positive, we have that the approzimation E[Xy | S' > Q, [S']], 0 <p <1,
for the k-th contribution to CTE[S] is given by

P’ (I)_l
E[XHSZ > Qp[Sl]] = Ug + T O X %p(p)) (60)
when k =1,2,...,m, and by
I I eluk‘i'%i
ElXk]S" > QS]] = — Ory o — 7' (p)] (61)

when k=m+1,...,n.
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Proof. Conditional on A = )\, we have that Y; ~ N; (,uk +rpZE (A= E[A]); (1= 1) a,%).
For k = 1,2, ..., m, this leads to

A—FE[A
E[Xy[A] = EY), [ A] = pu + i 0% (O_—AH) ~ Ny (Mk; T 0'1%) )
whilst for k = m + 1, ..., n, we have that
—r it e o [ A=E8] 2
E[Xk‘A] — E[eYk | A] — €Mk+(1 z)_zk"" k k( oA ) ~ LNl (,U/k —+ (1 — 7’2)%7 le O'l%) .

From these observations and the assumption that all r; are positive, we find that the random
vector (E[X; | A],E[Xy | Al,..., E[X, | A]) is comonotonic with continuous marginal cdf’s.
Applying (45), we can conclude that

EX,| S8 >Q, 8] =CTE, [E[Xy|A]], 0<p<L.

Taking into account expressions (29) and (49) for the CTE’s of (log)normal rv’s, we find
(60) and (61).

([

From the previous results we also find an expression for the approximation E[S |S! >

Q,[9"Y] of CTE, [S]:

3 vEo)], g oS i
l i 1
E[S‘S > QP[SH = 2 |:,Uk + 70 X ﬁ +k:m+1 1 ) CI)[Tk o,—P (p), 0< p < 1.

(62)
This approximation for CTE, [S] can also be found in Dhaene et al. (2005b) where it was
derived by considering F[S'S! > Q,[5"]].

4 Numerical Illustration

Consider an insurance company with 4 business lines. The multivariate risk X= (X, ..., X4)T
faced by this company is assumed to be multivariate lognormally distributed:

X ~ LNy (1, %)
with E[X}] and Var[X}], k = 1,...4, given by
(E[X1], E[X,], E[Xs], E[X4]) = (20,40, 10, 5)

and
(Var[Xi], Var[X,], Var[X3)], Var[X4]) = (5%, 15%,2%,2%)

respectively. Furthermore, the matrix X is given by
0% Qo103 Q0103 Q0104
09201 0'% Q0903 (0204

0301 QO302 O'g Q0304
0401 (0409 (X0O403 O'i

¥ =

12



We will consider the cases a = 0.75 and « = 0, respectively.

For each business line k£ we determine the contribution E[X¢|S > (Qo.9995[5]] in two ways.
Firstly, Monte Carlo simulations are performed. Due to the high probability level p = 0.9995,
a large sample of 10° realisations of S is used. These estimations are performed 10 times in
order to obtain an estimate for the standard deviation of the sampling error. Secondly, the
comonotonic approximation

2
o

E[Xk\sl > Q0.9995[Sl]] = 109995

Oy o, — ©7(0.9995)] (63)
is calculated. As far as the choice of the conditioning rv A is concerned we could make use of
the general expression (58) to determine the choice of the parameters 3. However, since the
sum S only involves lognormals we can also apply a slightly more involved approach hereby
relying on inequality (42). Hence, we suggest to choose the parameters [ for A such that a

first order approximation for the CTEg gg95 [Sl} becomes maximised:

oo

Here, r} is the correlation between Yj, = In(X}) and the rv A* = Z;”Zl etrt3o} Y. This choice
is designed to make A such that S’ is ‘close’ to S for large values of S, which for our purposes
is to be preferred above the general choice (58) for the parameters (i, see also Vanduffel et
al. (2006). Note that for a = 0.75 and a = 0, the choice (64) for the parameters [, ensures
that the correlations 7, defined in (56) are positive.

Let us first consider the case that a = 0.75, which means that the different business
lines are rather strongly positively dependent. In Table 1 we provide the Monte Carlo based
estimates as well as the approximations (63) of the different contributions to C'T' Eq gg95 [S]-
From Table 1 we can conclude that the comonotonic approximations (63) closely match the
values obtained by the extensive Monte Carlo simulation.

@' (d=1(0.9995))

et t307 s o= 5 (rfor—®71(0.9995))

l=1,2,...,m,

4
l=m+1,,..,n. (64)

Table 1: Estimation of the contributions Cyggo5[X%] = E[Xk|S > Qo.9905[5]], o = 0.75.

Co.9995[X1]  Co.9995[X2] Co.9995[X3] Co.9995[X4] | CT Ep.99955[5]
Monte Carlo Estim. 34.89 94.67 15.68 10.68 155.65
Sample Stand. Dev. 0.19 0.53 0.10 0.10 0.69
Comon. Approx. 34.95 94.20 15.72 10.67 155.54
Relative Difference -0.18 % 0.50 % -0.27 % 0.12 % 0.07 %

Next in Table 2 we present the Monte Carlo based estimates as well as the approximations
(63) of the different contributions to C'T Eggg95 [S] for v = 0. Intuitively, one expects that
the less correlated the business lines the worse the comonotonic approximation (63) will
perform. This is because when S is a comonotonic sum we have that S = S' so that in this
case the contributions based on the rv S! will coincide with those based on S. However, from
Table 2 we can conclude that the approximations (63) based on the theory of comonotonicity
continue to perform very well in case the business lines are assumed to be independent.
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Table 2: Estimation of the contributions Cyggo5[Xi| = E[Xk|S > Qo.9905[5]], o = 0.

Co.9995[X1]  Co.9995[X2] Co.9995[X3] Co.9995[X4] | CT Ep.9995[5]
Monte Carlo Estim. 22.62 94.11 10.39 5.32 132.45
Sample Stand. Dev. 0.18 0.36 0.08 0.06 0.33
Comon. Approx. 23.00 93.54 10.44 5.33 132.30
Relative Difference -1.6 % 0.61 % -0.44 % -0.18 % 0.11 %

5 Final Remarks

The Enterprise Risk Management process of a financial institution usually contains a pro-
cedure to allocate, or subdivide, the total risk capital of the company into its different
business units. Several capital allocation rules have been described in the literature. We re-
fer to Dhaene et al. (2005a) for a general framework that incorporates many of these capital
allocation rules.

The CTE based allocation rule as proposed by Tasche (1999) and Denault (2001) de-
composes the CTE of the aggregate risk into its marginals’ contributions. Panjer (2002)
provides a closed-form expression for this allocation when the risks are all multivariate nor-
mally distributed, whereas Landsman & Valdez (2003) consider the multivariate elliptical
case. The proof of their result is rather technical and in this paper we gave a shorter and
straightforward proof of the Landsman & Valdez formula.

We also extend the field where analytical solutions for the CTE based allocation rule are
available by deriving accurate and easy to compute closed-form approximations for this rule
in the case that the risks of the different units have a multivariate (log)normal distribution.

Note that in recent literature other extensions have been investigated as well. Furman
& Landsman (2005) derive analytical expressions for CTE’s and the CTE based allocation
for multivariate gamma distributions. Cai & Li (2005) and Chiragiev & Landsman (2006)
consider the same problem for multivariate phase type distributions and Pareto distributions,
respectively. Finally, Furman & Landsman (2007) derive analytical expressions for these
quantities related with multivariate Poisson distributions.
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