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Abstract

Tasche (1999) introduces a capital allocation principle where the capital allocated
to each risk unit can be expressed in terms of its contribution to the conditional tail
expectation (CTE) of the aggregate risk. Panjer (2002) derives a closed-form expression
for this allocation rule in the multivariate normal case. Landsman & Valdez (2003)
generalise Panjer’s result to the class of multivariate elliptical distributions.

In this paper we provide an alternative and simpler proof for the CTE based alloca-
tion formula in the elliptical case. Furthermore, we derive accurate and easy computable
closed-form approximations for this allocation formula for sums that involve normal
and lognormal risks.

1 Introduction

Evaluating the total capital requirement of a financial conglomerate as well as the allocation
of this capital to its various business units is an important risk management issue. Recently,
several authors have proposed the Conditional Tail Expectations as an appropriate risk
measure for setting aggregate capital requirements of a financial institution, see for instance
Wang (2002). For a given probability level p, the Conditional Tail Expectation CTEp [X] of
the random variable (rv) X is defined by

CTEp [X] = E
[
X | X > Qp [X]

]
, 0 < p < 1, (1)

where Qp stands for the quantile function:

Qp [X] = inf {x | FX(x) ≥ p} , 0 < p < 1 (2)

Note that in this paper, expectations of rv’s are assumed to exist when required. For a dis-
cussion on the suitability of CTEp [X] to set capital requirements in a one-period framework,
see e.g. Dhaene et al. (2004).

Various capital allocation techniques have been proposed in the literature. Dhaene et
al. (2005a) introduce a general capital allocation rule which is the solution of a distance
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minimisation problem. Several well-known allocation principles turn out to be special cases
of this general allocation rule, and hence can be seen as solutions of a particular optimisation
problem.

By the additivity property of the expectation operator, the CTE allows for a natural
allocation of the aggregate capital attributed to S = X1 + . . . + Xn among its various
constituents Xk, k = 1, 2, . . . , n. Indeed, based on the observation that

CTEp [S] =
n∑

k=1

E[Xk|S > Qp [S]], (3)

it appears ‘natural’ to consider the CTE based allocation rule where the amount E[Xk|S >
Qp [S]] is attributed to the k-th risk.

Tasche (1999, 2004) obtains the CTE based allocation rule by a marginal cost argument.
Denault (2001) finds this allocation rule within a game theoretical framework. Panjer (2002)
provides a closed-form expression for this allocation rule when the risks are multivariate
normally distributed, and Landsman & Valdez (2002) extend Panjer’s result to the case
where the risks are multivariate elliptically distributed. The proof of their result is rather
technical and in this paper we give an elegant and shorter proof. Furthermore, we derive
closed-form approximations for the CTE based allocation rule for sums that involve normal
and lognormal risks. In the final section we provide a numerical example to illustrate the
accuracy of the approximations.

2 The CTE based allocation rule for elliptical distrib-

utions

2.1 Elliptical distributions

In this section we recall some definitions and results concerning multivariate elliptical dis-
tributions. An extended reference to this class of distributions is Fang et al. (1990).

Definition 2.1 (Multivariate elliptical distributions). Consider the vector µ = (µ1, ..., µn)
T

and the positive semidefinite matrix Σ with elements σkl (k, l = 1, 2, ..., n). The random vec-
tor X=(X1, . . . , Xn)

T is said to have an elliptical distribution with parameters µ and Σ if

its characteristic function E
[
exp
(
itTX

)]
is expressed as

E
[
exp
(
itTX

)]
= exp

(
itTµ

)
φ

(
1

2
tTΣt

)
, tT = (t1, t2, . . . , tn) , (4)

for some scalar function φ.

The function φ is called the characteristic generator of X. If X is elliptically distributed
as defined above we write X∼En

(
µ,Σ, φ

)
. Note that the moments of X∼En

(
µ,Σ, φ

)
do not

necessarily exist. However, in case the means exist, they are given by

E [Xk] = µk. (5)
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The existence of the covariances is equivalent to the existence of φ′ (0) and in this case we
find that

Cov [Xk, Xl] = −φ′ (0) σkl. (6)

From (4) it follows that each component Xk of X∼En
(
µ,Σ, φ

)
is also elliptically distributed

with the same characteristic generator:

Xk∼E1
(
µk, σ

2
k, φ
)
, k = 1, . . . , n, (7)

and with σ2k = σkk. Furthermore, the rv S defined by

S =
n∑

j=1

Xj (8)

is elliptically distributed with the same characteristic generator:

S ∼ E1
(
µS,σ

2
S, φ
)
, (9)

and with parameters µS and σ2S given by

µS =
n∑

j=1

µj and σ2S =
n∑

j=1

n∑

k=1

σjk, (10)

respectively. For the rv’s Xk and S one can prove the following regression result:

E [Xk|S = s] = µk +
σk,S
σ2S

(s− µS) , (11)

provided σ2S > 0 and with σk,S given by

σk,S =
n∑

j=1

σkj. (12)

Not every multivariate elliptical distribution has a probability density function (pdf). The
following well-known theorem gives necessary and sufficient condition for the existence of an
elliptical density.

Theorem 2.1 (Elliptical densities). Consider the random vector Y . Then Y∼En
(
µ,Σ, φ

)

and has a density if and only if the pdf of Y is given by

fY (y) =
cn√
|Σ|

gn

[
1

2

(
y−µ

)T
Σ−1

(
y−µ

)]
(13)

for some non-negative function gn satisfying the condition

0 <

∫ ∞

0

zn/2−1gn(z)dz <∞, (14)

a normalising constant cn given by

cn =
Γ (n/2)

(2π)n/2

[∫ ∞

0

zn/2−1gn(z)dz

]−1
, (15)

and with Σ positive definite.
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The function gn is called the density generator. When n = 1 we will often use the notations
g and c instead of g1 and c1, respectively. One sometimes write Y∼En

(
µ,Σ, gn

)
to indicate

n-dimensional elliptical distributions generated from the function gn. A detailed proof of
these results, using spherical transformations of rectangular coordinates, can be found in
Landsman & Valdez (2002).

In the following example we consider multivariate normal distributions which are an
important subclass of elliptical distributions.

Example 2.1 (Multivariate normal distribution). Consider the vector µ = (µ1, ..., µn)
T

and the positive semidefinite matrix Σ. The n-dimensional random vector X has the multi-
variate normal distribution with parameters µ and Σ, notation X∼Nn

(
µ,Σ
)
, if its charac-

teristic function is given by

E
[
exp
(
itTX

)]
= exp

(
itTµ

)
exp
(
−1
2
tTΣt

)
. (16)

From (4) we see that Nn

(
µ,Σ
)
is an elliptical distribution with characteristic generator ψ

given by
φ(t) = e−t. (17)

Since φ′(0) = −1
2
the matrix Σ in (16) is the covariance matrix of X.

In case Σ is positive definite, the random vector X∼Nn

(
µ,Σ
)
has a pdf which is given by

fX (x) =
1

(2π)
n
2

√
|Σ|

exp
[
−1
2

(
x−µ

)T
Σ−1

(
x−µ

)]
. (18)

Comparing (13) and (18) we find that the density generator gn and the normalising constant
cn of Nn

(
µ,Σ
)
are given by

gn(u) = e−u (19)

and

cn =
1

(2π)
n
2

, (20)

respectively.

In the following example we consider multivariate Laplace distributions which provide
another subclass of elliptical distributions.

Example 2.2 (Multivariate Laplace distribution). Following Andersen (1992), the n-
dimensional random vector X is said to have a Multivariate Laplace pdf with mean vector µ
and positive definite variance-covariance matrix Σ if the pdf has the form

fX (x) =
2

(2π)
n
2

√
|Σ|

[
1
2

(
x−µ

)T
Σ−1

(
x−µ

)]υ/2
Kυ

(

2

√
1

2

(
x−µ

)T
Σ−1

(
x−µ

)
)

. (21)

Here, υ = (2 − n)/2, while Kυ(u) is the modified Bessel function of the 3rd kind, see
Abramovich & Stegun (1965, p. 376 ). We write X∼Lan

(
µ,Σ
)
. Comparing (13) and (21)
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we find that X is elliptically distributed with density generator gn and normalising constant
cn given by

gn(u) = 2u
υ/2Kυ(2

√
u), u > 0 (22)

and

cn =
1

(2π)
n
2

. (23)

When n = 1 we have that

K1/2(x) =

√
π

2x
exp(−x), x > 0 (24)

and we obtain the Laplace (or double exponential) pdf:

fX(x) =
1√
2σ
exp(−

√
2
|x− µ|

σ
). (25)

The characteristic function of X∼Lan
(
µ,Σ
)
is given by

E
[
exp
(
itTX

)]
= exp

(
itTµ

)
(1 +

1

2
tTΣt)−1, (26)

which implies that the characteristic generator φ is given by

φ(t) =
1

1 + t
. (27)

Note that since φ′(0) = −1 the matrix Σ in (21) is indeed a covariance matrix.

We refer to Fang et al. (1990) for an extended list of examples of multivariate elliptical
distributions. Actuarial applications of elliptical distributions are considered in Landsman &
Valdez (2003) and Valdez & Dhaene (2004), amongst others. In the remainder of the paper
we will only consider rv’s with a finite mean.

2.2 CTE’s and the CTE based allocation rule for elliptical distri-
butions

Let X ∼ E1(µ, σ
2, g) with σ2 > 0. Landsman & Valdez (2003) prove that its Conditional

Tail Expectations are given by

CTEp [X] = µ+ σ
c

(1− p)

∫ ∞

1
2
Q2p[X−µσ ]

g(x) dx, 0 < p < 1, (28)

with c being the appropriate normalising constant as defined in (15).
In the following two examples we derive expressions for the conditional tail expectations

of normally and Laplace distributed rv’s.
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Example 2.3 (CTE’s of a normal random variable). Assume that X ∼ N(µ, σ2) with
σ2 > 0. From (28) we find the well-known expressions for the CTE’s of X :

CTEp [X] = µ+ σ
Φ′ (Φ−1 (p))

1− p
, 0 < p < 1, (29)

where Φ denotes the cumulative distribution function (cdf) and Φ′ the related pdf of the
standard normally distributed rv Z ∼ N(0, 1). Furthermore, Φ−1 is the quantile function of
the standard normal cdf.

Example 2.4 (CTE’s of a Laplace random variable). Assume that X ∼ La(µ, σ2) with
σ2 > 0. Using (24) and (23), we find from (28) that

CTEp [X] = µ+
σ

(1− p)
√
2

∫ ∞

1
2
Q2p[X−µσ ]

exp(−2
√
u)du.

After some straightforward calculations this expression transforms into

CTEp [X] = µ+ σ
e−
√
2 Λ−1(p)

2(1− p)
(

√
2

2
+ Λ−1(p)), 0 < p < 1, (30)

where Λ and Λ−1 denote the cdf and the related quantile function Qp [X] of the standard
Laplace distributed rv Z ∼ La(0, 1). One can prove that

Λ−1(p) =

{
1√
2
ln(2p) : 0 < p ≤ 1

2
,

− 1√
2
ln(2(1− p)) : 1

2
< p < 1.

(31)

Landsman & Valdez (2003) derived a closed-form expression of the CTE based allocation
rule for elliptical rv’s. In the following theorem we restate their result and we give an elegant
and short proof.

Theorem 2.2 (The CTE based allocation rule for elliptical random variables). Let
X ∼ En

(
µ,Σ, φ

)
and let S = X1+ . . .+Xn with σS > 0. Then we have that the contribution

E[Xk|S > Qp [S]] of the k-th risk, k = 1, 2, . . . , n to CTEp [S] is given by

E[Xk|S > Qp [S]] = µk +
σk,S
σ2S

(CTEp [S]− µS) , 0 < p < 1, (32)

with µS, σS and σk,S given by (10) and (12).

Proof. From the Law of Total Probability we find that

E[Xk|S > Qp [S]] =

∫ ∞

Qp[S]

E[Xk|S = s] dFS (s | S > Qp [S]) . (33)

Substituting the expression (11) for E[Xk|S = s] in (33) leads to (32).

From the proof of Theorem 2.2 we find that relation (32) can be rewritten as

E[Xk|S > Qp [S]] = E[E[Xk|S]|S > Qp [S]], 0 < p < 1. (34)

In the following examples we apply Theorem 2.2 to the classes Nn

(
µ,Σ
)

and Lan
(
µ,Σ
)
.
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Example 2.5 (CTE based allocation for normal random variables). In case X ∼
Nn

(
µ,Σ
)
with Σ positive definite we have that S ∼ N1 (µS, σ

2
S) with σ2S > 0, see (9). From

(29) and (32) we find that E[Xk|S > Qp [S]] is given by

E[Xk|S > Qp [S]] = µk +
σk,S
σS

× Φ
′ (Φ−1 (p))

1− p
, 0 < p < 1. (35)

This expression can be found in Panjer (2002).

Example 2.6 (CTE based allocation for Laplace random variables). In case X ∼
Lan

(
µ,Σ
)
with Σ positive definite, we have that S ∼ La1 (µS, σ

2
S) with σ2S > 0, see (9). From

(30) and (32) we find that E[Xk|S > Qp [S]] is given by

E[Xk|S > Qp [S]] = µk +
σk,S
σS

× e−
√
2 Λ−1(p)

2(1− p)
(

√
2

2
+ Λ−1(p)), 0 < p < 1. (36)

From (32) we see that CTE based allocation rule for elliptical distributions is embedded
in a mean- (co-)variance framework. This is due to the properties of elliptical distributions,
see e.g. Embrechts et al. (2002), Landsman (2006), Landsman & Tsanakas (2006), Tsanakas
(2007) and Landsman & Nešlehová (2007).

3 Approximations for the CTE based allocation rule

3.1 The CTE based allocation rule for comonotonic risks

In the previous section we derived an explicit expression (32) for the contributions E[Xk|S >Qp [S]]
in the multivariate elliptical case. Unfortunately such an explicit formula for the E[Xk|S >Qp [S]]
is often not available for general types of distributions, and in this case we suggest to con-
sider approximations for these conditional expectations based on the theory of comonotonic-
ity. In order to derive the approximations we first have to consider the case where X is a
comonotonic random vector.

Comonotonicity of the random vector X means that there exist non-decreasing functions
f1, f2, . . . , fn and a rv Z such that

X
d
= (f1(Z), f2(Z), . . . , fn(Z)) , (37)

where ‘
d
=’ stands for ‘equality in distribution’. Equivalently, comonotonicity can be charac-

terised as
X

d
= (QU [X1] ,QU [X2] , . . . ,QU [Xn]) , (38)

where U is an uniformly distributed rv over the unit interval (0, 1). For more details on
the notion of comonotonicity and some of its applications in insurance and finance we refer
to Dhaene et al. (2002a,b). Hereafter, we will restrict to comonotonic random vectors with
continuous marginal cumulative distribution functions.
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Theorem 3.1 (The CTE based allocation rule for comonotonic random variables).
Let X be a comonotonic random vector with continuous marginal cdf’s FXk(x) = Pr[Xk ≤ x].
The contribution E[Xk|S > Qp [S]] of the k-th risk, k = 1, . . . , n, to the Conditional Tail
Expectation CTEp [S] of S = X1 + . . .+Xn is given by

E[Xk|S > Qp [S]] = CTEp [Xk] , 0 < p < 1. (39)

Proof. In case X is comonotonic we have that Qp [S] =
∑n

k=1Qp [Xk]. Furthermore, the
continuity of the marginal cdf’s implies that each Qp [Xk] is a strictly increasing function in
p, 0 < p < 1. Combining these results the following equivalence relations hold for each k:

n∑

j=1

QU [Xj] >
n∑

j=1

Qp [Xj ]⇔ U > p⇔ QU [Xk] > Qp [Xk] .

Hence,

E[Xk |S > Qp[S]]

= E

[

QU [Xk] |
n∑

j=1

QU [Xj] >
n∑

j=1

Qp [Xj ]

]

= E
[
QU [Xk] |QU [Xk] > Qp [Xk]

]

= CTEp [Xk] .

�

From Theorem 3.1 we can conclude that for a comonotonic random vector X with con-
tinuous marginals, The CTE based rule for allocating CTEp[S] comes down to allocating to
each component Xk its Conditional Tail Expectation CTEp [Xk].

For a general random vector X and its sum S = X1 + . . . + Xn, it may be difficult to
determine E[Xk|S > Qp [S]]. This problem can sometimes be solved by considering approxi-
mations for the contribution of the k-th risk to CTEp [S]. As in Kaas et al. (2000) we propose
to approximate the rv S by the rv Sl defined by

Sl = E[S | Λ] =
n∑

k=1

E[Xk | Λ]. (40)

Here Λ is some appropriately chosen conditioning rv in the sense that the rv E[S | Λ] is
sufficiently ‘close’ to the rv S and explicit expression can be obtained for it. Note that
E[S | Λ] ≡ S when taking Λ ≡ S but this ideal choice for Λ is not feasible because it
does not allow explicit calculations. Since E[S | Λ] essentially predicts S based on Λ, hereby
eliminating the randomness of S that cannot be explained by Λ, one intuitively expects the
conditional expectation E[S | Λ] to be ‘less variable’ than S and this idea will be used to
derive an optimal choice for Λ. In fact it can be proven that

Var[E[S|Λ]] ≤ Var[S], (41)

and also that
CTEp [E[S|Λ]] ≤ CTEp [S] , for any p ∈ (0, 1) , (42)
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see e.g. Denuit et al. (2005) or Dhaene et al. (2006). In equations (41) and (42) an equality
will occur when Λ ≡ S in which case E[S | Λ] ≡ S. Hence we find that a good conditioning
rv Λ could be defined as one that allows explicit calculations for E[S | Λ] whilst obtaining as
large as possible values for Var[E[S | Λ]] or, alternatively, for CTEp [E[S|Λ]] .Note that the
latter approach is more focusing on finding optimal approximations for S in case S takes
large values whereas the former intends to provide a global optimal fit to S. We refer to
Vanduffel et al. (2006) for a more detailed discussion on the topic of appropriately choosing
the conditioning rv Λ.

Next, we propose to approximate E[Xk | S > Qp [S]] by E[Xk | Sl > Qp

[
Sl
]
] :

E[Xk | S > Qp [S]] ≈ E[Xk | Sl > Qp

[
Sl
]
], 0 < p < 1. (43)

From the above reasoning it becomes clear that this approximation will perform well provided
E[S | Λ] is a good approximation for S, especially for large values of S (i.e. when S exceeds
Qp [S]). In the final section a numerical example will further demonstrate the accuracy of
the approximations. Note that the approximation (43) can also be written as

E[Xk | S > Qp [S]] ≈ E
[
E[Xk | Λ]|Sl > Qp

[
Sl
]]

, 0 < p < 1. (44)

Let us now assume that the conditioning rv Λ is such that (E[X1 | Λ], E[X2 | Λ], . . . , E[Xn | Λ])
is a comonotonic random vector with continuous marginal cdf’s. Combining (43) and Theo-
rem 3.1 we find the following approximation for the k-th contribution to CTEp [S]:

E[Xk | S > Qp [S]] ≈ CTEp [E[Xk | Λ]] , 0 < p < 1. (45)

This result will be used in Section 3.3 to derive approximations for the the CTE based
allocation rule for sums that involve (log)normal risks.

3.2 Lognormal and logelliptical distributions

For any n-dimensional vector x = (x1, . . . , xn)
T with positive components xi, we define

ln x = (ln x1, ln x2, ..., lnxn)
T . (46)

The random vector X is said to have a multivariate logelliptical distribution if lnX has a
multivariate elliptical distribution. We denote lnX ∼ En

(
µ,Σ, φ

)
as X ∼ LEn

(
µ,Σ, φ

)
.

Similar notations hold for the class of lognormal and logLaplace distributions.
Let lnX ∼ E1 (µ,σ

2, φ) with σ2 > 0 and assume that there exists a δ > σ2

2
such that the

characteristic generator φ(u), which is actually defined on [0,∞), can be positively extended
to the interval [−δ,∞). Then, the following expression can be derived for the Conditional
Tail Expectations of X:

CTEp [X] =
eµ

1− p
φ

(
−σ2

2

)
Pr [Z∗ > Qp [Z]] , 0 < p < 1, (47)

where Z = lnX−µ
σ

and Z∗ is a rv with pdf given by

fZ∗(x) =
fZ(x)e

σx

φ
(
−σ2

2

) , (48)
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see Valdez & Dhaene (2004)). In the next two examples we make use of (47) to derive
expressions for the CTE’s of lognormal and logLaplace distributions.

Example 3.1 (CTE’s of a lognormal random variable). When X ∼ LN1(µ, σ
2) with

σ2 > 0 , we find from (17) that φ
(
−σ2

2

)
= e

σ2

2 and hence that Z∗ ∼ N(σ, 1). From (47), we

find that the CTE’s are given by

CTEp [X] =
eµ+

σ2

2

1− p
Φ
(
σ − Φ−1(p)

)
, 0 < p < 1. (49)

where, as before, Φ and Φ−1denote the standard normal cdf and its associated quantile func-
tion respectively.

Example 3.2 (CTE’s of a log-Laplace random variable). When X ∼ LLa1(µ, σ) with

σ2 > 0, we find from (27) that φ
(
−σ2

2

)
= 1

1−σ2

2

, which is positive when σ <
√
2. From (25)

and (48), we find that fZ∗(x) is given by

fZ∗(x) =
1− σ2/2√

2
eσx−

√
2|x|, σ <

√
2. (50)

From (31) and (47) we find the following expression for the CTE’s of the logLaplace distri-
bution if σ <

√
2:

CTEp [X] =
eµ

1− p
φ

(−σ2

2

)
1− σ2/2√

2

∫ ∞

Qp[Z]

exp((σ −
√
2)x)dx,

=






(2p)σ/
√
2eµ

2p(1−p)(2−
√
2σ)

: 0 < p < 1
2
,

√
2 eµ

[2(1−p)]σ/
√
2(
√
2−σ) : 1

2
≤ p < 1.

. (51)

3.3 The CTE based allocation rule for (log)normal sums

In this section we consider the random vector X = (X1, . . . , Xn) given by

(X1, . . . , Xn) = (Y1, . . . , Ym, e
Ym+1 , . . . , eYn), (52)

where Y = (Y1, . . . , Yn) ∼ Nn

(
µ,Σ
)
. As before, we denote the elements of the vector µ by

µk and the elements of the positive definite assumed matrix Σ by σkl, k, l = 1, 2, ..., n. The
aggregate risk is denoted by S:

S =
m∑

k=1

Yk +
n∑

k=m+1

eYk . (53)

As it is not possible to derive an analytical expression for E[Xk | S > Qp [S]] in this case,
we propose to approximate the rv S by the rv Sl defined by

Sl = E[S | Λ] =
m∑

k=1

E[Yk | Λ] +
n∑

k=m+1

E[eYk | Λ], (54)
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where the conditioning rv Λ is given by

Λ =
n∑

k=1

βk Yk (55)

Let us denote the correlation between Yk and Λ by rk:

rk = corr [Yk,Λ] =
1

σk σΛ

n∑

l=1

βl σkl, k = 1, 2, ..., n, (56)

with σ2Λ given by

σ2Λ =
n∑

k=1

n∑

l=1

βk βl σkl. (57)

As far as the choice for Λ is concerned, we make the following general suggestion for the
coefficients βl :

βl =

{
1 : k = 1, 2, ...,m,
eµk : k = m+ 1, , ..., n.

(58)

Indeed, we notice that this choice makes Λ a linear transformation of a first-order approxi-
mation to the sum S. This can be easily deduced from the following computation:

S =
m∑

k=1

Yk +
n∑

k=m+1

eµk +(Yk−µk)

≈

m∑

k=1

Yk +
n∑

k=m+1

eµk [1 + Yk − µk]

≈ C +
m∑

k=1

Yk +
n∑

k=m+1

eµkYk, (59)

with C an appropriate constant. Consequently, this choice for Λ ensures that E[Var[S | Λ]]
will become ‘small’. Since Var[S] =E[Var[S | Λ]]+Var[E[S | Λ]] this is equivalent to saying
that Var[E[S | Λ]] becomes ‘large’, see e.g. Kaas et al. (2000) or Vanduffel et al. (2006).

Next, as in (43) we propose to approximate E[Xk | S > Qp [S]] by E[Xk | Sl > Qp

[
Sl
]
].

In the following theorem, we derive a closed-form expression for this approximation of the
k-th contribution to CTEp [S] in case all correlations rk are positive.

Theorem 3.2 (CTE based allocation for sums of (log)normal random variables).
Using the notations and assumptions introduced in Subsection 3.3 and assuming that all
correlations rk are positive, we have that the approximation E[Xk | Sl > Qp

[
Sl
]
], 0 < p < 1,

for the k-th contribution to CTE[S] is given by

E[Xk|Sl > Qp[S
l]] = µk + rk σk ×

Φ′ (Φ−1 (p))

1− p
(60)

when k = 1, 2, ...,m, and by

E[Xk|Sl > Qp[S
l]] =

eµk+
σ2k
2

1− p
Φ[rk σk − Φ−1(p)] (61)

when k = m+ 1, ..., n.

11



Proof. Conditional on Λ = λ, we have that Yk ∼ N1

(
µk + rk

σk
σΛ
(λ− E [Λ]) ; (1− r2k)σ

2
k

)
.

For k = 1, 2, ...,m, this leads to

E[Xk|Λ] = E[Yk | Λ] = µk + rk σk

(
Λ−E [Λ]

σΛ

)
∼ N1

(
µk; r2k σ2k

)
,

whilst for k = m+ 1, ..., n, we have that

E[Xk|Λ] = E[eYk | Λ] = e
µk+(1−r2k)

σ2k
2
+rk σk

(
Λ−E[Λ]
σΛ

)

∼ LN1

(
µk + (1− r2k)

σ2k
2
; r2k σ2k

)
.

From these observations and the assumption that all rk are positive, we find that the random
vector (E[X1 | Λ], E[X2 | Λ], . . . , E[Xn | Λ]) is comonotonic with continuous marginal cdf’s.
Applying (45), we can conclude that

E[Xk | Sl > Qp

[
Sl
]
] = CTEp [E[Xk | Λ]] , 0 < p < 1.

Taking into account expressions (29) and (49) for the CTE’s of (log)normal rv’s, we find
(60) and (61).

�

From the previous results we also find an expression for the approximation E[S |Sl >
Qp[S

l]] of CTEp [S]:

E[S|Sl > Qp[S
l]] =

m∑

k=1

[
µk + rkσk ×

Φ′ (Φ−1 (p))

1− p

]
+

n∑

k=m+1

eµk+
σ2k
2

1− p
Φ[rk σk−Φ−1(p), 0 < p < 1.

(62)
This approximation for CTEp [S] can also be found in Dhaene et al. (2005b) where it was
derived by considering E[Sl|Sl > Qp[S

l]].

4 Numerical Illustration

Consider an insurance company with 4 business lines. The multivariate risk X=(X1, . . . ,X4)
T

faced by this company is assumed to be multivariate lognormally distributed:

X ∼ LN4

(
µ,Σ
)
,

with E[Xk] and Var[Xk], k = 1, . . . 4, given by

(E[X1], E[X2], E[X3], E[X4]) = (20, 40, 10, 5)

and
(V ar[X1], V ar[X2], V ar[X3], V ar[X4]) =

(
52, 152, 22, 22

)
,

respectively. Furthermore, the matrix Σ is given by

Σ =






σ21 ασ1σ2 ασ1σ3 ασ1σ4
ασ2σ1 σ22 ασ2σ3 ασ2σ4
ασ3σ1 ασ3σ2 σ23 ασ3σ4
ασ4σ1 ασ4σ2 ασ4σ3 σ24






12



We will consider the cases α = 0.75 and α = 0, respectively.
For each business line k we determine the contribution E[Xk|S > Q0.9995[S]] in two ways.

Firstly, Monte Carlo simulations are performed. Due to the high probability level p = 0.9995,
a large sample of 106 realisations of S is used. These estimations are performed 10 times in
order to obtain an estimate for the standard deviation of the sampling error. Secondly, the
comonotonic approximation

E[Xk|Sl > Q0.9995[S
l]] =

eµk+
σ2k
2

1− 0.9995Φ[rk σk − Φ−1(0.9995)] (63)

is calculated. As far as the choice of the conditioning rv Λ is concerned we could make use of
the general expression (58) to determine the choice of the parameters βk. However, since the
sum S only involves lognormals we can also apply a slightly more involved approach hereby
relying on inequality (42). Hence, we suggest to choose the parameters βk for Λ such that a
first order approximation for the CTE0.9995

[
Sl
]

becomes maximised:

βl =

{
Φ′ (Φ−1 (0.9995)) : l = 1, 2, ...,m,

eµl+
1
2
σ2l × e−

1
2
(r∗l σl−Φ−1(0.9995))2 : l = m+ 1, , ..., n.

(64)

Here, r∗k is the correlation between Yk = ln(Xk) and the rv Λ∗ =
∑m

k=1 e
µk+

1
2
σ2kYk. This choice

is designed to make Λ such that Sl is ‘close’ to S for large values of S, which for our purposes
is to be preferred above the general choice (58) for the parameters βk, see also Vanduffel et
al. (2006). Note that for α = 0.75 and α = 0, the choice (64) for the parameters βl ensures
that the correlations rk defined in (56) are positive.

Let us first consider the case that α = 0.75, which means that the different business
lines are rather strongly positively dependent. In Table 1 we provide the Monte Carlo based
estimates as well as the approximations (63) of the different contributions to CTE0.9995 [S].
From Table 1 we can conclude that the comonotonic approximations (63) closely match the
values obtained by the extensive Monte Carlo simulation.

Table 1: Estimation of the contributions C0.9995[Xk] = E[Xk|S > Q0.9995[S]], α = 0.75.

C0.9995[X1] C0.9995[X2] C0.9995[X3] C0.9995[X4] CTE0.9995p[S]

Monte Carlo Estim. 34.89 94.67 15.68 10.68 155.65
Sample Stand. Dev. 0.19 0.53 0.10 0.10 0.69

Comon. Approx. 34.95 94.20 15.72 10.67 155.54

Relative Difference -0.18 % 0.50 % -0.27 % 0.12 % 0.07 %

Next in Table 2 we present the Monte Carlo based estimates as well as the approximations
(63) of the different contributions to CTE0.9995 [S] for α = 0. Intuitively, one expects that
the less correlated the business lines the worse the comonotonic approximation (63) will
perform. This is because when S is a comonotonic sum we have that S ≡ Sl so that in this
case the contributions based on the rv Sl will coincide with those based on S. However, from
Table 2 we can conclude that the approximations (63) based on the theory of comonotonicity
continue to perform very well in case the business lines are assumed to be independent.
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Table 2: Estimation of the contributions C0.9995[Xk| = E[Xk|S > Q0.995[S]], α = 0.

C0.9995[X1] C0.9995[X2] C0.9995[X3] C0.9995[X4] CTE0.9995[S]

Monte Carlo Estim. 22.62 94.11 10.39 5.32 132.45
Sample Stand. Dev. 0.18 0.36 0.08 0.06 0.33

Comon. Approx. 23.00 93.54 10.44 5.33 132.30

Relative Difference -1.6 % 0.61 % -0.44 % -0.18 % 0.11 %

5 Final Remarks

The Enterprise Risk Management process of a financial institution usually contains a pro-
cedure to allocate, or subdivide, the total risk capital of the company into its different
business units. Several capital allocation rules have been described in the literature. We re-
fer to Dhaene et al. (2005a) for a general framework that incorporates many of these capital
allocation rules.

The CTE based allocation rule as proposed by Tasche (1999) and Denault (2001) de-
composes the CTE of the aggregate risk into its marginals’ contributions. Panjer (2002)
provides a closed-form expression for this allocation when the risks are all multivariate nor-
mally distributed, whereas Landsman & Valdez (2003) consider the multivariate elliptical
case. The proof of their result is rather technical and in this paper we gave a shorter and
straightforward proof of the Landsman & Valdez formula.

We also extend the field where analytical solutions for the CTE based allocation rule are
available by deriving accurate and easy to compute closed-form approximations for this rule
in the case that the risks of the different units have a multivariate (log)normal distribution.

Note that in recent literature other extensions have been investigated as well. Furman
& Landsman (2005) derive analytical expressions for CTE’s and the CTE based allocation
for multivariate gamma distributions. Cai & Li (2005) and Chiragiev & Landsman (2006)
consider the same problem for multivariate phase type distributions and Pareto distributions,
respectively. Finally, Furman & Landsman (2007) derive analytical expressions for these
quantities related with multivariate Poisson distributions.
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